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ABSTRACT

In this paper, state adaptive backstepping and Lyapunov-like function methods are used
to design a robust adaptive controller for a DC motor. The output to be controlled is the
motor speed. It is assumed that the load torque and inertia moment exhibit unknown but
bounded time-varying behavior, and that the measurement of the motor speed and motor
current are corrupted by noise. The controller is implemented in a Rapid Control Proto-
typing system based on Digital Signal Processing for dSPACE platform and experimental
results agree with theory.
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1. INTRODUCTION
DC motors are commonly used in industry applications [1], [2]. A significant difficulty for DC-motor

control design is the unknown time-varying nature of its parameters [3], [4]. An important framework for motor
control design is the state adaptive backstepping (SAB) technique presented in [5], as can be noticed from [6], [7].
Nussbaum gain techniques are usually incorporated in the SAB control framework in order to handle the effect
of unknown time-varying parameters and to improve the robustness of the system. Robust SAB control schemes
incorporate a compensation term in the control law, and some modification in the update law, for instance the σ
modification, see [8]. Nevertheless, upper or lower bounds of the plant model coefficients have to be known to
guarantee asymptotic convergence of the tracking error to a residual set of user-defined size. In [9] a non-adaptive
state backstepping control scheme is developed. The resulting time derivative of the Lyapunov function involves
an unknown, time varying but bounded term, whose upper bound is unknown, such that the backstepping states
remain bounded and converge to residual set whose size depends on plant parameters.

Nussbaum SAB control schemes are based on the controllers presented in [10], [11], as can be noticed
from [12], [13], [14]. In turn, the controllers in [10], [11] are based on the Universal Stabilizer that was originally
introduced in [15] and discussed in [16]. The main drawback of the Nussbaum gain technique is that the result-
ing upper bound of the transient behavior of the tracking error depends on integral terms that involve Nussbaum
functions [12], [17], [14], [10]. Some controllers that use this technique usually present some of the following
drawbacks: i) some upper or lower bounds of plant model parameters have to be known in order to guarantee the
convergence of the tracking error to a residual set of user-defined size [14], [10], but the control designs in [12],
[13] indicate that a proper design would relax this drawback, and ii) the control or update laws involve signum type

Journal Homepage: http://iaescore.com/journals/index.php/IJECE

 
 

 

Institute of Advanced Engineering and Science 

w  w  w  .  i  a  e  s  j  o  u  r  n  a  l  .  c  o  m 

 

TH Sutikno
Typewritten Text
, DOI: 10.11591/ijece.v8i4.pp2180-2198

TH Sutikno
Typewritten Text

TH Sutikno
Typewritten Text

TH Sutikno
Typewritten Text



IJECE ISSN: 2088-8708 2181

signals, as can be noticed from [17].

In [18], a linear induction motor is considered. The friction force and unknown time-varying model
parameters lead to a lumped bounded uncertain term whose upper bound is unknown. The goal is to control the
mover position. The drawback is that the identification error is assumed constant in the definition of the Lyapunov
function. In [6], a synchronous motor driven through AC/DC rectifiers and DC/AC inverters is considered. It is
assumed that the motor parameters experience unknown time-varying but bounded behavior. The goal is to control
the motor speed, the rectifier output voltage and the d component of the stator current; the tracking error converges
to a residual set whose size depends on unknown motor parameters and user-defined controller parameters. There-
fore, if upper bounds of unknown motor parameters are known and controller parameters are properly chosen, the
size of the residual set can be user-defined also.

Other works address the problem of designing a controller for different motors [19, 20, 21]; despite the
fact that the controlled systems operate as it is expected, the main disadvantages of these works are: the size of
the output error cannot be determined, and no analyses of the system behavior inlcuding measurement noise are
presented. In [22] two coupled controllers are designed: a Linear Quadratic Gaussian (LQG) and a MRAS-based
Learning Feed-Forward Controller (LFFC); eventhough the simulation results demonstrate the potential benefits of
the proposed controlled, the LQG algorithm may fail to ensure closed-loop stability when variations in the uncer-
tainties are large enough. In [23] a plant model in controllable form with unknown varying but bounded parameters
is considered, being the upper bounds of such parameters unknown. A SAB control scheme is developed, and over-
comes the main drawback of the Nussbaum gain method, as a result, the transient error is upper bounded by an
unknown constant that does not depend on integral terms. Nevertheless, the control scheme is only valid for plant
models in “companion form”. The method is based on the Lyapunov-like function technique appearing in [24],
[25].

In addition to the undesired unknown time-varying nature of plant parameters, other important issue is
the measurement noise. Tracking performance can be degraded, even if the controller is robust against modeling
uncertainty and disturbances (cf. [26], [27]). Some of the main techniques to tackle the effect of measurement
noise are: high gain observers, interval observers, filter theory and the technique developed in [9]. High gain
observers are useful to estimate system states and output derivatives (see [28], [29]). In [28], a nonlinear plant
model in state-space form and a plant model in controllable form, are considered, respectively. Both plant models
involve known constant coefficients. The real output is defined as the first state, and is measured, whereas the other
states are not. The output measurement is expressed as the sum of the real output plus a bounded measurement
noise parameter. The observer depends on the difference between the noisy output measurement and the output
estimate. The stability analysis indicates that the state estimation error converges to a residual set whose upper
bound depends on the magnitude of both the measurement noise and the observer parameters. Such upper bound
has a global minimum for some value of the observer gain (see [28] and [29]). The main drawbacks of the design
are: the size of the residual set is unknown, so that the upper limit of the steady state of the state estimation error is
unknown, and second, the coefficients of the plant model are required to be known. Interval observers provide an
upper and a lower bound for each unmeasured state variable (see [30], [31]). The main disadvantage of the interval
observers is that several upper and lower bounds of the plant model parameters are required to be known.

In [9], it is assumed that the measurements of the plant states are corrupted by noise and are described
by a measurement model, which consists of a polynomial with respect to the real state vector, with degree one
and unknown but bounded time-varying coefficients, being the time derivatives of such coefficients unknown and
bounded. If each measurement model is differentiated with respect to time, the time derivative of the state mea-
surement is a linear polynomial of degree one with respect to the time derivative of the real state vector. The states
resulting from the backstepping state transformation are defined in terms of the noisy measurements instead of
the real states. To compute the time derivative of each quadratic function of the backstepping procedure, each
measurement model is differentiated. In [32], the state adaptive backstepping (SAB) of [5] is used as the basic
framework for controlling a DC permanent magnet motor whose voltage is supplied by a buck power converter,
but the effect of noisy measurement is not taken into account.

In the present paper, significant modifications are incorporated to the control scheme presented in [32],
in order to handle the effect of measurement noise: i) a measurement model is used to define the relationship
between the motor current (ia) and the motor speed (Wm), and their corresponding noisy measurements (ia|m and
Wm|m, ii) the states of the backstepping state transformation are defined in terms of the noisy measurements, and
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iii) the differentiation of each quadratic-like function with respect to time involves the differentiation of each mea-
surement model. The controller is implemented in a digital platform to carry out the real experiments. The main
contribution of this paper respect to close ones are: a) the relationship between the real and the measured state is
taken into account in the control design procedure: in the definition and differentiation of the backstepping states
as well as in the definition and differentiation of the quadratic functions, b) upper or lower bounds of the noise
model parameters or their combination are not required to be known by the controller, and c) the convergence of
the tracking error to a residual set of user-defined size is proven in presence of noisy measurments.

