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 We focused in this work on a fault tolerant control of a non linear hybrid 
system class based on diagnosis method (determine and locate the defects 
and their types) and on the faults reconfiguration method. In literature we can 
found many important research activities over the fault-tolerant control of 
non linear systems and linear Hybrid systems. But it dosen´t exist too many 
for the non linear hybrid system. The main idea in this paper is to consider a 
new approach to improve the reconfiguration performance of the non linear 
hybrid system by using hammerstein method which is designed to works 
only for linear systems. This method compensated the effect of the faults and 
guarantees the closed-loop system stable. The proposed method is simulated 
with a hydraulic system of two tanks with 4 modes 
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1. INTRODUCTION  

In recent years, there has been important research activity in the fault-tolerant control for Hybrid 
systems. These  systems  contain  continuous  and  discrete  systems  described  by  differential  equations, 
automata and sequential logics. To control these systems even in case of failure, we adopted the fault 
tolerance control (FTC). The FTC is developed in two approaches: Passive approaches based on a robust 
controller that ensures the imperceptibility to the systems, and active approaches that change control 
operations for each detected fault [1], [2], [3]. 

In this paper, we are interested in a new control strategy for piecewise affine systems (PWA) that is 
used for system's reconfiguration. The contribution in this paper aims essentially to reconfigure the non linear 
hybrid system using the Hammerstein method that works only for linear systems. The linearization is 
obtained by using Taylor method. 

The next sections in this paper are organized as follows: Section 2 presents the stability concepts, 
Section 3 describes the linearization, Section 4 discusses the reconfiguration with the Hammerstein method 
and Section 5 presents the simulation example. 
 
 
2. STABILITY NOTIONS 

In this part, we will present the stability technique with lyapunov method. 
Lyapunov method 

To verify the stability of an hybrid system using the lyapunov method or more generally the LMI 
method. [3][4]. There exists a matrix 

 

0TP P= >  (`1) 
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We say that the system is quadratically incrementally stable if it verifies the following LMI equation. [5] [6]. 

 
0 , 1,...,T

i iPA A P i p+ < =  (2) 

 
 
3. LINEARIZATION ( TAYLOR METHOD) 

If a  Non Linear system has  multiple dynamic variables on discrete time, it  will be  written 
as the following: [7], [8], [9], [10], [11], [12]. 
 

1 1 n 11

1 n 1

( , )
( , )

( , )

m

n n m

f x x u ux
f x u

x f x x u u

  
   = =   

   
   

  

 

  

 (3) 

 
where 1 n( )x x  is the state vector and 1( )mu u is the control vector; n and m are positive integers. 

When the system operates around an equilibrium point and the signals involved are small, then it is 
possible to approximate the Non Linear system with Taylor series by computing the Jacobian matrices in 
order to obtain a linear system with the following state space model: 
 

x Ax Bu
y Cx Du
= +

 = +


 (4) 

 
Where A is the state matrix, B is the control input matrix, C is the output matrix, D is the feedthrough 
matrix and y is the output vector. Now, we will approximate ( ),f x u  with Taylor series: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ), ,

, ,
, ,

e e e ee e e ex u x u

f x u f x u
f x u f x u x x u u

x u
∂ ∂

+ − + −
∂ ∂

=  (5) 

 
Where ex  and eu are the steady state operating points 
 

1

n

e

e

e

x
x

x

 
 
 
 
 

=  is a vector determined by solving: 

 

( )

( )

1 1 n 1 1

1 n 1

,

,

( , )

( , )

e e

e e

m e

n m ne

x u

x u

f x x u u x

f x x u u x

=

=








 



 

 (6) 

 
To check the stability, it is necessary to find the Jacobian matrix: 
 

1 1

1

1

( , ) ( , )

( , )

( , ) ( , )

n

n n

n

f x u f x u
x x

f x uJ
x

f x u f x u
x x

∂ ∂ 
 ∂ ∂ ∂

= =  
∂  ∂ ∂ 

 ∂ ∂ 



  



 (7) 
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that verifies:  
 

det( ) 0eJ Iλ− =  (8) 
 

Where: 
( )

( ),
,

e e ex u
f x u

J
x

∂
=

∂
, 

 

1

nλ
λ

λ 
 
 
 
 

=   is the eigenvector, and I is the identity matrix. 

