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 Manual formulation of poultry diet by taking into account the fulfillment of 

all nutrients requirement with least cost is a difficult task. Particle Swarm 

Optimization (PSO) shows promising technique to solve this problem. 

However, there is a lack of studying a good parameter for PSO to solve feed 

formulation problem since PSO is sensitive to control parameter which 

depends on the problem. Therefore, this study investigates good swarm size, 

total iterations, acceleration coefficients, and inertia weight to produce a 

better formula. PSO with proposed good parameters is compared with other 

parameters. The obtained result shows that PSO with good parameters choice 

produces the highest fitness. Furthermore, good parameters of PSO can be 

used as a reference for a software developer and for further research to 

optimize poultry diet using PSO. 
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1. INTRODUCTION 

Feed that given on daily basis to poultry like laying hens is essential for growth, reproduction, and 

health. Feed should provide the nutrients that fulfill the nutrient's requirement for an animal. In poultry diets, 

the essential nutrients are protein, amino acids, carbohydrates, fats, minerals, and vitamins. These nutrients 

are important for producing meat and eggs [1]. Every class of animals with different stage or age require 

different nutrient requirements that needs different formula. When we take into account the cost of feed and 

several nutrient requirements, it becomes a complicated task to find the optimum formula that satisfy all 

nutrient requirements with least cost [2]. 

A feed intake by laying hens will affect the eggs production and price. It can be obtained only from 

a good formula which fulfills the nutrient requirements. Unfortunately, the highest cost production is in the 

feed approximately 65-70 % of all cost production. The feed and other cost have a positive correlation to the 

eggs price. If the producer can lower the cost with optimum feed’s formula, it will become cost-saving for 

him and may decrease the eggs price [3]. 

In Formulating the optimum formula, several factors must be considered simultaneously like the 

availability of local resources, fluctuating prices, and proper nutrition. A number of manual formulation such 

as trial and error, simultaneous algebraic equations, pearson’s square method have fail to produce optimum 

formula due to complexity when considering many nutrients and taking into account the feed’s price. 

Another approach, stochastic approach, has been employed by previous researches such as, Chance 

Constrained Programming (CCP), Quadratic Programming (QP), and Risk Formulation (RP). CCP is 

nonlinear method that used for feed formulation but consuming time since trial and error method is used in 

each iterations. QP is not suitable on the large problem and RP is a complex method [4]. 
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Meta-heuristic approach for stochastic optimization can be used to find optimal feed  

formulation [5]. It overcomes the lack of heuristic approach in the large search space [6]. It involving the 

objective function to evaluate the fitness of candidate solution and can be used to determine the direction of 

search trajectories for finding better candidate solution [7]. 

One of the meta-heuristic methods that can be employed to overcame the deficiency of those 

methods is Particle Swarm Optimization (PSO). PSO has shown a promising optimization method to solve a 

complex problem such as power system [8], electronic industry, wireless sensor network, feature  

selection [9], circuit design [10], multi-objective optimization [11], and determining neuron weights in fuzzy 

neural networks [12].  

In previous studies conducted by Altun and Şahman [13], PSO is employed to formulate optimum 

feed on several animals such as cattle, sheep, and rabbits. This algorithm can handle the constraint of each 

feed and can find the optimum solution for complex nutritional needs with least cost. The result shows us that 

PSO is able to provide a better solution than linear programming methods and genetic algorithm. In the other 

hand, the model of mult-objective optimization based on PSO defined in Xu study [14]. However, their study 

does not investigate the good parameter for PSO. 

When employing PSO, good choice for control parameter such as inertia weight, cognitive and 

social coefficient may enhance the performance of PSO. Furthermore, good parameter initialization depends 

on the problem and different problem may require a different choice of control parameters. The right 

parameter choice may lead particle to exploit or explore search trajectory to the optimum solution. While the 

wrong choice may aggravate the PSO ability for finding the global optimum solution [15]. The good swarm 

size and total iteration could affect PSO performance significantly. Therefore, it is important to choose good 

control parameters of PSO for a particular problem. Furthermore, the software developer can select the good 

parameter for their application. 

