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 This paper presents a new wideband microstrip circular patch antenna 

(MCPA) fed by proximity-coupled line with double-stub matching to achieve 

dual-band operation. Bandwidth extension is achieved by exciting higher-

order modes in the circular radiating patch, and using two stubs to achieve 

adequate matching across the obtained two bands. The characteristics of the 

antenna such as reflection coefficient, impedance bandwidth, gain and 

radiation pattern are investigated and optimized through parametric studies 

using the CST Microwave Studio Suite. The antenna achieved a large 

relative bandwidth of 45.16% at the upper band, while the lower one has 

10.3% relative bandwidth. The maximum achieved gain of the dual-band 

antenna in the 5.8GHz band is 4.62dBi while it is 4.85dBi in the upper band. 

The antenna has an overall size of 30×30×3.2mm3 corresponding to 0.58λ × 

0.58 λ × 0.062 λ at the lower band of 5.8 GHz. The proposed antenna should 

be useful for WLAN and X-band communication systems. 
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1. INTRODUCTION  

Microstrip patch antennas (MPAs) have various advantages such as low profile, light weight and 

being conformal to hosting surfaces. Thus, they are used in wide range of applications like mobile 

communication systems, global positioning systems (GPS), microwave sensors, wireless local area networks 

(WLAN), etc [1]. However, microstrip antennas suffer from the small working bandwidth of less than about 

10%. Therefore, various techniques have been proposed for bandwidth extension of the microstrip antennas. 

The proximity coupling was found to achieve a 13% relative bandwidth in rectangular patch antenna [2]. 

This technique has other benefits such as ease of matching and fabrication compared to the other feeding 

schemes. Another proposed solution was the use of a parasitic resonator coupled to the patch forming a 

wideband stacked microstrip patch antenna [3]. In [4] a special shape antenna consisting of a rectangular 

patch tapered at two corners and loaded with three notches and one slot was presented. A proper selection of 

dimensions and positions of the slot and notch have led to 30.5% relative bandwidth.  

The realization of a dual-band operation can be considered as another scheme to achieve wider 

bandwidth. A popular method for designing a single-fed dual-band antenna is to stack two resonating 

structures of proper dimensions to excite two fundamental modes corresponding to the desired bands [5], [6]. 

The height between the resonators needs optimization to ensure impedance matching and adequate 

bandwidth of the antenna. The achieved bandwidths in [5] were 8.3% and 7% for the lower and upper bands 

respectively. Slightly larger bandwidths of 10.64% and 8.82% for the L1 and L2 GPS bands respectively were 

obtained in [6]. However, these acquired benefits are on the account of size increase. In another design with 
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inserting a slot on the ground plane and a stacked patch supported by a wall, the bandwidth was increased up 

to 25% [7]. A staked patch antenna based on aperture coupling and asymmetry feeding technique was 

presented in [8]. A cross-shape aperture imbedded in the ground plane with asymmetry feeding structure 

provided a relative wideband electromagnetic coupling. The experimental results showed that an impendence 

bandwidth of 35.3% was achieved [8]. In [9] a dual-band GPS antenna incorporating a proximity-coupled 

feed was proposed. The radiating element is a circular patch with a cross-slot and a ring-slot to excite the 

TM11 mode at the GPS L1 and L2 bands, and the measured bandwidths were 6.1% and 3.7% respectively. A 

novel feeding system for microstrip radiators which is based on an electromagnetic coupling was presented in 

[10]. The single feed line is ended by two arms which hug the patch near the edge in a symmetrical manner 

with a capacitive gap to the two adjacent sides of the rectangular patch in order to initiate circular 

polarization. The result of the developed prototype was a 3dB axial ratio bandwidth of 3.9%. The achieved 

impedance bandwidth was 4.9%. A broadband proximity-coupled dual-polarized microstrip antenna with an 

L-shape backed cavity was presented [11]. The L-shape cavity enhances the feed coupling and thus broadens 

the bandwidth. A prototype antenna with optimized parameters showed relative bandwidth of more than 30% 

(8.2–11.4 GHz) and the two port isolation is larger than 20 dB. The antenna has three substrates and a thick 

ground plane leading to dimensions of 28X28X9.4 mm
3
. Slots and rings in the circular microstrip patch were 

also used to achieve multiband operation [12], [13]. 

