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 Wiener-Hammerstein systems consist of a series connection including a 
nonlinear static element sandwiched with two linear subsystems. The 
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1. INTRODUCTION 

Wiener-Hammerstein systems consist of a series connection including a nonlinear static element 
sandwiched with two linear subsystems (Figure 1). Accordingly, this structureof models can be viewed as a 
generalization of Hammerstein and Wiener models and so it is expected to feature a superior modeling 
capability. This has been confirmed by several practical applications e.g. paralyzed skeletal muscle dynamics 
[1]. Note that, the internal signals: v(t), w(t), x(t) and ξ(t) are not accessible to measurements. The only 
measurable signals are the system input u(t) and output y(t). 

As a matter of fact, Wiener-Hammerstein systems are more difficult to identify than the simpler 
Hammerstein and Wiener models. The complexity of the former lies in the fact that these systems involve 
tree internal signals not accessible to measurements, whereas the latter only involve two. Then, it is not 
surprising that only a few methods are available that deal with Wiener-Hammerstein system identification. 

The available methods have been developed following three main approaches i.e. iterative nonlinear 
optimization procedures e.g. [2]-[3]; stochastic methods e.g. [4]-[5]; frequency methods [6]-[9]. 

Roughly, the iterative methods (e.g. [2]-[3]) necessitate a large amount of data; since computation 
time and memory usage drastically increase, and have local convergence properties which necessitates that a 
fairly accurate parameter estimates are available to initialize the search process. This prior knowledge is not 
required in stochastic methods but these are generally relied on specific assumption on the input signals (e.g. 
gaussianity, persistent excitation....) and on system model (e.g. MA linear subsystems, smooth nonlinearity). 
The frequency methods are generally applied to nonparametric systems under minimal assumptions and only 
require simple periodic excitations. But, they sometime necessitate several data generation experiments. 

The present identification method is quite different of previous frequency methods. In [3] the 
identification methods require a special design of the input signal.  
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In [9] the identification method is based on the best linear approximation technique using class of 
Gaussian (-like) signals. In [10], the authors show that there are many local minima, the estimation must to 
be repeated several times with different starting values to increase the chances of finding a model 
corresponding to a good local minimum. In [11], an approach based on the standard SVM for regression was 
presented. The quite poor results obtained in that work highlighted some of the limitations of the method. In 
particular, only a NFIR model structure was taken into account, which did not perform well since the 
considered system has a long impulse response. Another problem was given by the high computational time 
and memory usage, which made it difficult to work with a large amount of data. Several SVM-like 
approaches (e.g. [12]-[13]), based on the least squares SVM (LSSVM), are characterized by a very high 
number of parameters. 

 
 

 
 

Figure 1. Wiener-Hammerstein Model structure 
 
 

 
 

Figure 2. Hard nonlinearity with preload 
 
 

In this paper, a frequency-domain identification scheme is designed for Wiener-Hammerstein 
systems involving two linear subsystems (asymptotically stable) of entirely unknown structure, unlike many 
previous works. Quite a few previous studies have dealt with block-oriented systems (of any type) that 
involve piecewise affine nonlinearities (Figure 2) that are, possibly discontinuous and of a priori unknown 
structure. The system nonlinearity can have several effects [6]. In particular, it may contain a saturation effect 
or dead zone. One key contribution of the present work is to show that the system identification is possible 
without passing by an orthogonal series expansion of the (possibly) discontinuous input nonlinearity. Given 
the system nonparametric nature, the identification problem is presently dealt with by developing a two-stage 
frequency identification method. First, the identification of system nonlinearity can be achieved by using a 
set of constant points. Then, the linear subsystems can be dealt by developing a frequency identification 
method.  

The outline of the remaining part of this paper consists of 4 sections. The identification problem is 
formally described in Section 2. Section 3 is devoted to the identification of the system nonlinear element. 
The linear subsystems identification is discussed in Section 4. Simulations are presented in Section 5. 

 
 

2. IDENTIFICATION PROBLEM  STATEMENT 
We are interested in systems that can be described by the Wiener-Hammerstein structure (Figure 1) 

with hard nonlinearity (Figure 2) with known segments number q. This model is analytically described by the 
following equations: 

 
v(t)=gi(t)*u(t) (1a) 

 
   ( ) ( )* ( )( ) iv t g t u tw t f f   (1b) 