The rest of the paper is organized as follows. In section 2., the plant model and the control goal are
described. In section 3. the controller is designed. In section 4., the bounded nature of the closed loop signals and
the convergence of the tracking error are proven. In section 5., numerical and experimental results are presented.
Finally, discussion and conclusions are presented in Section 6..

2. PLANT MODEL AND CONTROL GOAL
The DC motor is represented by the following plant model (see [33]):

Ẇm = − B
Jeq
Wm + kt

Jeq
ia − (Tfric+TL)

Jeq

i̇a = −Ra

La
ia − ke

La
Wm + 1

La
u

(1)

The state variables are: the armature current ia and the motor speed Wm. u is the control input and it corresponds
to a voltage value. The system output is y = Wm. The model parameters are: the voltage constant ke [V/rad/s],
the armature inductance La [H], the armature resistance Ra [Ω], the viscous friction coefficient B [N.m/rad/s], the
inertia moment Jeq [kg.m2], the motor torque constant kt [N.m/A], the friction torque Tfric [N.m], and the load
torque TL [N.m].

The following assumptions are made for the model (1): Ai) the parameters TL and Jeq are time-varying,
unknown and upper bounded by unknown constants, and Jeq is positive and lower bounded by an unknown positive
constant, Aii) parametersB, kt,Ra, La, ke are unknown, positive and constant, and Aiii)Wm and ia are measured,
but their measurements Wm|m, ia|m are noisy and satisfy:

Wm|m = a6Wm + a7 and ia|m = a8ia + a9 (2)

where the parameters a6, a7, a8, and a9 are unknown, time-varying and upper bounded by unknown positive
constants, their time derivatives are unknown, time-varying and bounded by unknown positive constants and the
parameters a6 and a8 are positive and lower bounded by unknown positive constants. The above expressions are
based on [9]. For a simpler control design, the plant model (1) is rewritten as:

ẋ1 = −a1x1 + a2x2 − a3 (3)
ẋ2 = −a4x1 − a5x2 + bu (4)
x1 = Wm, x2 = ia, u = vc, y = Wm (5)
ym = Wm|m = a6x1 + a7 (6)
x2m = ia|m = a8x2 + a9 (7)

where

a1 =
B

Jeq
, a2 =

kt
Jeq

(8)

a3 =
(Tfric + TL)

Jeq
, a4 =

ke
La
, a5 =

Ra
La

, b =
1

La
(9)

so that a1, a2, a3, a4, a5, and b are positive, a1, a2, and a3 are time-varying, a4, a5 and b are constant, and ym and
x2m are the noisy measurements of Wm and ia, respectively. Assumption Ai implies that the parameters a1, a2,
a3 are unknown and time -varying, but they are upper bounded by unknown constants. Assumption Aii implies
that a2 > 0, and the parameters a4, a5, and b are unknown and constant. Assumption Aiii implies that the states
x1 = y and x2 are unknown but their measurements ym and x2m are known, the parameters a6, a7, a8, a9, ȧ6, ȧ7,
ȧ8, and ȧ9 are unknown and time-varying but bounded, and the parameters a6 and a8 are positive. In summary, the
system (1) satisfies the following properties: Pi) a1, a2, a3, a4, a5, b, a6, and a8 are positive, Pii) the parameters
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a1, a2, a3, a6, a7, a8, a9, ȧ6, ȧ7, ȧ8, and ȧ9 are unknown, time-varying and upper bounded by unknown constants,
Piii) the parameters a2, a6, a8, and 1/a8 are positive and lower bounded by unknown positive constants, Piv) the
parameters a4, a5, and b are unknown, positive and constant, and Pv) the values of y = x1 = Wm and x2 = ia are
unknown, whereas their measurements ym and x2m are known.

Taking into account the model, the control goal can be defined as follows. Let the following reference
model:

ÿd = −am1ẏd − amoyd + amoWmref (10)

where Wmref is the user–defined reference value, and am1 and amo are user-defined positive constants. Hence,
the desired output yd is provided by (10) subject to i) amo and am1 are user-defined but positive and constant, and
ii) Wmref is user-defined and bounded but it may be time-varying. Therefore, equation (10) is a stable reference
model.

The tracking error is defined as:

e(t) = ym(t)− yd(t) = Wm|m − yd (11)
Ωe = {e : |e| ≤ Cbe} (12)

where ym is defined in (6), yd is the desired output and is provided by (10), Ωe is a residual set whose size is
defined by Cbe which is an user-defined positive constant. The goal of the control design is to formulate a control
law and an update law for the plant model (1), subject to assumptions Ai to Aiii, such that: CGi) the tracking error
e asymptotically converges to the residual set Ωe, CGii) the control and update laws do not involve discontinuous
signals, CGiii) the control law and the updated parameters are bounded, and CGiv) all the closed loop signals are
bounded.

3. CONTROL DESIGN
In this section, a controller for the plant (1) is developed, it takes into account the assumptions Ai to Aiii,

and the goals CGi to CGiv stated previously. The procedure is similar to that in [32], but there are several differ-
ences due to the presence of measurement noise. Therefore, the procedure omits the steps that are quite similar to
those in [32]. The state adaptive backstepping (SAB) presented in [5] is used as control framework, but important
modifications are incorporated in order to tackle the effect of unknown time-varying plant model coefficients and
measurement noise.

The controller design procedure is organized in the following steps: i) define the first new state z1 and
differentiate it with respect to time, ii) define a quadratic function Vz1 that depends on z1, and differentiate it with
respect to time, iii) express the terms that involve time-varying coefficients, as functions of upper constant bounds,
and parameterize such bounds as function of parameter and regression vectors, iv) express the parameter vector
in terms of updating error vector and update parameter vector, and define the second new state z2, v) differentiate
z2 with respect to time, define a quadratic function Vz that depends on z1 and z2, and differentiate it with respect
to time, vi) express the terms that involve time varying coefficients as function of upper constant bounds, and
parameterize in terms of parameter and regression vectors, vii) express the parameter vector in terms of updating
error vector and updated parameter vector, and formulate the control laws, and viii) formulate the Lyapunov-like
function, differentiate it with respect to time and formulate the update laws.

Step 0. In this step, the model (3)-(4) is expressed in terms of ym, x2m, using the noise models (6)-(7).
Differentiating (6) and using (3), yields:

ẏm = (ȧ6 − a6a1)x1 + a2a6x2 − a3a6 + ȧ7 (13)

solving (6) and (7) for x1 and x2 and substituting into the above expression we obtain the basic expression for ẏm:

ẏm =
(ȧ6 − a6a1)

a6
ym +

a2a6
a8

x2m −
a2a6a9
a8

− a3a6

+ȧ7 − (ȧ6 − a6a1)
a7
a6
. (14)

Differentiating (7) with respect to time and incorporating (4), yields:

ẋ2m = −a4a8x1 + (ȧ8 − a5a8)x2 + a8bu+ ȧ9 (15)
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solving (6) and (7) for x1 and x2 and incorporating in the above equation we obtain the basic expression for ẋ2m
which is

ẋ2m = −a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m + a8bu+ a4a8

a7
a6

+(−ȧ8 + a5a8)
a9
a8

+ ȧ9 (16)

Remark 3..1 In order to consider the noisy ym and x2m instead of the real but unknown values x1 and x2, in the
remaining procedure equations (14) and (16) are used instead of equations (3) and (4).

