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 Memory significantly affects the power consumption of embedded systems 

as well as performance. CPU frequency scaling for power management could 

fail in optimizing the energy efficiency without considering the memory 

access. In this paper, we analyze the power consumption and energy 

efficiency of an embedded system that supports dynamic scaling of 

frequency for both CPU and memory access. The power consumption of the 

CPU and the memory is modeled to show that the memory access rate affects 

the energy efficiency and the CPU frequency selection. Based on the power 

model, a method for frequency selection is presented to optimize the power 

efficiency which is measured using Energy-Delay Product (EDP). The 

proposed method is implemented and tested on a commercial smartphone to 

achieve about 3.3% - 7.6% enhancement comparing with the power 

management policy provided by the manufacturer in terms of EDP. 
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1. INTRODUCTION  

Dynamic Voltage/Frequency Scaling (DVFS) has been used to reduce power consumption of 

computing systems. DVFS is a technique that increases or decreases the supply voltage by adjusting the 

operating frequency of CMOS circuits. CMOS circuits have static and dynamic power dissipation, and 

dynamic power dissipation is the dominant component in CMOS [1]. Most research on DVFS technique has 

focused on CPU DVFS [2], [3] because the CPU is the most power-consuming device when a computer 

system is actively running. Many contemporary OSs support DVFS of CPU. Linux’s cpufreq [4] subsystem 

is an example. 

The frequency scaling technology is supported in hardware devices other than CPU such as the GPU 

or the memory bus, in such cases the operating frequency of the device can be managed by the user. For 

example, Linux system has a subsystem called devfreq to support frequency scaling of devices other than 

CPU [5]. Nexus 6 smartphone is a commercial mobile device supporting device frequency scaling, which 

allows us to adjust the clock speed of the memory bus that affects the memory bandwidth. Changing the 

frequency to access memory gives us another option to manage the power consumption of embedded 

systems. 

Attempts to manage the power consumption of memory access have been recently made. In [6], they 

proposed a DVFS method for DRAM based on memory bandwidth utilization. They devised a bandwidth-

based frequency selection policy using their finding in experiments that memory latency is not significantly 

affected by the memory frequency at low bandwidth. But because memory hardware with DVFS support was 

not available, they emulated frequency scaling using timing delays. No DVFS is supported by DRAM so far 

because scaling of IO voltage on DRAM affects the stability and requires significant hardware change, but 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Dynamic Frequency Scaling Regarding Memory for Energy Efficiency of Embedded Systems (Junha Kim) 

1799 

DFS (Dynamic Frequency Scaling) is possible. In [6], low-power mode of DRAM by DFS was introduced to 

achieve energy consumption reduction with limited hardware change. The results of [7] were further 

extended to consider both CPU and DRAM power consumption in a server [8]. In [9], power management of 

DRAM using both DFS and low-power states is modeled and studied using simulation. The joint scaling of 

CPU and DRAM frequencies was also studied in [10] for server systems. Low power design of SRAM can 

be also considered as in [11]. But in this paper, we focus on DRAM power management.  

Previous works require hardware changes for memory frequency scaling to manage DRAM power 

consumption. In this letter, we propose a power management method by combining DVFS of CPU and DFS 

of memory bus. We show that CPU and memory are closely related in the view of energy efficiency, which 

depends on the number of memory access per instruction. From the relationship, we find an optimal 

frequency ratio between the CPU frequency and the memory frequency.  

The study was performed using a real device. The target device used in this study is a commercial 

smartphone, Nexus 6, which has Snapdragon 805 CPU with 3GB lpDDR3 SDRAM. The CPU frequency can 

be set to one of 18 levels (300, 422.4, 652.8, 729.6, 883.2, 960, 1036.8, 1190.4, 1267.2, 1497.6, 1574.4, 

1728, 1958.4, 2265.6, 2457.6, 2496, 2572.8, 2649.6 MHz) and the memory bus frequency can be set to one 

of 13 levels (50, 75, 100, 150, 200, 259, 307, 393, 460, 528, 662, 796, 1065 MHz). 

This paper is organized as follows. Section 2 explains the power model of the CPU and the memory 

that is used for the analysis on the relationship between the CPU and the memory frequencies in Section 3. 

The analysis in Section 3 shows the CPU frequency and the memory frequency are closely related in terms of 

energy efficiency. Based on the analysis, Section 3 presents a method for frequency selection of both the 

CPU and the memory. In Section 4, experimental results with a commercial smartphone on which our 

frequency selection method implemented are presented. Finally, Section 5 concludes our work. 