 
 ( )( ) ( ) * ( ) ( ) ( ) * ( )

o o
v ty t g t w t t g t f t     (1c) 

where gi(t)L-1(Gi(s)) and go(t)L-1(Go(s)) are the inverse Laplace transform of Gi(s) and Go(s) (respectively); 
*refers to the convolution operation. The linear subsystems are of entirely unknown structure. There are only 
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supposed to be asymptotically stable (because system identification is carried out in open loop) and with 

nonzero static gain (i.e. 0)0( 
i

G  and 0)0( 
o

G ). Also, note that the nonzero static-gain requirement is 

satisfied by most real life systems. In fact, only derivative systems make an exception that can be coped with 
using ad-hoc adaptations of the method developed in this paper. 
For a problem of identifiability, at least one of nonlinearity segment has nonzero slope. The external noise 

( )t  is supposed to be a zero-mean stationary sequence of independent random variables and ergodic. 
Let  m Mu u  be the working interval. The problem complexity also lies in the fact that the internal 

signals are not uniquely defined from an input-output viewpoint. In effect, if  ( ), ( ), ( )i oG s f v G s  is 

representative of the system then, any model of the form  1 2 1 2( ) /  ,  ( ) ,  ( ) /i oG s k k f k v G s k  is also 

representative whatever the real numbers 
1 0k   and 

2 0k   
(Figure 3). To get benefit of model plurality, 

these constants can be chosen as follows: 
2 (0)ok G

 
and 

1 (0)ik G .  

Accordingly, the system to be identified is described by the transfer functions: 
 

( ) ( ) / (0)
i i i

G s G s G ;  ( ) ( ) / (0)
o o o

G s G s G (2a) 

 
and the nonlinearity: 
 

 ( ) (0) (0)o if x G f G x  (2b) 

 
Then, the focus model is characterized by the following properties: 
 

(0) (0) 1i oG G  (3) 

 
Equation (3) implies that, if u(t) is constant then the steady-state undisturbed output x(t) depends 

only on the input value and the nonlinearity f(.). Specifically, let: 
 

( )u t U  for  0 rkTt    ,  with  k>1 (4) 

 
where k is any integer and Tr is comparable to the system rise time. Then, the internal signal x(t), in the 
steady-state, is of the form of: 
 

( ) ( )x t f U (5) 
 

                    
 

Figure 3. Wiener-Hammerstein Model multiplicity 
 
 
3. IDENTIFICATION OF SYSTEM NONLINEARITY 

The Wiener-Hammerstein system is excited by a set of constant inputs  1( ) ; ; Nu t U U  , where 

the number N  is arbitrarily chosen by the user and 1 2 NU U U   . Afterward, using the fact that

( ) ( ) ( )y t x t t  , it is readily obtained from (5) that, the steady state of the system output y(t) can be 

expressed as follows: 
 

 ( ) ( ) ( )   where  1; ;jy t f U t j N    (6) 

 

ሻݏ௜ሺܩ
݇ଵ

 
ሻݏ௢ሺܩ
݇ଶ

 
x(t) v(t) u(t) 

(t) 

f(.) 
w(t) y(t) 

k1 k2 

The nonlinearity of the  
transformed system 
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Hence, the estimate of ( )jf U , for any input jU , can be recovered by averaging y(t) on a 

sufficiently large interval (the noise ( )t  is zero-mean). The above results suggest the following estimator 

for f(.): 
 

0

1ˆ ˆ( ) ( ) ( )
r

j j

r

kT
f U X k y t dt

kT
   

(7) 

 
with 1j N  . Accordingly, a number of points of the nonlinear function f(.) can thus be accurately 

estimated (i.e. the resulting system, in the steady state, boils down to the linearity part f(.)). This yields the 
following statement: 
 
Proposition 1 

The couple of points  ˆ ( ),j jU X k , for 1j N  , determined in the Nonlinearity Estimator, 

converge (in probability) to the trajectory of f(.).  
Accordingly, from (7), one gets estimates of N points  , ( )j jU f U

 
belonging to f(.). Furthermore, the 

larger the parameter N  is, the better estimation accuracy. Then, by successively connecting all available 

points  ( , ( )); 1
j j

U f U k N  , a piecewise affine approximation of f(.) is obtained. If the number of 

obtained segment is less than q, the nonlinear system is excited by other constant inputs. Finally, let choose 
any segment l of the identified nonlinearity with nonzero slope. 
 
 
4. LINEAR SUBSYSTEMS IDENTIFICATION 

In this section, an identification method is proposed to obtain estimates of the complex gain 

corresponding to the two linear subsystems ( )iG j
 
and ( )oG j for a set of frequencies  1; ... ; m  . Let

 ( ) arg ( )i iG j  
 and  ( ) arg ( )o oG j   . For simplicity, we presently suppose that the nonlinearity 

identification have been exactly determined. Then, let define the variables (for any ω): 
 

( ) ( ) ( )i o       (8a) 

 

( ) ( ) ( )i oG j G j G j   (8b) 

 
The subsystem identification can be implemented in two stages: 

Firstly, an accurate estimates of ( )kG j
 

and ( )k  , for any frequency  1; ... ;k m   , can be 

determined. 
The identification problem under study is dealt using a method based on the frequency approach. 