Step 1. In this step, the first state variable is defined and differentiated with respect to time. The state
variable z1 is defined as the tracking error:

z1 = e = ym − yd (17)

where yd is provided by (10). Differentiating (17) with respect to time and using (14), yields:

ż1 = ẏm − ẏd (18)

ż1 =
−a1a6 + ȧ6

a6
ym +

a2a6
a8

x2m + (a1a6 − ȧ6)
a7
a6

−a2a6a9
a8

− a3a6 + ȧ7 − ẏd (19)

Step 2. In this step, a quadratic function that depends on z1 is defined and differentiated with respect to
time. Such quadratic form is defined as:

Vz1 = (1/2)z21 (20)

Differentiating (20) with respect to time, using (19) and adding and substracting c1z21 yields:

V̇z1 = z1ż1 = −c1z21 + z1
a2a6
a8

x2m + z1

[
−a1a6 + ȧ6

a6
ym + (a1a6 − ȧ6)

a7
a6

−a2a6a9
a8

− a3a6 + ȧ7 + c1z1 − ẏd
]

(21)

The term −c1z21 has been added to obtain asymptotic convergence of the tracking error later. The unknown and
time varying behavior of the bounded parameters a1, a2, a3, a6, ȧ6, a7, ȧ7, a8, and a9 is a significant obstacle
for the controller design. For this reason, the terms that involve such coefficients will be expressed as function of
upper constant bounds.

Step 3. Recall that a1, a2, a3, a6, a7, a8, a9, ȧ6, and ȧ7 are time-varying, unknown and bounded. In this
step, the terms that involve such time-varying parameters are expressed as function of upper and lower constant
bounds, and such bounds are parameterized in terms of parameter and regression vectors. The term that involves
the brackets in (21) yields:

z1

[
−a1a6 + ȧ6

a6
ym + (a1a6 − ȧ6)

a7
a6
− a2a6a9

a8
− a3a6 + ȧ7 + c1z1 − ẏd

]
≤ µ̄10|ym||z1|+ µ̄11|z1|+ |c1z1 − ẏd||z1| (22)

where µ̄10, µ̄11 are unknown positive constants such that∣∣∣−a1a6+ȧ6a6

∣∣∣ ≤ µ̄10∣∣∣(a1a6 − ȧ6)a7a6 −
a2a6a9
a8
− a3a6 + ȧ7

∣∣∣ ≤ µ̄11

(23)

As mentioned in [32], Young’s inequality must be applied to (22), such that the |z1| term leads to z21 , to allow a
proper definition of z2. Arranging (22), and applying Young’s inequality ([34]), yields:

z1

[
−a1a6 + ȧ6

a6
ym + (a1a6 − ȧ6)

a7
a6
− a2a6a9

a8
− a3a6 + ȧ7 + c1z1 − ẏd

]
≤ ca

µ̄10

ca
|ym||z1|+ ca

µ̄11

ca
|z1|+ ca

|c1z1 − ẏd||z1|
ca

(24)

≤ c2a
2

+
µ̄2
11

2c2a
z21 +

c2a
2

+
µ̄2
10

2c2a
y2mz

2
1 +

c2a
2

+
(c1z1 − ẏd)2z21

2c2a
(25)
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where ca is a positive constant that should be chosen to fulfill certain conditions that will be defined later. Substi-
tuting into (21), yields:

V̇z1 ≤ −c1z21 + 3
c2a
2

+ z1
a2a6
a8

x2m +
µ̄2
11

2c2a
z21 +

µ̄2
10

2c2a
y2mz

2
1

+
(c1z1 − ẏd)2z21

2c2a
(26)

The terms that involve x2m, z21 , x21z
2
1 , (c1z1− ẏd)2 should be grouped in a new known state variable z2, according

to the procedure in [5]. Nevertheless, the unknown time-varying behavior of parameter a2a6/a8 poses a significant
obstacle. To remedy such situation, a positive constant lower bound of a2a6/a8 will be used. Property Pi mentions
that a2, a6, and a8 are positive, whereas property Piii implies that a2, a6, and 1/a8 are lower bounded by unknown
positive constants. Therefore,

0 < µ̄l12 ≤
a2a6
a8

(27)

where µ̄l12 is an unknown positive constant lower bound. Incorporating the constant µ̄l12 into (26) and arranging,
yields:

V̇z1 ≤ −c1z21 + 3
c2a
2

+ z1
a2a6
a8

x2m +
1

2c2a

µ̄2
11

µ̄l12
µ̄l12z

2
1 +

1

2c2a

µ̄2
10

µ̄l12
µ̄l12y

2
mz

2
1

+
1

2c2a

1

µ̄l12
µ̄l12z

2
1(c1z1 − ẏd)2 (28)

= −c1z21 + 3
c2a
2

+ z1
a2a6
a8

x2m + ϕ>θ1
1

2c2a
µ̄l12z

2
1 (29)

where ϕ1 is a known regression vector and θ1 is an unknown constant parameter vector given by:

ϕ1 = [1, y2m, (c1z1 − ẏd)2]> (30)

θ1 =

[
µ̄2
11

µ̄l12
,
µ̄2
10

µ̄l12
,

1

µ̄l12

]>
, (31)

Step 4. In this step, the unknown parameter vector θ1 is expressed in terms of an updating error vector
and an updated parameter vector, and then a new state variable z2 is defined. The parameter vector θ1 can be
rewritten as:

θ1 = θ̂1 − θ̃1 (32)
where

θ̃ = θ̂1 −
[
µ̄2
11

µ̄l12
,
µ̄2
10

µ̄l12
,

1

µ̄l12

]>
(33)

where θ̂1 is an updated parameter vector provided by an updating law that will be defined later, and θ̃1 is an
updating error. Substituting (32) into (29), yields:

V̇z1 ≤ −c1z21 +
3c2a
2

+ z1
a2a6
a8

x2m + ϕ>1 θ̂1
1

2c2a
µ̄l12z

2
1 − ϕ>1 θ̃1

1

2c2a
µ̄l2z

2
1

As can be noticed from [23] and [24] the updated parameter θ̂1 is non-negative, so that |θ̂1| = θ̂1 for θ̂1(to) ≥ 0.
The accomplishment of this property will be shown later. In view of this fact and incorporating the inequality (27)
in the term ϕ>1 θ̂10.5c−2a µl12z

2
1 and arranging, yields:

V̇z1 ≤ −c1z21 +
3c2a
2

+ z1
a2a6
a8

x2m + ϕ>1 θ̂1
1

2c2a

a2a6
a8

z21 − ϕ>1 θ̃1
1

2c2a
µ̄l2z

2
1 (34)

= −c1z21 +
3c2a
2

+ z1
a2a6
a8

z2 − ϕ>1 θ̃1
1

2c2a
µ̄l2z

2
1 (35)
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where

z2 = x2m + ϕ>1 θ̂1
1

2c2a
z1 (36)