 
The equilibrium is locally stable if ( 1< <1λ− ). 
Finally, we determine ( , )y g x u=  
 

( ) ( )
( ) ( ) ( )

( ) ( ), ,
, ,

,e e e ee e e ex u x u
g x u g x u

g x u x x u u
x

y
u

∂ ∂
+ − + −

∂ ∂
=

 
 

(9) 

( )
( ),

,
e ex u

f x u
A

x
∂

=
∂

, 
( )

( ),
,

e ex u
f x u

B
u

∂
=

∂  
 

( )
( ),

,
e ex u

g x u
C

x
∂

=
∂

, 
( )

( ),
,

e ex u
g x u

D
u

∂
=

∂
 

(10) 

 
 
4. RECONFIGURATION METHOD 

In this part, the piecewise affine system which is a class of a hybrid system is defined.  Moreover, 
the reconfiguration method applied to hybrid system is processed. 

 
4.1.  Piecewise Affine System (PWA) 

The piecewise affine system is characterized by dividing the state-space in a finite number of 
regions and associating to each one an affine linear equation. [13]. The nominal system is modeled by the 
following PWA model: 

 

( ) ( ) ( ) ( )
( ) ( )

i i c dx t A x t b Bu t B d t
y t Cx t

= + + +
 =


 (11) 

 
Where: d (t): disturbance 
 Bd : disturbance Input matrix 
 bi : The affine terms 
 Ai : the real matrices of appropriate dimensions for all i. 
 
In this section the reconfiguration method is processed. 
 
4.2.  Fault Model 

The fault event suddenly changes the nominal PWA system to the faulty PWA system: 
 

,( ) ( ) ( ) ( )
( ) ( )

f i f f f d i f

f f f

x t A x t B u t B d t b
y t C x t

= + + +
 =


 (12) 
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Where: fB  = corresponds to faulty actuator 

 fC = corresponds to faulty sensor 

 fu  = corresponds to faulty controller  
 
In case of actuator faults, we change the measurements of the matrix fB    as follows: 
 

(1 )fB Beta B= − ×  (13) 

 
In case of Sensor faults, we change the measurements of matrix  fC  as follows: 
 

( )fC alpha C= ×  (14) 

 
Beta, alpha are random values that keep the system faulty in the same interval of operation as the nominal 
system. 
 
4.3.  Reconfiguration with Hammerstein Method 

The Hammerstein method is modeled by new input and output matrices of a system having actuator 
faults or sensor faults [14]. The reconfiguration with Hammerstein method is defined by the following 
equation: 
1. In case of actuator faults, we obtain the following virtual actuator PWA: 

 

,( ) ( ) ( )
( ) ( )
( ) ( ) ( )

i i i c

c

f f i

x t A x t b B u t
y t C x t
u t M x t Nx t B b

∆

+

 = + +


=
 = + +

 

  (15) 

 
With 
 

, ( )i fB B B M∆ = ± −  (16) 
 
x  is found by the following equation: 
 

( ) ( ) 0T
i f i fx A B M A B M x− + − <   (17) 

 
2. in case of a sensor fault, we obtain the  following  virtual sensor PWA: 

 

,

,

ˆ ˆ( ) ( ) ( ) ( )

( )
f i f i c f

i i f

x t A x t b Bu t Ly t

A A LC
δ

δ

 = + + +


= −



 (18) 

 
With x̂  is found by the following equation: 
 

ˆ ˆ( ) ( ) 0T
f i f i f fx A C L A C L x− + − <  (19) 

 
We find M and L with the following steps. 
There exist matrices , ,s s a aX Y and X Y  that gratify the LMIs: 
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0
0

0

( 1,..., )
f

T
s s

T
s s

T T T
s i i s s f s

X X
Y Y
X A A X Y C C Y

i p

= ≥

= ≥

+ − − ≤

=

 (20) 

 
and 
 

0
0

0
( 1,..., )

T
a a

T
a a

T T T
i a a i f a a f

X X
Y Y
A X X A B Y Y B

i p

= ≥

= ≥

+ − − ≤

=

 (21) 

 
M is a perturbation observer for the defective system: (for actuator fault) 
 

1
s sL X Y−  (22) 

 
The Hammerstein method is summarized in the following algorithm. 
Steps 1 to 3 describe the nominal system before failure, in step 4 the defects are detected, the gains is 
calculated in step 5, in step 6 to 8 the reconfigured closed-loop system is run. 
 