In the feed mix problem, the complexity of search space depends on the choice of feed that has 

nutrient value, stage of laying hen, and fluctuating prices. When producer changes the choices, the feed 

composition based on the choice is also changed. Thus, it is important to choose good parameter based on 

several formulae rather than just one. 

The objective of this study is to investigate the good swarm size, a number of iteration, acceleration 

coefficients, and inertia weight of PSO in optimizing laying hen diet. The experiment is based on five 

different formula that needs to be optimized. The obtained good parameters than compared to another 

parameter's value in PSO in order to find the optimum formula. Optimum means that the feed is fulfilling the 

nutrient requirements with least cost. 

 

 

2. RESEARCH METHOD 

The swarm intelligence approach and the application to optimize laying hen diet is discused in 

following: 

 

2.1. Particle swarm optimization 

Particle Swarm Optimization (PSO) gaining popularity since its emergence in 1995 by Eberhart and 

Kennedy [16] and inertia weight is added by Shi and Eberhart [17] to control the momentum of global best 

position and personal best position. PSO is an algorithm to find optimum solution that inspired from the 

population-based movement of swarm of fish and bird [18].  

The first step is to generate initial swarm or population which each particle or individual (candidate 

solution) have their own velocity and position. Next step is to calculate the fitness function of each particle. 

Then save the best fitness value of each particle as Pbest (best position in a particle) and save the best of all 

particles as Gbest (best position of all particles). Then update the velocity and position of each particle with 

Equations (1) and (2). PBest of each particle is updated as well as gBest. This process continues until the 

terminate condition is satisfied. Finally, Gbest becomes the optimum solution among all the particles. 

 

          ( )              ( )          (      ( )           ( ))    

        (                ( ))       (1) 

 

         ( )           ( )            ( )      (2) 

 

Each particle represents the candidate solution which has velocity and position respectively. 

Velocity updated based on the best its own particle and the best of all particle. Therefore, the particle has 

attractiveness to personal best and global best position. 
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2.2. PSO Application to optimization of laying hen diet 

The value for each dimension in a particle is real value that must satisfy the hard constraint which is 

equal to 100.   ( ) denotes the particle i-th at t-iteration that contain a set of various types of feed (xi) with a 

specific percentage and D denotes the total type of feed which also denotes the dimension of particles. The 

particle in particular iteration can be expressed in following : 

 

  ( )  *                     +  

On the condition that total number of    in the set   ( ) is equal to 100. Thus, particle representation 

of i-th particle for feed formulation is shown in Figure 2 and the example of particle representation which 

have D = 3 is shown in Figure 1. 

During particle movement, total percentage may not satisfy 100%. Thus, Equation (3) is used to 

adjust the current total percentage to 100%. 

 

 
Feed1 Feed2 ... Feedj ... FeedD Total percentage 

          ...      ...      
∑        

 

   

 

 

Figure 1. Particle representation 

 

 
  p1(corn) p2 (barn) p3 (concentrate) Total Percentage 

35,000 50,000 15,000 100 

 

Figure 2. Example of particle representation 

 

 

            (
    

∑     
 
   

       )       (3) 

 

For example in t-th iteration of particle i, the particle have the following values: 

 
Corn Barn Concentrate Total Percentage 

54,897 30,564 34,539 120% 

 

Since total percentage is not equal to 100%, this particle need readjustment. An example of 

readjustment process of the particle can be seen in following : 

 

      
      

   
                        

 

      
      

   
              

 

      
      

   
                   

 
Corn Barn Kosentrat Total Percentage 

                         100% 

 

Measuring the accuracy of nutrients of particle that fulfill the nutrient requirement is using the 

distance or penalty between nutrient value (see Appendix for more detail) and actual nutrient requirement. 

The penalty must be near zero which indicate the formulation is feasible for laying hens diets. Long distance 

or higher value of penalty represent bad particle as well as cost or price. The more distance of cost, the more 

particle is not optimum. Therefore the objective function or fitness function in PSO can be described as 1 

divided by the sum of penalty and cost that should be maximized as shown in Equation (4).  