The Wiener-Hammerstein systemis excited with a given sine input: 
 

( ) sin( )o ku t u U t  (9) 

 
where the amplitude 0U   is a priori small value. The choice of uo can be performed using the experimental 

data of nonlinearity estimation. It can take any value in the vicinity from the center of segment l. Then, as the 
linear subsystem Gi(s) is asymptotically stable, it follows from (3)-(9), one has in the steady state: 
 

( ) ( ) sin( ( ))o i k k i kv t u U G j t      (10) 

 
If v(t) spans only the chosen segment, one gets: 
 

w(t) S*v(t) P* (11) 
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where S* is the slope of segment l and P* is the value of w(t) when ( ) 0v t  . In practice, this case can be 

easily detected by a simple inspection of the output signal. For a small value of the amplitude U, the steady 
state of system output y(t) is a sine signal (up to noise). As soon as, v(t) spans at least two segments, y(t) is 
not a sine signal. Accordingly, a judicious choice for U can be given practically. Then, from (10)-(11), the 
internal signal w(t) is written in the following form: 
 

* * *( ) ( ) sin( ( ))i k k i k ow t US G j t S u P       (12) 

 

As the linear subsystem ( )oG s is asymptotically stable, it follows from (12) and (8a-b) that, the steady state 

undisturbed output x(t) can be expressed as follows:  
 

 * * *( ) ( ) sin ( )o k k kx t S u P US G j t       (13) 

 
Finally, as ( ) ( ) ( )y t x t t  , one immediately gets: 

 

 *( ) ( ) sin ( ) ( )k k k oy t US G j t y t        (14) 

 
where: 
 

* *

o oy S u P  (15) 

 

On the other hand, recall that sine signals that oscillate at the same frequency as  sin ( )k kt    and having 

the amplitude U are of the form: 
 

 ( ) sin kz t U t    (16) 

 
where IR  is arbitrary and IR  denotes the set of real numbers. It is readily seen that: 
 

  ( )sin ( ) ( )
kk kU t z t     (17) 

 
Let , ,k oU uC


 is the parameterized locus constituted of all points of coordinates  ( ), ( )z t x t . These curves are 

viewed as a generalization of the Lissajous curves used in linear system frequency analysis [5]. 
These ideas are formalized in the following proposition: 
 
Proposition 2 

Consider the Wiener-Hammerstein system described by equations (1a-c) and excited by the input 
(9), with u0 and U are judiciously chosen so that the system output y(t) is sine signal (up to noise). Then, one 
has:  
The locus , ,k oU uC

  
is a linear curve if and only if )( k   

(modulo π).   

Another key idea of the proposed approach (getting benefit from Proposition 2) is to determine the 
gain modulus ( ) ( ) ( )k i k o kG j G j G j  

 
and the phase ( ) ( ) ( )k i k o k        by tuning the parameter 

  until the locus , ,k oU uC


 shows linear curve. The point is that the locus , ,k oU uC


 depends on the signal 

( )x t  which is not accessible to measurement. This is presently coped with making full use of the information 

at hand, namely the periodicity (with period k /2 ) of both )(tz  and ( )x t  and the ergodicity of the noise 

( )t . Bearing these in mind, the relation ( ) ( ) ( )y t x t t   suggests the following estimator: 

 

1

1
ˆ( , ) ( )

M

j
kx t M y t jT

M 
  ;  [0, )kt T

 
(18a) 
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ˆ ˆ( , ) ( , )kx t jT M x t M 
  

for any integer 0j  (18b) 

 
where 2 /k kT    and M is a sufficiently large integer. Specifically, for a fixed time instant t, the quantity 

ˆ( , )x t M  turns out to be the mean value of the (measured) sequence  ( );  0  1 ...ky t jT j  . Then, an estimate 
, ,

,
ˆ k oU u

MC
  of , ,k oU uC


 is simply obtained substituting ˆ( , )x t M  to ( )x t  when constructing , , .k oU uC

  
These 

remarks lead to the following proposition: 
 
Proposition 3 

Consider the problem statement of Proposition2. Then, one has: 
1) ˆ( , )x t M  converges in probability to ( )x t  (as M  ). 

2) , ,
,

ˆ k oU u
MC

  
converges in probability to , ,k oU uC

  
(as M  ).  