 

 

2. POWER MODEL OF CPU AND MEMORY 

The power consumption of the CPU in embedded systems is usually divided into dynamic and static 

power [12]. The power consumption of the CPU can be modeled as: 

 

                    
            (1) 

 

where   is a coefficient of the switching activity and the effective capacitance,   is the operating 

voltage,    is the CPU frequency, and   is the leakage current. Reduction in operating voltage decreases the 

dynamic power consumption, but increases the circuit delay. The relation between the operating voltage and 

the CPU frequency is given by: 
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where     is a threshold voltage which is much smaller than the operating voltage [13], [14].  

Equation (2) can be rewritten as     , from which we can reformulate Equation (1) as: 

 

                     
           (3) 

 

where   is a variable depending on the switching activity and   is a hardware-dependent constant. 

For multicore CPUs, the  power consumption will be given by summing of each core power, that is,      

∑(    
     ) where   represents the core number. Switching activities may differ from each other. 

On the other hand, the power consumption of the DRAM system can be divided into operation 

power and background power [6], [9]. The operation power is the power required to execute memory reads 

and writes. The background power accounts for all power consumption when there is no memory access. 

Lowering the frequency to access memory affects the power consumption; it lowers background power 

linearly [7]. The operation power is not affected by memory frequency, but the energy required for memory 

access increases because the access time becomes longer. For the DDR-series DRAMs, the background 

power is a major component in the total DRAM power consumption [6]. So we assume that the operation 

power can be ignored in our model, and the power consumption of the main memory is modeled as: 

 

                 (4) 
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Figure 1. Power consumption of Nexus 6 in idle state with different bus frequencies 

 

 

where    is the memory device frequency, and    is a hardware-dependent constant. Combining 

Equations (3) and (4), we have power consumption estimation: 

 

               
          (5) 

 

assuming the CPU and the memory are the dominating power consumption devices. 

We have measured power consumption of the target device, varying the bus frequency when the 

system is in idle state (   ). Results are shown in Figure 1. Because the operating frequency of the 

SDRAM ranges from 166MHz to 800MHz, the power consumption is almost unchanged below 200MHz and 

above 796MHz. Changing the CPU frequency from the lowest level to the highest level in idle state does not 

affect the power consumption. The power consumption at the lowest bus frequency is about 0.305W and at 

the highest it is about 0.621W. The difference between the maximum and the minimum is about 0.316W and 

        when    is represented in GHz.  

 

 

 
 

Figure 2. Power consumption for CPU intensive benchmark (one core) 

 

 

To obtain the values   and   we used cpubomb included in Isolation Benchmark Suite [15] that 

fully utilizes the CPU and does not access memory. Figure 2 shows the power consumption of cpubomb for 

different CPU frequencies when only one core is used for the benchmark. Memory bus frequency was fixed 

at the lowest level, so we assume 0.305W is consumed by memory device. Regression analysis gives us 

        and        , which provide estimation very close to the measured ones. The hardware 

dependent parameters are used to estimate for a multicore application using the relationship      

∑(    
     )  (∑  )  

       where   is the number of cores used. The comparison between the 

estimated values and the measured values is shown in Figure 3. The estimation error is accumulated as the 
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number of cores increases: 1.5%, 3.1%, 5.2%, and 7.0% of average error in prediction for 1, 2, 3, and 4 cores 

respectively. Because the target was overheated when multicores are used with over 2.4GHz of CPU 

frequency, we could not measure accurate values over 2.4GHz. In this letter, we simply let   represents ∑  . 

 

 

 
 

Figure 3. Power estimation for multicore execution (CPU intensive) 

 

 

3. CPU AND MEMORY FREQUENCY SELECTION FOR ENERGY EFFICIENCY 

We use EDP (Energy Delay Product) [16] as the measure of energy efficiency to consider both 

turnaround time and energy consumption. The energy-delay product has been widely used as a metric to 

measure the energy efficiency coupling both the energy consumption and performance. It is the 

multiplication of the delay time (execution time) until the end of the program and the energy consumption 

during the execution of the program. Because the energy consumption of executing an instruction is the 

multiplication of the power consumption and the execution time of the instruction, the EDP of executing an 

instruction is modeled as 
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= (    
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                   (6) 

 

where     is the Cycles Per Instruction and   is the number cores used.     is affected by the 

memory frequency if there is a memory access. For the RISC CPU such as ARM processor, if we let      be 

the CPI when there is no memory access,     can be estimated as 

 

    (         )           (7) 