A compact wideband dual-frequency microstrip antenna is proposed in [14]. The antenna has an 

offset microstrip-fed line and a strip close to the radiating edges in the circular slot patch, and achieved 

bandwidths of 26.2% and 22.2% for the two bands. A stacked dual-layer circular patch antenna with 

enhanced bandwidth is recently proposed in [15]. The antenna has a slotted circular patch, a parasitic circular 

patch on the top layer and showed a 25% relative bandwidth. In [16] using probe-fed stacked circular patches 

and optimization of the dielectric constants of the two substrates it was found that bandwidths up to 30% can 

be achieved. The lower patch is probe-fed with high dielectric constant substrate while the upper one is 

capacitively coupled through. However, bandwidth expansion is achieved on the account of increased 

thickness. The antenna in [16] has thickness of 31% of the circular patch diameter leading to a large antenna 

volume.   

This paper presents a new wideband microstrip circular patch antenna (MCPA) fed by proximity-

coupled line with double-stub matching to achieve dual-band operation. The proposed antenna is analyzed 

and optimized using the CST Microwave Studio Suite. The proposed antenna is then developed to exhibit 

dual-band of WLAN and X-Band operation. The higher band is achieved by exciting higher modes in the 

circular radiating patch. To furnish proper matching for the higher band, two stubs are connected to both 

sides of the feeding line. The two-stub technique can offer matching across a wide band that covers more 

than one resonating mode of the circular patch antenna. Section 2 discusses the theoretical aspects of the 

circular patch antenna. Section 3 demonstrates the parametric study of the antenna performance, and the 

optimized Antenna-I is presented in Section 4. The development of Antenna-I to a dual-band antenna II is 

discussed in Section 5. Finally, the conclusions are given in Section 6.  

 

 

2. ANTENNA GEOMETRY  

Figure 1 shows the configuration of the proximity-coupled microstrip circular patch antenna 

(Antenna-I) with detailed dimensions and parameters. The antenna consists of a grounded substrate of 

dimensions (30 × 30) mm
2
 where a microstrip feed line is printed. The microstrip line is Wf = 3.1mm wide 

and Lf = 16mm long and is located at a distance of x1= -2.4mm from the center of the circular patch. The 

substrate of this layer is FR4 (glass epoxy) with dielectric constant of r = 4.3 and thickness of h = 1.6 mm. 

Above this layer, there is another dielectric laminate of the same material and thickness as the first layer with 

a microstrip patch etched on its top surface. The end of the feed line is shifted from the center of the circular 

patch by a distance of y = 1.5mm. A copper film of thickness 0.05mm was used as the ground plane of the 

antenna. The electromagnetic coupling between the feed line and the patch results in power transfer, as 

opposed to a direct contact [17]. 

The patch used in this paper is of a circular shape whose resonance frequency fnm can be calculated 

using the cavity model as [18], [19]:  

 

       (1) 

 

where χnm is the m
th

 root of the Bessel function derivative  J'n(ka), εr is the relative permittivity of the 

substrate, and c is the speed of light.  The effective radius ae of the radiating circular patch is to compensate 
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for the fringing field effect along the edge of the circular disk. For the TM11 mode, it was suggested that ae 

can be given by [18, 19]: 

 

ae=a√{1+ 2h/(πar) × [(ln(π a/2h) +1.7726]      (2) 

 

where h is the height of substrate and a is the actual radius of the circular patch. Thus using Equation (1) and 

Equation (2), it was found that a resonant frequency of 5.8 GHz is obtained for a 6mm patch radius. 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 1. Geometry of Antenna I; (a) Top view , (b) Side view 

 

 

3. PARAMETRIC STUDY AND OPTIMIZATION 

In this section, the antenna structure is analyzed and optimized using the CST Microwave Studio 

Suite 2011, which is an electromagnetic simulator based on the finite integration technique [20]. The analysis 

of the antenna for different parameter values has been carried out by varying one parameter while the other 

ones are kept constant. The optimized dimensions of Antenna-I are shown in Table 1. Figure 2 shows the 

simulated reflection coefficient of the optimized Antenna-I as a function of frequency. It is clear from this 

figure that the antenna has a relative impedance bandwidth of 9.5% or 0.55GHz for reflection coefficient  

 -10dB. Figure 3 shows the simulated realized gain of the optimized antenna as a function of frequency. The 

antenna has a maximum gain of 4.62dBi across the band of interest. 