On the other hand, let *  the corresponding value of  and ( )ks  the slop of the obtained curve *

, , .k oU uC


Knowing the sign of *S , the phase ( )k   can be recovered modulo 2π. Let us consider the parameter 
defined as follows: 
 

0   if  *sign( ) sign ( )kS s  else 1  (19) 

 

Let ˆ ( )M ks   denotes the estimate of ( )ks  . Then, an estimate  ˆˆ ( ), ( )M k M kG j  
 

of 

 ( ), ( )k kG j   can be determined, one has thus, for any frequency k : 

 
*, ,ˆ ˆ ˆ( ) ( ) ( )M k i k o kM M           (moduloπ) (20a) 

 

*
, ,

ˆ ( )ˆ ˆ ˆ( ) ( ) ( ) M k
M k i k o kM M

s
G j G j G j

S

     (20b) 

 
 
5. SIMULATION 

The identification method described in this paper will now beillustrated by simulation using 
Matlab/Simulink. Presently, the system is characterized by: 

 
0.2

( )
( 1)( 0.2)iG s
s s


   

and 0.05
( )

( 0.1)( 0.5)oG s
s s


   (21) 

 
The considered nonlinear elementis illustrated by Figure 4. The noise ξ(t) is a sequence of normally 

distributed (pseudo) random numbers, with zero-mean and standard deviation 0.02  . Firstly, the aim is 

to estimate the system nonlinearity. The identification method described in Section 3 will now be applied 

and, accordingly, the system is successively excited by 11N   constant inputs  ; 1jU j N  , where the 

values 
jU  and the obtained estimates of ( )jf U  are shown in Figure 5. The true nonlinearity and the set of 

points  ˆ ( ),j jL
U f U

 
( 1 11)j   , are represented in Figure 6. By connecting the set of collinear points 

(Figure 6). The 3q   
segments are then obtained. 

The nonlinear system is excited by (9). Figure 7 shows example of obtained results when v(t) spans 
at least two segments. Then, y(t) is not a sine signal. This confirms the result already obtained using the plot  

, ,
,

ˆ k oU u
MC

 . This latter, turns out to be a non static curve, whatever [0 2 )   (Figure 9a-b). For a small value 

of U, e.g. 0.25,U  1 0.01 ( / )rd s 
 
and 0.75ou   , Figure 9a shows the measured output y(t). This signal 

turns out to be a sine signal (up to noise). Then, using the estimator (18a-b), the filtered output ˆ( , )x t M  is 

generated. ˆ( , )x t M  is represented in (Figure 9b). The locus 1 , ,
,

ˆ oU u
MC

  
is plotted for different 0 2   

and 
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a sample of the obtained curves is shown by Figures 10a-b. It is seen that 1 , ,
,

ˆ oU u
MC

  associated to 2   is not 

linear ( ( )k   ). Further, the curve 1 , ,
,

ˆ oU u
MC

  associated to * 3.01   is affine portion. Additionally, it is 

seen that the sign of *S  is different from that of 1 , ,
,

ˆ oU u
MC

 . We have thus shown that
*

1ˆ ( ) 6.15 ( )M rd       (modulo 2π). From Figure 10b, one has ˆ ( ) 0.97M ks   . 

The estimator (20b) is used to get estimates of the modulus ( )kG j . Accordingly, 

ˆ ( ) 0.97.M kG j   Other results show in Table 1.
 

 

 
 

Figure 4. Nonlinear hard element f(.) considered in simulation 
 
 

 
          

Figure 5. u(t), y(t) and the undisturbed output estimate 
 
 

 
 

Figure 6. The true N.L and set of estimated points 
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Figure 7. The steady-state output y(t) obtained over one period 
 
 

         
 

Figure 8. a. The locus 1, ,
,

ˆ oU u
MC

 for 5.1 ( )k    ; b. 1 , ,
,

ˆ oU u
MC

  for 6.1 ( )k     
 

 
 

Figure 9. a. The steady-state of y(t);  b. One period of ˆ ( , )x t M  
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Table 1. Frequency gain estimates 
Frequency gain estimates ˆ ( )M kG j  

k (rd/s) 0.01 0.05 0.1 

( )k  (rd) 6.1 5.42 4.74 

ˆ ( )M k  (rd) 6.15 5.38 4.78 

( )kG j  0.99 0.86 0.62 
ˆ ( )M kG j  0.97 0.88 0.65 

 
 

6. CONCLUSION 
We have developed a new frequency identification method to deal with Wiener-Hammerstein 

systems; the identification problem is addressed in presence of hard nonlinearity and two linear subsystems 
of structure entirely unknown. The present study constitutes a significant progressin frequency-domain 
identification of block-oriented nonlinear system identification. The originality of the present study lies in the 
fact that the system is not necessarily parametric and of structure totally unknown. Another feature of the 
method is the fact that the exciting signals are easily generated and the estimation algorithms can be simply 
implemented. Then, the complex gains (modulus gains and phases) of linear subsystems can be obtained. 
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