 

Hammerstein Method  
1) request : PWA model , , ,i iA b B C   

2) begin the nominal closed-loop system  

,, , , 0 , 0f f f i iC C B B b b L M= = = = =  

0, (0)Ni I x x= =  

3) execution the nominal closed-loop system up to actuator or 
sensor fault f detected and isolated 

4) make the fault model , ,f f fb B C  and update the PWA (12) 

5) find LMI (20),(21) and  calculate (22) 1
a aM Y X − for 

actuator fault, (23) 1
s sL X Y−  for sensor fault 

6) calculate , jB∆  (16), x  (17) for actuator  fault , x̂  (19) for 
sensor fault 

7) Update PWA actuator  fault (15), PWA sensor fault (18) 
8) execution reconfigured closed-loop system 

 
 
5. EXPLICATIVE EXAMPLE 

An application of Algorithm Hammerstein to the model of a two tanks with 4 modes is presented in 
this section. 
 
5.1.  The Non Linear Hybrid System 

In this part, we will present a model of two tanks with 4 modes as shown in Figure 1. The two-tank 
system is a typical example of a non linear hybrid system. It has been considered as a reference problem for 
the diagnosis and detection of failures in [15]. Table 1 shows the parameters of system: 
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Table 1.  List of Symbols 

Symbol Declaration 
T1 Tank 1. 
T2 Tank 2. 
h1 liquid level in tank 1, initially 0.5m 
h2 liquid level in tank 2, initially empty 
P Pump controlled in all or none. 
C1, C2, C3, C4  Conducts. 
V1 Valve kept open during the functioning system 
V2 Valve kept open during the functioning system. 
V4 Controlled Valve (V4 is opened at t = 240s and closed at t = 380 s). 
qp Debit in the pump P, (qp= 0 when h2max= 0.2m and  qp = 0.001m3/s when h2min= 0.1m). 
q1 Debit in valve V1. 
q2 Debit in valve V2. 
q3 Transfer debit of conduct C3 at 0.5 m height. 
q4 Debit in valve V4. 
S Section area of T1 and T2; S=0.0154 m2. 
A Conducts Section; A= 0.000036 m2. 

 
 

 
 

Figure 1. Two tanks system 
 
 
The functioning of this system is described in Figure 2 by the automate hybrid. 
 
 

 
 

Figure 2. Automate hybrid 
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The debits 1 2 3 4, , ,q q q q  are given by the following equation: 
 

1 1

2 1 2 1 2

3 1 1

4 2

q =A 2gh

q =sign(h -h )A 2g h -h

q =sign(h -0.5)A 2g h -0.5

q =A 2gh









 (24) 

 
Note that the system is discretized with a sampling period 0.5eT s= . 
Figure 3 represents the liquid level variation of the non linear System. 
 
 

 
 

Figure 3. Liquid level variation of the non linear system 
 
 

In this paper, we are interested in the reconfiguration of the non linear hybrid system. Whereas, the 
Hammerstein method is valid only for linear systems. We can summarized the work as: (1) providing an 
linearization method for a non linear Hybrid Systems ;(2) developing a Hammerstein algorithm which 
addresses both of the actuator faults and the sensor faults. 
 
5.2.  Linearization of the non Linear Hybrid System 

This method of linearization is applied to our hybrid system: 
 

1 1

1 2

2 2

1 2

h h
h h

A
h h
h h

 ∂ ∂
 ∂ ∂ =  ∂ ∂
  ∂ ∂ 

 

 
,       

1 1

4

2 2

4

p

p

h h
q q

B
h h
q q

 ∂ ∂
 ∂ ∂ =  ∂ ∂ 
 ∂ ∂ 

 

 

 

 
 

(25) 

 
1 0
0 1

C  
=  
 

,  0 0
0 0

D  
=  
 

,   1

2

h
x

h
 

=  
 

,     
4

pq
u

q
 

=  
 

 