Step 5. In this step, the state variable z2 is differentiated with respect to time, a quadratic function Vz is
defined as function of z1 and z2, and such function is differentiated with respect to time. Differentiating (36) with
respect to time, yields:

ż2 = ẋ2m + ϕ̇>1 θ̂1
1

2c2a
z1 + ϕ>1

˙̂
θ1

1

2c2a
z1 + ϕ>1 θ̂1

1

2c2a
ż1 (37)

where

ϕ̇1 = [0, 2ymẏm, 2(c1z1 − ẏd)(c1ż1 − ÿd)]> (38)

Substituting (18) into (37) and arranging, yields:

ż2 = ẋ2m + ϕ1bẏm + ϕ1c (39)

where

ϕ1b =
1

2c2a

(
2
(
ymθ̂1[2] + c1(c1z1 − ẏd)θ̂1[3]

)
z1

+ϕ>1 θ̂1

)
(40)

ϕ1c = −2(c1z1 − ẏd)(c1ẏd + ÿd)θ̂1[3]
1

2c2a
z1

+ϕ>1
˙̂
θ1

1

2c2a
z1 − ϕ>1 θ̂1

1

2c2a
ẏd (41)

ϕ1b and ϕ1c are known scalar functions, θ̂1[2] and θ̂1[3] are the second and third entries of the vector θ̂1, and yd, ẏd,
and ÿd are provided by (10). Substituting (14) and (16) into (39) and arranging, yields:

ż2 = −a4a8
a6

ym +
(ȧ8 − a5a8)

a8
x2m +

(ȧ6 − a6a1)

a6
ϕ1bym +

a2a6
a8

ϕ1bx2m

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bu+ ϕ1c (42)

The quadratic form that depends on z1 and z2 is defined as:

Vz = (1/2)(z21 + z22) (43)

Differentiating with respect to time, incorporating (35) and (42), and adding and subtracting −c2z22 , yields:

V̇z = z1ż1 + z2ż2 = V̇z1 + z2ż2

≤ −c1z21 − c2z22 +
3

2
c2a

+z2

[
a2a6
a8

z1 −
a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+
a2a6
a8

ϕ1bx2m +

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ c2z2 + a8bu+ ϕ1c

]
−ϕ>1 θ̃1

1

2c2a
µ̄l12z

2
1 (44)
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The control input u is defined as follows:

u = ua + ub (45)

where ua is an user-defined constant. The constant ua was incorporated in order to avoid abrupt control input
behavior at the beginning of the closed loop operation. Therefore, it should be chosen as the open loop value of
the control input. The control ub is established by the controller design. Substituting (45) into (44), yields:

V̇z ≤ −c1z21 − c2z22 +
3

2
c2a

+z2

[
a2a6
a8

(z1 + ϕ1bx2m)− a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bua + ϕ1c + c2z2

]
a8bubz2 − ϕ>1 θ̃1

1

2c2a
µ̄l12z

2
1 (46)

Step 6. Recall that a1, a2, a3, a6, a7, a8, a9, ȧ6, ȧ7, ȧ8 are unknown and time-varying. In this step,
the terms that involve such parameters are expressed in terms of upper bounds, and parameterized in terms of
parameter and regression vectors. The term that involves the squared brackets can be rewritten as:

z2

[
a2a6
a8

(z1 + ϕ1bx2m)− a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bua + ϕ1c + c2z2

]
≤ |z2| [µ̄13|ym|+ µ̄14|x2m|+ µ̄15|ϕ1bym|+ µ̄16|z1 + ϕ1bx2m|

+µ̄17|ϕ1b|+ µ̄18 + µ̄19|ua|+ |ϕ1c + c2z2|] (47)

where µ̄13, µ̄14, µ̄15, µ̄16, µ̄17, µ̄18, µ̄19 are unknown positive constant upper bounds that satisfy:∣∣∣a4a8a6

∣∣∣ ≤ µ̄13,
∣∣∣ ȧ8−a5a8a8

∣∣∣ ≤ µ̄14∣∣∣ ȧ6−a6a1a6

∣∣∣ ≤ µ̄15,
∣∣∣a2a6a8

∣∣∣ ≤ µ̄16∣∣∣−a2a6a9a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)a7a6

∣∣∣ ≤ µ̄17∣∣∣a4a8 a7a6 + (−ȧ8 + a5a8)a9a8 + ȧ9

∣∣∣ ≤ µ̄18, |a8b| ≤ µ̄19

(48)

From equations (46), (47), and as can be inferred from [32] there are two significant obstacles. First, the |z2| term
may lead to discontinuous signals in the definition of ub. This can be remedied by using Young’s inequality. Sec-
ond, the unknown varying behavior of a8b makes it difficult for u to eliminate the effect of the terms that involve
unknown time varying parameters. This can be remedied by incorporating a positive constant lower bound of a8b.

From properties Piii and Piv (see page 2182) it follows that a8 and b are positive, b is constant and a8 is
lower bounded by an unknown positive constant. Therefore,

0 < µ̄l20 ≤ a8b (49)

where µ̄l20 is an unknown positive constant lower bound. Rewritting (47) in terms of a parameter vector and a
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regression vector, and incorporating (49), yields:

z2

[
a2a6
a8

(z1 + ϕ1bx2m)− a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bua + ϕ1c + c2z2

]
≤
√
µ̄l20|z2|ϕ̄>θ2 (50)

where

ϕ̄ = [|ym|, |x2m|, |ϕ1bym|, |z1 + ϕ1bx2m|, |ϕ1b|, 1, |ua|, |ϕ1c + c2z2|]> (51)

θ2 =
1√
µ̄l20

[µ̄13, µ̄14, µ̄15, µ̄16, µ̄17, µ̄18, µ̄19, 1]>, (52)

ϕ̄ is a regression vector whose entries are known, and θ2 is a parameter vector, whose entries are positive, constant
and unknown, and µ̄l20 is an unknown positive constant lower bound. The constant

√
µ̄l20 has been incorporated

in order to handle the effect of the unknown time-varying parameter a8b appearing in the term a8bub in (46).

Step 7. Since the parameter vector θ2 is unknown, in this step it is expressed in terms of an updated
parameter vector and an updating error vector; after of this the control law is formulated. The parameter θ2 can be
rewritten as

θ2 = θ̂2 − θ̃2 (53)

where θ̂2 is an updated parameter vector provided by an update law which is defined in the step 8, and θ̃2 is an
updating error vector given by

θ̃2 = θ̂2 −
1√
µ̄l20

[µ̄13, µ̄14, µ̄15, µ̄16, µ̄17, µ̄18, µ̄19, 1]> (54)

Substituting (53) into (50) yields:

z2

[
a2a6
a8

(z1 + ϕ1bx2m)− a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bua + ϕ1c + c2z2