 

 

 
 

Figure 2. Simulated reflection coefficient of optimized Antenna-I as a function of frequency 
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Table 1. Optimized parameters of the Antenna-I. All dimensions are in millimeters. 

Wg Lg Lf Wf a x x1 y 

30 30 16 3.1 6 15 -2.4 1 

 

 

 
 

Figure 3. Simulated realized gain of optimized Antenna-I as a function of frequency 

 

 

4. BANDWIDTH EXTENSION 

The proposed Antenna-I analyzed in the former sections was developed to obtain a dual-band 

operation with extended bandwidth. For this purpose, the higher resonance modes of the circular patch have 

been utilized. However, to excite these modes properly matching of the proximity coupled circular disk needs 

to be improved. Therefore, a double-stub matching network was added to the feed line of Antenna-I to form a 

proposed Antenna-II whose geometry is shown in Figure 4. 

 

 

 

 

Figure 4. Geometry of the proposed dual-band (Antenna-II) with the added double-stub 

for matching 

 

 

Figure 5 shows the variation of the simulated reflection coefficient of Antenna-II with frequency for 

various separations of the upper stub from the end of the feed line (y2). The results show two bands; the 

former band (before adding the stubs) is at around 5.8GHz and a new (upper band) across the frequency from 

8.5 to 13 GHz. The figure also shows that the matching is improved with increasing the separation of the 

upper stub from the end of the feed line and the width of each band is increased. A separation of y2 = 4mm 

was found to give the best results. During this simulation, the length of the lower stub was fixed at x3 = 1mm 

at a distance of y3 = 8.4mm from the upper end of the feed line and the length of the upper stub at x2 = 2mm. 
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Figure 6 shows the simulated reflection coefficient of Antenna-II as a function of frequency for 

various lengths of the upper stub (x2). It is clear from this figure that the matching is improved and the 

bandwidth is increased for the upper band with increasing the length of upper stub from 1mm to 2mm. After 

2mm i.e. at x2 = 2.5mm, the situation gets worse in terms of matching and bandwidth. For the lower band, the 

figure shows that the resonance frequency shifts towards left and the matching degrades slightly with 

increasing in x2. Thus, a length of x2 = 2mm for the upper stub was found to give the best result. During this 

simulation, the length of the lower stub was kept equal to x3 = 1mm at a distance of y3 = 8.4mm from the 

upper end of the feed line and the distance of the upper stub is y2 = 4mm from the upper end of the feed line. 

 

 

  
 

Figure 5. Simulated reflection coefficient of Antenna-

II as a function of frequency for various separations 

of the upper stub from the end of the feed line (y2). 

x3=1.25mm, and y3=7.4mm 

 

Figure 6. Simulated reflection coefficient of 

Antenna-II as a function of frequency for various 

lengths of the upper stub (x2). x3 = 1.25mm, and  

y3 = 7.4mm 

 

 

Figure 7 shows the simulated reflection coefficient of Antenna-II as a function of frequency for 

various separations of the lower stub from the end of the feed line (y3). It is clear from the figure that there is 

shifting in the upper band towards left with increasing in the separation of the lower stub from the feed line’s 

upper edge with decreasing in bandwidth. The matching is also improved for the lower band with increasing 

y3 with a little effect on the bandwidth. It was found that the best separation of the lower stub from the end of 

the feed line is y3 = 8.4mm. The length of the upper stub was kept equal to x2 = 2mm at a distance of y2 = 

4mm from the upper end of the feed line, and the length of the lower stub is x3 = 1.25mm. 

 

 

 

 

Figure 7. Simulated reflection coefficient of Antenna-II as a function of frequency for various separations of 

the lower stub from the end of the feed line (y3). x2 = 2mm, and  y2 = 4mm 
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Figure 8 shows the simulated reflection coefficient of Antenna-II as a function of frequency for 

various lengths of the lower stub (x3). The figure shows that for the upper band the matching gets worse and 

the bandwidth decreases with increasing the length of the lower stub, while there is a lithe effect on the lower 

band. The best results were obtained for lower stub length of x3 = 1mm.  The length of the upper stub was 

kept equal to x2 = 2mm at a distance of y2 = 4mm from the upper end of the feed line and the distance of the 

lower stub is y3 = 8.4mm from the upper end of the feed line. 