 
Matrices searching process for each mode: 
1. Mode 1: 1 2 40.5 , 0.5 ,h h V Closed< <  
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The system's equations will be written as follows: 
 

1 1 2

2 2

1 ( )

1 ( )

ph q q q
S

h q
S

 = − −

 =






 

(26) 

 

1 1 1 2 1 2

2 1 2 1 2

1 ( 2 sgn( ) 2 )

1 (sgn( ) 2 )

ph q A gh h h A g h h
s

h h h A g h h
s

 = − − − −

 = − −





 

 
The steady state operating points 1eh  and 2eh  are given by solving: 
 

( )

( )

1 2

1 2

1 1

2 2

,

,

e e

e e

e

e

h h

h h

h h

h h

 =

 =





 (27) 

 
The Jacobian matrix: 
 

1 1

1 1 2 1 21 2

2 2

1 2 1 2 1 2

2

2

1 1 1

1 1

A g

s

h h
h h h h hh h

J
h h

h h h h h h

∂ ∂ −
− −∂ ∂

= =
∂ ∂

∂ ∂ − −

   −  
  
  

−  
   

 

 
 

 

 

The Jacobian matrix at the operating points 1eh and 2eh : 
 

( ) ( )

( ) ( )

1 1

1 2

2 2

1 2

1 2 1 2

1 2 1 2

, ,

, ,

0.3301 0.1776

0.1776 0.1776

e e e e

e e e e

e

h h h h

h h h h

h h

h h
J

h h

h h

∂ ∂

∂ ∂ −
=

−∂ ∂

∂ ∂

 
     =     
 
 

 

   

 

Calculating the eigenvector of eJ : 
 

1

2

0.0606

0.4471

λ

λ
λ

−
=

−

   
=   
  

 

 

1( 1 1)λ− < <  and 2( 1 1)λ− < <  so the equilibrium is locally stable, then eA J= . 
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The control matrix B is calculated as follows: 
 

1 1

4

2 2

0

0 0

1
p

p p

h h

q q

h h

q q

B s

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂

 
   
   =
   

  
 

 

 
 

 
2. Mode 2: 1 2 40.5 , 0.5 ,h h V Closed> <  
The system's equations will be written as follows: 
 

1 1 2 3

2 2 3

1 ( )

1 ( )

ph q q q q
S

h q q
S

 = − − −

 = +





 (28) 

 

1 1 1 2 1 2 1 1

2 1 2 1 2 1 1

1 ( 2 sgn( ) 2 sgn( 0.5) 2 0.5 )

1 (sgn( ) 2 sgn( 0.5) 2 0.5 )

ph q A gh h h A g h h h A g h
s

h h h A g h h h A g h
s

 = − − − − − − −

 = − − + − −






 

 
The Jacobian matrix: 
 

1 1 2 1 1 2

1 2 1 1 2

2

2

1 1 1 1

0.5

1 1 1

0.5

A g

s

h h h h h h
J

h h h h h

− −
− − −

=

− − −

 − 
 
 

+ − 
 

 

 
The Jacobian matrix at the operating points: 
 

0.1259 0.0481

0.0555 0.0481eJ
−

−

 
=  
 

 

 
Calculating the eigenvector of eJ : 
 

1

2

0.0223

0.1517

λ

λ
λ

−
=

−

   
=   
  

 

 
( 1 1)λ− < < , so the equilibrium is locally stable, then eA J= . 
The control matrix B  is calculated as follows: 
 

0

0 0

1
B s

 
 =
 
 
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3. Mode 3: 1 2 40.5 , 0.5 ,h h V Opened> <  
The system's equations will be written as follows: 
 

1 1 2 3

2 2 3 4

1 ( )

1 ( )

ph q q q q
S

h q q q
S

 = − − −

 = + −






 
 

(29) 

1 1 1 2 1 2 1 1

2 1 2 1 2 1 1 4

1 ( 2 sgn( ) 2 sgn( 0.5) 2 0.5 )

1 (sgn( ) 2 sgn( 0.5) 2 0.5 )

ph q A gh h h A g h h h A g h
s

h h h A g h h h A g h q
s

 = − − − − − − −

 = − − + − − −






 

 
The Jacobian matrix: 
 