]
≤
√
µ̄l20|z2|ϕ̄>θ̂2 −

√
µ̄l20|z2|ϕ̄>θ̃2 (55)

incorporating the inequality (49) and applying Young’s inequality (cf. [34] pp. 123) to the term
√
µ̄l20|z2|ϕ̄>θ̂2,

yields:

z2

[
a2a6
a8

(z1 + ϕ1bx2m)− a4a8
a6

ym +
ȧ8 − a5a8

a8
x2m +

ȧ6 − a6a1
a6

ϕ1bym

+

(
−a2a6a9

a8
− a3a6 + ȧ7 − (ȧ6 − a6a1)

a7
a6

)
ϕ1b

+

(
a4a8

a7
a6

+ (−ȧ8 + a5a8)
a9
a8

+ ȧ9

)
+ a8bua + ϕ1c + c2z2

]
≤ c2c

2
+

1

2c2c
a8bz

2
2(ϕ̄>θ̂2)2 −

√
µ̄l20|z2|ϕ̄>θ̃2 (56)

where cc is a positive constant that satisfies some some conditions that will be defined in the Step 8. Substituting
(56) into (46) and arranging yields:

V̇z ≤ −c1z21 − c2z22 +
3

2
c2a +

c2c
2

+ a8bz2

(
ub +

1

2c2c
z2(ϕ̄>θ̂2)2

)
−ϕ>1 θ̃1

1

2c2a
µ̄l20z

2
1 −
√
µ̄l20|z2|ϕ̄>θ̃2 (57)
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with the aim to cancel the effect of the term a8bz2(1/2)c−22 z2(ϕ̄>θ̂2)2, the expression for ub is chosen as:

ub = − 1

2c2c
z2(ϕ̄>θ̂2)2 (58)

In view of (45), the control law for u is:

u = ua −
1

2c2c
z2(ϕ̄>θ̂2)2 (59)

substituting (59) into (57), yields:

V̇z ≤ −2min{c1, c2}Vz +
3

2
c2a +

c2c
2
− ϕ>1 θ̃1

1

2c2a
µ̄l20z

2
1 −
√
µ̄l20|z2|ϕ̄>θ̃2

The above expression implies that the time derivative of the Lyapunov function would contain the term (3/2)c2a +
(1/2)c2c , so that the required negativeness properties would be altered. Therefore, the quadratic function V̄z is
considered, which is a truncated function of Vz and vanishes when Vz is lower or equal than the constant Cbvz .
The quadratic function V̄z is defined as:

V̄z =

{
(1/2)(

√
Vz −

√
Cbvz)

2 if Vz ≥ Cbvz
0 otherwise (60)

Cbvz = (1/2)C2
be (61)

where Vz is defined in (43). The function defined by (60) and (61) has the following properties: V̄z ≥ 0, Vz ≤
3Cbvz + 3V̄z and V̄z and ∂V̄z/∂Vz are locally Lipschitz continuous. Differentiating (60) with respect to time,
yields:

dV̄z
dt

=
∂V̄z
∂Vz

V̇z (62)

where

∂V̄z
∂Vz

=

{
1
2

√
Vz−
√
Cbvz√

Vz
if Vz ≥ Cbvz

0 otherwise
(63)

Combining (62) with (60) yields:

dV̄z
dt
≤ −2min{c1, c2}Vz

∂V̄z
∂Vz

+

(
3

2
c2a +

c2c
2

)
∂V̄z
∂Vz

−ϕ>1 θ̃1
1

2c2a
µ̄l20z

2
1

∂V̄z
∂Vz
−
√
µ̄l20|z2|ϕ̄>θ̃2

∂V̄z
∂Vz

(64)

Step 8. In this step, the Lyapunov-like function is formulated and differentiated with respect to time, and
the update laws are formulated. The Lyapunov-like function is defined as:

V (x̄(t)) = V̄z + Vθ (65)
x̄(t) = [z1(t), z2(t), θ̃>1 , θ̃

>
2 ] (66)

Vθ = (1/2)µ̄l20θ̃
>
1 Γ−11 θ̃1 + (1/2)

√
µ̄l20θ̃

>
2 Γ−12 θ̃2 (67)

where θ̃1 and θ̃2 are defined in (33) and (54) respectively, and V̄z is defined in (60). The vector x̄(t) contains the
closed loop states z1(t), z2(t), θ̃>1 , θ̃>2 . For the sake of simplicity, V (x̄(t)) is represented as V . Differentiating
(65) and (67) with respect to time, yields:

V̇ = ˙̄Vz + V̇θ (68)

V̇θ = µ̄l20θ̃
>
1 Γ−11

˙̂
θ1 +

√
µ̄l20θ̃

>
2 Γ−12

˙̂
θ2 (69)

Incorporating (64) and (69) into (68), yields:

V̇ ≤ −2min{c1, c2}Vz
∂V̄z
∂Vz

+

(
3

2
c2a +

c2c
2

)
∂V̄z
∂Vz

+ µ̄l20θ̃
>
1

(
−ϕ1

1

2c2a
z21
∂V̄z
∂Vz

+ Γ−11
˙̂
θ1

)
+
√
µ̄l20θ̃

>
2

(
−|z2|ϕ̄

∂V̄z
∂Vz

+ Γ−12
˙̂
θ2

)
(70)
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To cancel the effect of the terms that involve the updating errors θ̃1 and θ̃2, the update laws are formulated as:

˙̂
θ1 = Γ1ϕ1

1

2c2a
z21
∂V̄z
∂Vz

, θ̂1(to) ≥ 0 (71)

˙̂
θ2 = Γ2|z2|ϕ̄

∂V̄z
∂Vz

(72)

where Γ1 and Γ2 are 3 × 3 and 8 × 8 diagonal matrices, respectively, whose elements are user-defined positive
constants. The involved state dependent parameters are: ϕ1 (30), ∂V̄z/∂Vz (63), ϕ̄ (51), and z2 (36). From (30)
and (63) it follows that

ϕ1 = |ϕ1|,
∂V̄z
∂Vz

=

∣∣∣∣∂V̄z∂Vz

∣∣∣∣ . (73)

(73) together with (71) leads to θ̂1 = |θ̂1| ≥ 0. Substituting (71) and (72) into (70), yields:

V̇ ≤ −∂V̄z
∂Vz

(
2min{c1, c2}Vz −

3

2
c2a −

c2c
2

)
(74)

Although the control law (59) and the update laws (71) and (72) have been formulated, the values of the constants
ca and cc have not been defined. Expression (74) can be rewritten as:

V̇ ≤ −min{c1, c2}
∂V̄z
∂Vz

(
Vz + Vz −

1

2

3c2a + c2c
min{c1, c2}

)
(75)

The constants ca and cc are defined as user-defined positive constants that satisfy:

3c2a + c2c ≤ 2min{c1, c2}Cbvz (76)

A simple choice that satisfies the above requirement is:

ca = cc = (1/2)Cbe
√

min{c1, c2} (77)

From (63) it follows that:

∂V̄z/∂Vz = 0 if Vz ≤ Cbvz
∂V̄z/∂Vz > 0 if Vz > Cbvz

(78)

From (78), (76) and (75) it follows that:

V̇ ≤ −min{c1, c2}
∂V̄z
∂Vz

Vz (79)

Figure 1 schematizes the plant model and the proposed controller.

Remark 3..2 The developed controller involves the control law (59) and the update laws (71) and (72). The state
dependent signals and the corresponding equations are: z1 (17), z2 (36), ϕ1 (30), ϕ1b (40), ϕ1c (41), ϕ̄ (51),
Vz (43), V̄z (60), and ∂V̄z/∂Vz (63). The signals yd, ẏd, and ÿd are provided by equation (10). The user-defined
positive constants are: c1, c2, the diagonal elements of Γ1 and Γ2, ca, cc, Cbe, amo, and am1;Wmref is the desired
reference value. In addition, Cbvz = (1/2)C2

be; ca and cc must satisfy (76), and ua is the value of the control input
u in open loop operation previous to the closed loop operation and it is constant and user-defined.