 

 

 

 

Figure 8. Simulated reflection coefficient of Antenna- II as a function of frequency for various lengths of the 

lower stub (x3). x2 = 2mm, and y2 = 4mm 

 

 

The optimum parameters for Antenna-II are listed in Table 2. Figure 9 shows a comparison between 

the simulated reflection coefficients of the optimized Antenna-I and Antenna-II. This figure shows that 

adding the impedance matching network to Antenna-I (to obtain Antenna-II) has improved its characteristics 

in terms of getting an upper band with a wider bandwidth. Antenna-II has a relative bandwidth of 10.3% for 

the lower band which is larger than that for Antenna-I. The upper band of Antenna-II covers the whole X-

Band corresponding to a much larger relative bandwidth of (45.16%). 

 

 

Table 2. Optimized parameters of the Antenna-II, all dimensions are in millimeters 
Wg Lg Lf Wf a x x1 y x2 x3 y2 y3 

30 30 16 3.1 6 15 -2.4 1 2 1 4 8.4 

 

 

 

 

Figure 9. Comparison between the simulated reflection coefficient of Antenna-I and Antenna-II as a function of 

frequency 
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The achievement of the second band can be explained through the following. The resonance 

frequencies fnm of the circular patch (a = 6mm) for the first 3 modes were calculated using Equation (1) and 

Equation (2), and the obtained results are shown in Table 3. Figure 9 clearly shows that before the addition of 

the two stubs (Antenna-I) the lowest resonance mode TM11 has a frequency of 5.80 GHz. The other two 

higher modes (TM21 and TM02) should appear at frequency of 9.518 GHz and 11.941 GHz according to 

Equation (1) and Equation (2). The simulated results of Figure 9 show that, for Antenna-I, these two modes 

have appeared at 9.77GHz and 13.21 GHz. They look partially matched as seen from the shallow dips 

(around -5dB) in the reflection coefficient response. However, after adding the two stubs (Antenna-II), the 

upper two modes have appeared at 8.80GHz and 12.37GHz. The two modes have merged together to form a 

joined band covering a wide range extending from 8.4 GHz to 13.4 GHz.  

It should be noted that these calculations are based on the assumption that the resonating circular 

patch is not accompanied with the feed line (the cavity model). However, the addition of the feed line for 

coupling will affect the values of the resonating frequency. In this design, the microstrip feed line is partially 

inserted between the circular patch and the ground plane. Table 3 shows that the simulated frequencies for 

Antenna-I are within less than 7% of those estimated by Equation (1) and Equation (2). These results show 

that Equation (1) and Equation (2) can give good estimates of the resonance frequencies. In the design 

process, better tuning of the frequencies to the desired values can be obtained through the analysis of the CST 

Microwave Studio suite [18].  

 

 

Table 3. Calculated values of the resonance frequencies of the lowest three modes of the circular patch 

antenna (a = 6mm, h = 3.2mm) 
frequency fnm 
GHz 

Mode  TM11 TM21 TM02 

χnm 1.841 3.0542 3.8317 

from Eq. (1) & Eq. (2) 5.738 9.518 11.941 

simulated Antenna-I 5.80 9.77 13.21 

simulated Antenna-II  5.73 8.80 12.37 

 

 

Figure 10 shows a comparison between the realized gains of the optimized Antenna-I and  

Antenna-II. The addition of the two stubs has slightly increased the gain at the lower band, while has led to 

an upper band of a minimum gain of 2 dBi across the X-Band. It is clear from this figure that Antenna-I has a 

maximum gain of 4.62dBi at 5.79GHz while Antenna-II has a maximum gain of 4.88dBi the 5.72GHz lower 

band and a maximum gain of 3.74dBi at 11GHz for the upper wider band.  