1 1 2 1 1 2

1 2 1 1 2

2

2

1 1 1 1

0.5

1 1 1

0.5

A g

s

h h h h h h
J

h h h h h

− −
− − −

=

− − −

 − 
 
 

+ − 
 

 

 
The Jacobian matrix at the operating points 1eh and 2eh : 
 

0.1191 0.0399

0.0473 0.0399eJ
−

−

 
=  
 

 

 
Calculating the eigenvector of eJ :     
 

1

2

0.0207

0.1383

λ

λ
λ

−
=

−

   
=   
  

 

 
( 1 1)λ− < < , so the equilibrium is locally stable, then eA J= . 
The control matrix B is calculated as follows: 
 

0

0

1

1
sB

s
−

 
 

=  
  
   

 
4. Mode 4: 1 2 40.5 , 0.5 ,h h V Opened< <  
The system's equations will be written as follows: 
 

1 1 2

2 2 4

1 ( )

1 ( )

ph q q q
S

h q q
S

 = − −

 = −





 (30) 
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1 1 1 2 1 2

2 1 2 1 2 4

1 ( 2 sgn( ) 2 )

1 (sgn( ) 2 )

ph q A gh h h A g h h
s

h h h A g h h q
s

 = − − − −

 = − − −






 

 
The Jacobian matrix: 
 

1 1 2 1 2

1 2 1 2

2

2

1 1 1

1 1

A g

s

h h h h h
J

h h h h

−
− −

=

− −

 − 
 
 

− 
   

 
The Jacobian matrix at the operating points: 
 

0.2418 0.0681

0.0681 0.0681eJ
−

−

 
=  
 

 

 
Calculating the eigenvector of eJ : 
 

1

2

0.0446

0.2654

λ

λ
λ

−
=

−

   
=   
    

 
( 1 1)λ− < < , so the equilibrium is locally stable, then eA J= . 
 
The control matrix B is calculated as follows: 
 

 0

0

1

1
sB

s
−

 
 

=  
  
 

 

 
5.3.  Reconfiguration method  

The adopted reconfiguration method applied to hybrid system is processed in this section. In the first 
part, an actuator fault is introduced to the system and the performance of the Hammerstein method by 
reconfiguration of the actuator fault is checked. In the second part, a sensor fault is inserted to the system and 
then a reconfiguration of a sensor fault is undertaken.  
 
5.3.1.Actuator Fault and Reconfiguration: 
a. Actuator Fault model: 
The new matrix Bf equals: 
 

(1 )fB Beta B= − ×
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Figure 4 represents the linear system and the actuator fault system. 
 
 

 
 

Figure 4. System with actuator fault 
 
 

Figure 5 is Figure 4 focused on the fault part of the actuator fault system. 
 
 

 
 

Figure 5. System with actuator fault (Zoom) 
 
 
Failures detection is neatly visible on the curves of Figures 4 and 5, the fault is introduced during the time 
interval [400-1000s], the failure is detected at t=460s, t=660s, and t=982s. 
b. Reconfiguration of the Actuator Fault by Hammerstein method: 
We find M (perturbation observer): 
 

1 3 -0.4214   -0.5342
10  

 0.1500   -0.5717a aM Y X − −  
=  

 
               

 

x  Is found by the following equation: 
 

( ) ( ) 0T
i f i fx A B M A B M x− + − < 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 5, October 2018 :  2864 – 2882 

2876 

 0.0069    0.1053 
 

 0.1053    0.1676 
x  
=  

 
   

 
Figure 6 represents the reconfiguration for an actuator fault system. 
 
 

 
 

Figure 6. Reconfiguration for an actuator fault  
 
 

Figure 7 shows the Comparison of the linear system with the reconfiguration system for an actuator fault. 
 
 

 
 

Figure 7. Comparison of the linear system with the reconfiguration system for an actuator fault 
 
 

Figure 8 is a zoomed version of the Figure 7; it shows that the adopted method has successfully compensate 
the effect of the faults on the system. 
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Figure 8. Comparison of the linear system with the reconfiguration system for an actuator fault (Zoom)  
 
 

Figure 9 shows the efficiency of the reconfiguration with Hammerstein method for an actuator fault. 
 