Remark 3..3 The user defined constants may be set as follows. i) amo and am1 are positive and they may be fixed
to values such that the desired output yd provided by (10) tracks the refence valueWref with the transient response
required by the user. ii) The diagonal elements of Γ1 and Γ2 matrixes are positive and constant (Γijj) > 0); they
affect the dynamics of θ̂1 and θ̂2, therefore, they must be chosen by trial and error simulations so as to obtain
a suitable transient behavior of θ̂1, θ̂2 and tracking error e, and a suitable value of the control input u. Small
values for elements Γijj lead to a slow convergence of tracking error. iii) ca and cc are positive and are set such
that 3c2a + c2c ≤ 2 min{c1, c2}Cbvz according to equation (76); a simple values that satisfy such requirement is
ca = cc = VzCbe

√
min{c1, c2}. iv) Cbe is the size of the residual set Ωe to which the tracking error converges;

hence, it should be chosen as the maximun absolut value of the allowed tracking error in steady state. v) c1 and c2
are positive constants used in the backstepping procedure. They may be chosen by trial and error so as to acieve
suitable transient behavior of the tracking error.
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Reference
model

Update
laws

Control law
θ = u(ym, x2m, yd, ẏd, ÿd, θ̂1, θ̂2)
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model

yd, ẏd, ÿd

θ̂1, θ̂2

ym
x2m

Wmref

yd, ẏd, ÿd

x2mym

x2m

ym

θ̂1, θ̂2

Figure 1. Schematic diagram of the plant and the controller.

4. BOUNDEDNESS AND CONVERGENCE PROPERTIES
This section presents the bounded nature of the closed loop signals and the convergence property of the

output.

Theorem 4..1 Boundedness of the closed loop signals. Consider: i) the plant model given by (1), which is subject
to assumptions Ai to Aiii; ii) the state dependent signals z1 (17), z2 (36), ϕ1 (30), ϕ1b (40), ϕ1c (41), ϕ̄ (51), Vz
(43), V̄z (60), and ∂V̄z/∂Vz (63), and iii) the signals yd, ẏd, ÿd that are provided by equation (10), where amo
and am1 are user-defined positive constants and Wmref is an user-defined value; and iv) the user-defined positive
constants c1, c2, the diagonal elements of Γ1 and Γ2, ca, cc, Cbe, amo, am1, where ca and cc must satisfy (76). In
addition, ua is an user-defined constant, and Cbvz = (1/2)C2

be. If the controller defined in (59), (71), and (72) is
applied, then the signals z1, z2, θ̂1, θ̂2, and u remain bounded, and the tracking error e remains upper bounded by
an unknown constant:

|e| ≤ 2
{
V̄zo + (1/2)µ̄l20

[
γ−11/1θ̃

2
1[1](to) + γ−11/2θ̃

2
1[2](to) + γ−11/3θ̃

2
1[3](to)

]
+(1/2)

√
µ̄l20

[
γ−12/1θ̃

2
2[1](to) + · · ·+ γ−12/8θ̃

2
2[8](to)

]}1/2

+ Cbe (80)

where

V̄zo =

{
(1/2)(

√
Vzo −

√
Cbvz) if Vzo ≥ Cbvz

0 otherwise (81)

Vzo = (1/2)(z1(to)
2 + z2(to)

2) (82)

Vθ0 = (1/2)µ̄l20(θ̂1(to)− θ1)>Γ−11 (θ̂1(to)− θ1)

+(1/2)
√
µ̄l20(θ̂2(to)− θ2)>Γ−12 (θ̂2(to)− θ2) (83)

Proof 4..1 From (65) and (79) it follows that

V̇ ≤ 0, V (x̄(t)) ≤ V (x̄(to)) (84)

where x̄(to) is the vector x̄(t) at t = to, obtained by combining (66) with t = to, whereas V (x̄(to)) is the
Lyapunov-like function at initial time to, obtained by evaluating (65) at t = to:

V (x(to)) = V̄zo + Vθ0 (85)

V̄zo =

{
(1/2)(

√
Vzo −

√
Cbvz) if Vzo ≥ Cbvz

0 otherwise (86)

Vzo = (1/2)(z1(to)
2 + z2(to)

2) (87)

Vθ0 = (1/2)µ̄l20(θ̂1(to)− θ1)>Γ−11 (θ̂1(to)− θ1)

+(1/2)
√
µ̄l20(θ̂2(to)− θ2)>Γ−12 (θ̂2(to)− θ2) (88)

From (65), (85) and (84) it follows that

V̄z ≤ V̄zo + Vθ0 and Vθ ≤ V̄zo + Vθ0 (89)
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From the above expression it follows that V̄z ∈ L∞. To establish the bounded nature of z1 and z2, a relationship
between V̄z , z1, and z2 has to be established and incorporated in expression (89). Solving (60) for Vz yields:

Vz =
(√

2V̄z +
√
Cbvz

)2
if V̄z > 0

Vz ≤ Cbvz otherwise
(90)

Combining (43), (89), (90), yields:

|z1| ≤
√

2
(√

2V̄z +
√
Cbvz

)
(91)

|z1| ≤
√

2(
√

2
√
V̄zo + Vθ0 +

√
Cbvz) (92)

|z2| ≤
√

2(
√

2
√
V̄zo + Vθ0 +

√
Cbvz) (93)

According to previous results z1 ∈ L∞ and z2 ∈ L∞. To prove that θ̂1 and θ̂2 are bounded, the first task is to
define a notation for each one of the diagonal elements of Γ1 and Γ2:

γ1/1 , Γ1[1,1], γ1/2 , Γ1[2,2], γ1/3 , Γ1[3,3]

γ2/1 , Γ2[1,1], γ2/2 , Γ2[2,2], γ2/3 , Γ2[3,3]

γ2/4 , Γ2[4,4] γ2/5 , Γ2[5,5] γ2/6 , Γ2[6,6]

γ2/7 , Γ2[7,7] γ2/8 , Γ2[8,8]

(94)

From the above notations, and equations (67) and (89) it follows that

Vθ = (1/2)µ̄l20

[
γ−11/1θ̃

2
1[1] + γ−11/2θ̃

2
1[2] + γ−11/3θ̃

2
1[3]

]
+(1/2)

√
µ̄l20

[
γ−12/1θ̃

2
2[1] + · · ·+ γ−12/8θ̃

2
2[8]

]
≤ V̄zo + Vθ0 (95)

The above expression yields:
(1/2)µ̄l20γ

−1
1/1θ̃

2
1[1] ≤ V̄z0 + Vθ0

...
(1/2)µ̄l20γ

−1
1/3θ̃

2
1[3] ≤ V̄z0 + Vθ0

(1/2)
√
µ̄l20γ

−1
2/1θ̃

2
2[1] ≤ V̄z0 + Vθ0

...
(1/2)

√
µ̄l20γ

−1
2/8θ̃

2
2[8] ≤ V̄z0 + Vθ0

(96)

Therefore, θ̃1 ∈ L∞ and θ̃2 ∈ L∞. This result together with definitions (33) and (54) completes the proof for
θ̂1 ∈ L∞ and θ̂2 ∈ L∞.