 

 

 

 

Figure 10. Comparison between the realized gain of Antenna-I and Antenna-II as a function of frequency 
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In order to validate the results obtained by CST MWS the performance of the optimized antenna II 

was simulated using EM simulator based on HFSS. Figure 11 compares the obtained reflection coefficient of 

the optimized antenna II from the two simulation suits. Table 4 depicts a quantitative comparison of the two 

frequency responses. From Figure 11 and Table 3, a good agreement between two simulation results is 

observed. A slight difference between the two results can be attributed to different numerical techniques 

employed by the two simulators. 

 

 

Table 4. Comparison of CST and HFSS simulated results of the optimized antenna II 
 

Simulator 
 

Lower band Upper band 

fl 
(GHz) 

fh 
(GHZ) 

BW 
% 

fl 
(GHz) 

fh 
(GHZ) 

BW 
% 

CST 5.448 6.038 10.27 8.400 13.289 45.10 

HFSS 5.604 6.194 10.02 8.427 13.744 47.96 

 

 

 
 

Figure 11. CST MWS and HFSS simulated reflection coefficient of the optimized antenna II 

 

 

The simulated realized gain against frequency obtained from the CST and HFSS software packages 

are shown in Figure 12 and Table 5 summarizes the result obtained from this figure.  

Figure 13 shows the 3-D radiation patterns of Antenna-II for four selected frequencies (5.72GHz, 

8.81GHz, 10.14GHz and 12.4GHz) which satisfy the lowest reflection coefficient across the two satisfied 

bands. The far field has a maximum along the normal direction to the radiating disk with good coverage 

across the half plane. The antenna shows a good front to back ratio of better than 20 dB.  

 
 

 
 

Figure 12. CST MWS and HFSS simulated realized gain of the optimized antenna II 
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Table 5. Comparison of CST and HFSS simulated realized gain of Optimized antenna II 
 

Simulator 

Lower band Upper band 

Min. gain 

(dBi) 

Max. gain 

(dBi) 

Min. gain 

(dBi) 

Max. gain 

(dBi) 

CST 3.974 4.859 2.015 3.742 

HFSS 4.456 4.744 1.996 4.00 

 

 

   
 

(a) 

 

(b) 

 

   
 

(c) 

 

(d) 

 

Figure 13. Simulated 3-D radiation patterns of Antenna-II for (a) 5.72GHz, (b) 8.81GHz, (c) 10.14GHz and  

(d) 12.4GHz 

 

 

5. COMPARISON WITH OTHER WORKS 

The obtained results of the proposed Antenna-I and Antenna-II are compared with those of the 

antennas presented in [1-11], [14-16], [21]. The comparison takes into consideration the total substrate 

dimensions and the volume of the antenna, frequency range, bandwidth, gain, as shown in Table 4. The 

dielectric constant of the substrate is also listed to show fair comparison. At a given operating frequency, 

lower dielectric constant of the substrate leads to larger bandwidth and larger size. From Table 4, it can be 

noticed that the dimensions and volume of the proposed Antenna-I and Antenna-II are much smaller than 

those presented in [1-14], but slightly larger than that in [21]. The listed dimensions in [21] are those of the 

printed patch and the dimensions of the ground plane are not given in [21] but they are obviously larger. The 

bandwidth of the proposed antenna2 is much better than most of the listed antennas. The gain of Antenna-I 

and Antenna-II are competitive with those of the other antennas as regards to its small size. 
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6. CONCLUSION  
In this paper, a proximity-fed microstrip circular patch antenna is proposed to achieve dual-band 

operation with a wider bandwidth. The antenna has been designed to operate in more than one resonating 

mode and the bandwidth enhancement is achieved by using a two-stub matching network on the microstrip 

feed line. Simulation results showed that the proposed antenna covers two bands of frequency. The frequency 

range of the first band is from 5.43 GHz to 6.02 GHz (10.3% relative bandwidth) with a minimum reflection 

coefficient of -20.45dB at 5.72GHz. The second band covers a wide frequency range from 8.4GHz to 

13.3GHz (45.16% relative bandwidth). The double-stub matching has facilitated the utilization of two higher-

modes for bandwidth extension of the circular microstrip antenna that is known by its narrow bandwidth. The 

maximum achievable gain of Antenna-II in the first band is 4.62dBi while it is 4.85dBi in the second band. 

The antenna offers low profile dual-band, high gain and compact size which are favorable features for Wi-Fi 

and X-band broadband applications. 
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