 

 
 

Figure 9. Error between the linear system and the reconfiguration system for an actuator fault  
 
 

The computation of the error is realized for a time period between the linear system and the 
reconfiguration system for an actuator fault. It is interesting to note that the error’s value is close to zero. 
From the previous results, the figures show that the Hammerstein method is very effective to reconfigured 
the actuator faults. 

 
5.3.2. Sensor Fault and Reconfiguration: 
a. Sensor Fault model: 
The new matrix Cf equals: 
 

1 0
( )

0 1fC alpha C alpha  
= × =  

   
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Figure 10 represents the linear system and the sensor fault system 
 
 

 
 

Figure 10. System with sensor fault 
 
 

Figure 11 is a zoomed version of the Figure 10. 
 
 

 
 

Figure 11. System with sensor fault (Zoom) 
 
 

Failures detection is neatly visible on the figures 10 and 11, the fault is introduced during the time interval 
[400-1000s], the failure is detected at t=440s, t=460s, t=475s, t=490s, and t=533s. 
b. Reconfiguration of the Sensor Fault by Hammerstein method: 
We find L (state observer) 
 

1 -0.2274s sL X Y− =   
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With x̂  is found by the following equation: 
 

ˆ ˆ( ) ( ) 0T
f i f i f fx A C L A C L x− + − <                  

 

3 0.8099    0.0108
  10

0.0108    0.8126
x −  
=  

 
   

Figure 12 represents the reconfiguration for a sensor fault system. 
 
 

 
 

Figure 12. Reconfiguration for a sensor fault 
 
 

Figure 13 represents the comparison between the linear system and the reconfiguration system for a sensor 
fault. 

 
 

 
 

Figure 13. Comparison of the linear system with the reconfiguration system for a sensor fault  
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Figure 14 is a Zoomed version of the igure 13; it shows that the effect of the faults on the system is 
compensated by the use of the adopted method. 
 
 

 
 

Figure 14. Comparison of the linear system with the reconfiguration system for a sensor fault (Zoom) 
 
 

Figure 15 represents the error between the linear system and the reconfiguration system for a sensor 
fault; it shows the efficiency of the reconfiguration with Hammerstein method for the sensor fault system. 

 
 

 
 

Figure 15. Error between the linear system and the reconfiguration system for a sensor fault  
 
 

The computation of the error is realized for a time period between the linear system and the 
reconfiguration system for a sensor fault. It is interesting to note that the value of the error is around zero. 
From the previous figures, the Hammerstein method gives a very effective reconfiguration of the sensor 
faults. 

Comparison between the reconfiguration methods for non linear hybrid systems and other methods: 
to prove the efficiency of the proposed reconfiguration method, an evaluation is given in this section. 
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The result obtained using the Hammerstein method is compared to the methods developed in [16], [17] and 
summarized in the Table 2. 

 
 

Table 2. Comparison of Methods 
 Method Hammerstein  Method  in [16], [17] 
Stability For each method, we try to compute the stability using from Lyapunov method 

(Matlab LMI Control Toolbox). The methods guarantee the stabilily of the system. 
Time for detected failure Fast (T= few seconds) Slow 
Reconfiguration the effect of the faults on the system is 

compensated 
minimizes the propagation of failure 
effects 

 
 

The previous results show the effectiveness of the Hammerstein method for non linear hybrid 
systems. This approach ensuring a very important result to reconfiguration method (for the actuator faults and 
the sensor faults) and ensuring the stability of the systems. 
 
 
6. CONCLUSION  

During last years, there has been a lot researchs in the active fault tolerant control for non linear 
systems and linear Hybrid systems. [18], [19], [20], [21]. The contribution in this work is essentially to 
reformulate a new approach to improve the reconfiguration performance of the non linear hybrid system. 
This approch compensate the effect of faults and ensure the stability of the closed-loop system. 

Therefore, this paper developed the linearization of a non linear Hybrid Systems using the Taylor 
method.  Moreover, the active fault tolerant control based on the Hammerstein method has been proven to be 
efficient for the reconfiguration of the non linear Hybrid Systems in case of the intervention of the actuator 
fault and the sensor fault. The application of this method on the hydraulic system (two tanks with 4 modes) 
gives hopeful results.The future research will be focused on the reconfiguration method using the fault 
tolerant control for non linear hybrid systems based on neural network. 
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