The bounded nature of the control input u is proven at the following. Equations (17) and (30) together
with z1 ∈ L∞, yield x1 ∈ L∞, ym ∈ L∞ and ϕ1 ∈ L∞. Equations (7) and (36), together with ϕ1 ∈ L∞,
θ̂1 ∈ L∞, z1 ∈ L∞, and z2 ∈ L∞ yield x2m ∈ L∞ and x2 ∈ L∞. Equations (43), (63), and (71) jointly with

z1 ∈ L∞, z2 ∈ L∞, and ϕ1 ∈ L∞, yield Vz ∈ L∞, ∂V̄z/∂Vz ∈ L∞, and ˙̂
θ1 ∈ L∞. Equations (40) and (41)

together with ym ∈ L∞, θ̂1 ∈ L∞, z1 ∈ L∞, ϕ1 ∈ L∞, and ˙̂
θ1 ∈ L∞, yield ϕ1b ∈ L∞ and ϕ1c ∈ L∞. Equation

(51) together with ym ∈ L∞, x2m ∈ L∞, ϕ1b ∈ L∞, z1 ∈ L∞, ϕ1c ∈ L∞, and z2 ∈ L∞, yields ϕ̄ ∈ L∞.
Equation (59) together with z2 ∈ L∞, ϕ̄ ∈ L∞, and θ̂2 ∈ L∞, yields u ∈ L∞. This completes the proof for
u ∈ L∞.

Hereafter, the upper bound for the tracking error e is established. From (88) and (94) it follows that the
quadratic form Vθ0 can be rewritten as:

Vθ0 = (1/2)µ̄l20

[
γ−11/1θ̃

2
1[1](to) + γ−11/2θ̃

2
1[2](to) + γ−11/3θ̃

2
1[3](to)

]
+(1/2)

√
µ̄l20

[
γ−12/1θ̃

2
2[1](to) + · · ·+ γ−12/8θ̃

2
2[8](to)

]
≤ V̄zo + Vθ0 (97)
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From (17), (61), and (91), it follows that |e| ≤
√

2
(√

2V̄z + (1/
√

2)Cbe

)
, incorporating (89) and arranging,

yields |e| ≤
(

2
√
V̄zo + Vθ0 + Cbe

)
, now incorporating (97), we obtain

|e| ≤ 2
{
V̄zo + (1/2)µ̄l20

[
γ−11/1θ̃

2
1[1](to) + γ−11/2θ̃

2
1[2](to) + γ−11/3θ̃

2
1[3](to)

]
+(1/2)

√
µ̄l20

[
γ−12/1θ̃

2
2[1](to) + · · ·+ γ−12/8θ̃

2
2[8](to)

]}1/2

+ Cbe (98)

Notice that expression (80) indicates that the upper bound for e(t) can be rendered small by choosing
large values of γ1/1, γ1/2, γ1/3, γ2/1, · · · , γ2/8 and a low value of Cbe. However, hardware considerations must
be taken into account.

Theorem 4..2 Convergence of the tracking error. Consider: i) the plant model given by (1), which is subject to
assumptions Ai to Aiii, ii) the state dependent signals z1 (17), z2 (36), ϕ1 (30), ϕ1b (40), ϕ1c (41), ϕ̄ (51), Vz (43),
V̄z (60) and ∂V̄z/∂Vz (63), iii) the signals yd, ẏd, ÿd provided by equation (10), where amo, am1 are user-defined
positive constants, and Wmref is a user-defined reference value, and iv) the user-defined positive constants c1,
c2, the diagonal elements of Γ1 and Γ2, ca, cc, Cbe, amo, am1, where ca and cc must satisfy (76). In addition,
Cbvz = (1/2)C2

be and ua is an user-defined constant. If the controller defined in (59), (71), and (72) is applied,
then the tracking error e asymptotically converges to a residual set Ωe, whose size Cbe is user-defined:

Ωe = {e : |e| ≤ Cbe} (99)

Proof 4..2 From (63), (79) it follows that:

V̇ ≤ −c1fd ≤ −c1fg ≤ 0 ∀t ≥ to (100)

where

fd =

{
(1/2)(

√
Vz −

√
Cbvz)

√
Vz if Vz ≥ Cbvz

0 otherwise (101)

fg =

{
(1/2)(

√
Vz −

√
Cbvz)

2 if Vz ≥ Cbvz
0 otherwise (102)

Arranging and integrating (100) it is obtained:

V (x̄(t)) + c1

∫ t

to

fgdτ ≤ V (x̄(to)) (103)

where x̄(t) is defined in (66), and x̄(to) is x̄(t) evaluated at t = to. From (103) it follows that fg ∈ L1. In order
to apply Barbalat’s Lemma it is necessary to prove that fg ∈ L∞ and ḟg ∈ L∞. Since Vz ∈ L∞ it follows from
(102) that fg ∈ L∞. Differentiating (102) with respect to time yields:

ḟg =
∂fg
∂Vz

V̇z (104)

∂fg
∂Vz

=

{ √
Vz−
√
Cbvz

2
√
Vz

if Vz ≥ Cbvz
0 otherwise

(105)

Notice that ∂fg/∂Vz is continuous with respect to Vz . Since Vz ∈ L∞ then ∂fg/∂Vz ∈ L∞. Because z1 ∈ L∞,
z2 ∈ L∞, x1 ∈ L∞, x2 ∈ L∞, and u ∈ L∞ it follows from (19) and (37) that ż1 ∈ L∞ and ż2 ∈ L∞. Thus, from
(44) it follows that V̇z ∈ L∞. Because ∂fg/∂Vz ∈ L∞ and V̇z ∈ L∞ then it follows from (104) that ḟg ∈ L∞.
Because fg ∈ L∞ and ḟg ∈ L∞ the Barbalat’s Lemma (cf. [35] pp. 76) indicates that fg asymptotically converges
to zero. From (102), it follows that Vz converges to Ωvz , where Ωvz = {Vz : Vz ≤ Cbvz}. Furthermore, from (43)
it follows that z1 asymptotically converges to Ωz1, where Ωz1 = {z1 : |z1| ≤

√
2Cbvz}. Since Cbvz = (1/2)C2

be

and z1 = e, then e asymptotically converges to Ωe, where

Ωe = {e : |e| ≤ Cbe} (106)
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Remark 4..1 In Theorem 4.2 the asymptotic convergence of the tracking error e to the residual set Ωe is proven.
The size of the residual set is given by Cbe which is user-defined, positive and constant; even more, Cbe does not
depend on i) plant model parameters. ii) bounds of plant model parameters. iii) measurement model parameters.
iv) bounds of measurement model parameters. These features of Cbe are achieved by the control design procedure
and te main tasks to this end are: i) to incorporate unknown positive constant bounds to handle unknown parame-
ters from the plant and the measurement models. ii) to incorporate these bounds in the parametrizations. iii) to
incorporate a truncation in the quadratic form V̄z .