 

where   is 1 if there is a memory access, otherwise 0. Assuming      is a constant value, 

minimizing the EDP is equivalent to minimizing the following: 
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If    , we have  
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and the optimal value of    can be obtained when    is at its minimum. When    , because 

harmonic mean is not larger than geometric mean, we have 
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where   is given in Equation (5). So the optimal value of    can be found when    is at its 

maximum. Thus, when   is the rate of memory access per instruction, the expected  (     ) can be found by 

minimizing the following: 
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By letting 
  

  
   in (11), we have  
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With CPU frequency    given, we can calculate the frequency ratio   minimizing Equation (12) as 
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Figure 4. Frequency pair for optimal EDP 

 

 

If    ,     so    will be set to the minimum value. If    , the value of   can be calculated 

with a given   , then we get the corresponding value of   . With limited number of CPU frequency levels, 

we can calculate the value of    for each    with given utilization and the average memory access rate per 

instruction. Then we compare the corresponding energy consumption using Equation (11) to determine the 

pair of    and    that give the minimum value. As an example, the values of    and    obtained for a single 

core application are shown in Figure 4 (  is in 0.1%-99.9%, increased by 0.1%). The highest memory bus 

frequency is used as a bound to indicate that the optimal    is higher than 800MHz. The results show that if 

the memory access rate is less than 0.3% we do not need to raise the memory access frequency from its 

lowest level. With less than 3.5% of the memory access rate, the frequency should be maintained below its 

highest level. 

 

 

4. APPLICATION TO A REAL TARGET 

We measured energy consumption and performance of applications on a real target (Nexus 6) to 

validate our analysis. To measure the power and energy consumption, we disassembled the battery parts of 

Nexus 6 and connected the charging port to a digital power meter (ODROID Smart Power was used) which 

supports 10Hz sampling rate. We tested three benchmarks: cpubomb, ramsmp [17], and STREAM [18]. 

ramsmp and STREAM have 4 kinds of operations: copy, scale, add, and triad. Copy moves data in an array to 

another. Scale multiplies a value to data from an array and stores it to another. Add adds data from two arrays 

then stores the sum to the other array. Triad combines scale and add. Operations of ramsmp were tested 

separately, but those of STREAM were tested all together for comparison. The ranges of memory access rate 
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  for benchmarks are: 0.276-0.702 for copy, 0.016-0.023 for scale, 0.06~0.07 for add, 0.016-0.023 for triad 

of ramsmp, 0.001 for cpubomb, and 0.14-0.70 for STREAM. The CPU utilization is 100% for all benchmarks. 

We compared the energy efficiency of different governors of Linux with the presented method. Our 

method was implemented using the governor interface of Linux and the sampling rate of our policy is the 

same as other governors. Linux supports 3 dynamic policies for CPU DVFS: conservative, ondemand, and 

interactive. The default CPU DVFS policy for Nexus 6 device is the interactive governor, which is typical 

for Android devices. The governor for the memory bus is cpubw_hwmon; it monitors the memory reads and 

writes and adjust the bus frequency according to the memory bandwidth. Note that our method has an 

integrated governor that performs both CPU DVFS and control of memory bus frequency simultaneously. 

Figure 5 compares the EDP of benchmarks. 

 

 

 
 

Figure 5. EDP of benchmarks 

 

 

With ramsmp, frequency scaling of CPU and memory based on our analysis shows lowest EDP 

value in this experiment. EDP value is enhanced about 8.6% for copy operation and about 3.3 % for triad 

operation over the default governor. The energy efficiency was enhanced about 3.4% over interactive 

governor and 9.6% over conservative governor in total operations of ramsmp. Test with STREAM benchmark 

shows similar result: enhanced 7.6% over interactive and 11.7% over conservative governor. If memory is 

barely accessed, the proposed method does not degrade performance as in the results with cpubomb.  

 

 

5. CONCLUSION 

Although the CPU is the most power-consuming device in a computer system, memory also has the 

significant effects on power consumption as well as performance. Because of its impact on the performance, 

the memory is important especially in terms of energy efficiency. Thus frequency selection of CPU without 

considering the memory access could fail in optimizing the energy efficiency of the system. In this paper, we 

have analyzed the relationship between CPU and memory frequency in the view of energy efficiency. For 

CPU-intensive applications, lowering memory access frequency can reduce the power consumption of the 

system. For applications with considerable memory access, proper selection of CPU and memory frequency 

is needed. We presented a model for selection, and it was tested on a real target (Nexus 6 smartphone). The 

results show frequency assignments based on our analysis enhances energy efficiency. 
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