5. NUMERICAL AND EXPERIMENTAL RESULTS
The permanent magnet DC motor (PMDC) has the following characteristics: a rated power of 250 Watts,

a power voltage of 42 VDC, a rated current of 6 Amps, and a maximum speed of 4000 rpm. The motor speed Wm

is recorded by an encoder of 1000 pulses per turn. The armature current ia is measured by a series resistance. The
backstepping control technique is implemented in the control and development card dSPACE DS1104. This card
is programmed from Matlabr/Simulink platform and it has a graphical display interface called ControlDesk. The
sampling rate for all variables (Wm and ia) is set to 4 kHz. The state variable ia is 12-bits resolution; the controlled
variable Wm is sensed by an encoder which has 28-bits resolution. At each sampling time (250 µs) the controller
uses the measured Wm|m and ia|m to calculate the voltage to feed the motor. The control law and the update laws
defined in section 3., and the parameters Cbe, c1, c2, Γ1, Γ2, ua and Wmref are entered to the control block by the
user. The motor parameters and the user defined controller parameters are stated in Table 1, including the size of
the residual set Ωe, i.e. Cbe, which has been fixed to 5.

The measured values Wm|m and ia|m are used by the backstepping controller to compute z1, z2, ϕ1,
ϕ̄, ϕ1b, ϕ1c, ∂V̄z/∂Vz , Vz , and V̄z , and then to compute θ̂1, θ̂2, and u, according to remark 3..2. To test the
performance of the backstepping controller, simulations and experiments are considered. In the simulation case,
the motor model (1) is used to generate the values of Wm|m and ia|m. In this case, the motor parameters presented
in Table 1 are introduced by the user, in order to allow the numerical simulation of model (1). In the experimental
case, the values of Wm|m and ia|m are measured by sensors. Recall that the values of motor parameters Ra, La,
B, Jeq , kt, ke, Tfric, and TL are not involved in the control and update laws.
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Figure 2. Simulated results for step change in
Wmref from 200 rad/s to 300 rad/s at t = 1 s
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Figure 3. Experimental results for step change in
Wmref from 200 rad/s to 300 rad/s at t = 1 s

The initial tuning of adaptive parameters can be made off line, on line or using the simulation model. In this case
off line tuning was made. The reference signal Wmref is changed from 200 rad/s to 300 rad/s at t = 1 s in closed
loop, in both the experimental setup and simulations. The transient of Wm|m is shown in Figures 2 and 3; the
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Table 1. Motor parameters and user-defined controller parameters

Motor parameter Value
Ra: Armature resistance 2.7289 Ω
La: Armature inductance 1.17 mH
B: Viscous friction coefficient 0.000138 N.m/rad/s
Jeq: Moment of inertia 0.000115 kg.m2

kt: Motor torque constant 0.0663 N.m/A
ke: Voltage Constant 0.0663 V/rad/s
Tfric: Friction torque 0.0284 N.m
TL: Load torque variable N.m
Wmref : Reference speed 200 rad/s
Fc: Switching frequency 4 kHz
Fs: Sampling frequency 4 kHz
1T p: Unit time delay 250 µs
Wm: Motor speed 28 bits quantization
ia: Motor current 12 bits quantization
Zero-order-hold: Fixed step discrete time 250 µs

User-defined controller parameter Value
Γ1: updating gain 0.0006 I3
(being I3 the unity matrix of dimension 3)
Γ2: updating gain 0.0006 I8
(being I8 the unity matrix of dimension 8)
Cbe 5
c1 and c2: user-defined gains 10
ca and cc: user-defined gains 7.9
ua: initial control action, defined by the user 20 V
am1: parameter of the reference model (10) 40
amo: parameter of the reference model (10) 400

transient of the tracking error is shown in Figures 4 and 5; and the control input u = vc is shown in Figures 6
and 7. The steady state error for the simulation and experimental cases is lower than 2.5 % when Wmref = 200
rad/s, and lower than 1.7 % when Wmref = 300 rad/s. Notice that the user-defined size Cbe = 5 stated in Table
1 is achieved by both simulation and experiments as the tracking error converges to a residual set of lower size, as
can be seen in figure 1. During the transient state the error gets below −5 or above 5 because the controller was
designed to operate in continuous time, whereas the implemented controller works in discrete time; however, in
steady state the error converges to a pre-defined residual set.

6. CONCLUSIONS
The time-varying nature of the parameters, noise and plant models leads to lumped parameter terms, and

each of those lumped terms has to be treated as an unique parameter. The main tasks to handle the effect of such
terms are: i) to incorporate unknown positive constant upper bounds, ii) to incorporate unknown positive constant
lower bounds, iii) to incorporate the lower bounds in the parametrizations, and iv) to incorporate a truncation in
the quadratic form that depends on the backstepping states. In addition, the application of the Young’s inequal-
ity allows to avoid the presence of discontinuous signals in the control and update laws. The truncation of the
quadratic form allows to obtain an adequate time derivative of the Lyapunov-like function, guaranteeing adequate
boundedness and convergence properties.

The stability analysis indicates that the transient value of the tracking error is upper bounded by a positive
constant that depends on initial values of both the system states and updated parameters. This guarantees that the
transient tracking error can be rendered small by properly choosing: i) the gains of the update law, and ii) the
initial value of the desired output. Such bounded nature of the tracking error is an important benefit with respect
to closely related controllers that use the Nussbaum gain method.
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Figure 4. Simulation tracking error for step change
in Wmref from 200 rad/s to 300 rad/s at t = 1 s
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Figure 5. Experimental tracking error for step
change in Wmref from 200 rad/s to 300 rad/s at
t = 1 s
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Figure 6. Simulated control input u = vc for step
change in Wmref from 200 rad/s to 300 rad/s at
t = 1 s
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Figure 7. Experimental control input u = vc for
step change in Wmref from 200 rad/s to 300 rad/s
at t = 1 s

The convergence analysis indicates that the residual set for the convergence of the real but unknown error
depends on the magnitude of the noise parameters. In addition, if the noise parameters are such that noise is absent,
then the residual set of the real but unknown error is the same as the residual set of the current tracking error.
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[30] M. Moisan, O. Bernard, J.L. Gouzé.“Near optimal interval observer bundle for uncertain bioreactors”. Auto-

matica. 2009; 45: 291-295.
[31] F. Mazenc, O. Bernard.“Interval observers for linear time-invariant systems with disturbances”. Automatica.

2011; 47: 140-147.
[32] A. Rincon, F. Hoyos, F. Angulo.“Controller design for a second order plant with uncertain parameters and

disturbance: application to a DC motor”. Abstract and Applied Analysis. 2013; 2013: 01-15.
[33] N. Mohan.“First Course on Power Electronics and Drives”. Mnpere, USA. 2003.
[34] Royden, H.L.“Real Analysis”. Prentice Hall Upper Saddle River. New Jersey, 1988.
[35] P.A. Ioannou, J. Sun.“Robust Adaptive Control”. Prentice-Hall PTR Upper Saddle River, New Jersey. 1996.

BIOGRAPHIES OF AUTHORS

Alejandro Rincón Santamarı́a received the B.S. degree in Chemical Engineering, the M.S. degree
in Engineering-Industrial Automation, and the Ph.D. degree in Engineering-Automation, from Uni-
versidad Nacional de Colombia at Manizales, Colombia, in 2006, 2007 and 2010, respectively. He
is an associate professor with the Faculty of Engineering and Architecture, Universidad Católica de
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