 

       (  )  
 

          (  )       (  )
      (4) 
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Specifically, in order to estimate the distance to produce a good fitness function, the analysis of 

laying hens nutrient requirements is necessary. As shown in Table 5, the nutrient requirements are different 

on each layer and each nutrient has different limit that can be categorized as the minimum, maximum, and 

range of the sufficient nutrient [19]-[24]. Thus, we need a function that accommodate nutrient penalty of each 

feed which is shown in Equations (5), (6), (7), and (8).          (    ) denotes the nutrient a value on j-th 

position or feed on i-th particle, k denotes the amount of nutrient requirement of laying hens on particular 

layer and nutrient.     (     ),     (      ), and       (     ) particularly denote a function which produces 

a penalty as an output from the requirements of minimum nutrient, maximum nutrient, and range between 

minimum and maximum value of the nutrient.  

Equation (9) is the summation of all penalties of all nutrients in a particle based on the nutrient 

requirement. Each nutrient has min and max property that show a minimum and maximum value of the 

nutrient. If min and max property are greater than zero than it is indicated that nutrient has range requirement 

between min and max value. If the max property value is greater than zero and min property value is equal or 

less than zero, then it is in indicating that nutrient has minimum requirement. Otherwise, it has a minimum 

requirement.  

The total price of a particle need to be normalized in order to make the price range is close to 

nutrient value. Thus, the cost function can be defined in Equation (10) where          ( ) is the total price 

in a particle.        ( ) denotes the maximum price while        ( ) denotes the minimum price of all 

feeds. 

However, the position may have negative value during iteration. To overcome this issue, we set the 

fitness function value to negative. It indicates that the particle can’t be a solution to feed formulation 

problem. During movement, the particles will learn from their cognitive and social experience towards 

positive fitness value with positive positions. 

 

 

Table 1. Laying Hens Nutrient Requirements 

No Nutrient Unit 
 

Layer Pre 
Starter (1 - 4 

Weeks) 

Layer 
Starter (5 - 

10 Weeks) 

Layer 

Grower 

(11 - 16 
Weeks) 

Pre Layer 
(17 - 18 

Weeks) 

Layer 
(19 - 50 

Weeks) 

Layer Post 
Peak ( > 50 

Weeks ) 

1 Crude Protein (CP) % Min 20.00 19.00 15.50 16.00 16.50 16.00 

2 Lysin (Lys) % Min 1.00 0.90 0.70 0.75 0.80 0.75 

3 Methionine (Met) % Min 0.50 0.40 0.30 0.35 0.40 0.35 

4 
Methionine + 
Cystine (Met+Cys) % Min 0.80 0.70 0.60 0.63 0.67 0.65 

5 Tryptophan (Tryp) % Min 0.20 0.18 0.17 0.17 0.18 0.17 

6 Threonine (Thre) % Min 0.75 0.65 0.50 0.52 0.55 0.50 

7 Crude Fat (F) % Min 3.00 3.00 3.00 3.00 3.00 3.00 

8 Crude Fiber (CF) % Max 6.00 7.00 8.00 8.00 7.00 8.00 

9 Calcium (Ca) % Range 0.80 - 1.20 0.80 - 1.20 0.80 - 1.20 2.00 - 2.70 

3.25 - 

4.25 3.50 - 4.50 

10 
Total Phosphorus 
(P) % Min 0.60 0.55 0.46 0.50 0.55 0.50 

11 
Metabolizable 
Energy (ME) Kkal/Kg Min 2900.00 2800.00 2700.00 2700.00 2700.00 2650.00 

 

 

Let assume that we use 3 nutrient, first nutrient using the maximum function, the second nutrient 

using the minimum function, and the third nutrient using range function. Then the fitness function can be 

defined in Equation (9). Nutrients that used in this study are same with the nutrient requirements in Table 1 

and example of feed nutrients is shown in Table 2. Therefore, the fitness function can be defined in  

Equation (10). 

 

 

Table 2. Example of Feed Nutrients 

No Nutrient Unit Bran Yellow Corn Soybeans Coconut Meal 

1 Crude Protein (CP) % 10.2 8.54 38 18.5 

2 Lysin (Lys) % 0.71 0.2 2.4 0.64 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Good Parameters for PSO in Optimizing Laying Hen Diet (Gusti Ahmad Fanshuri Alfarisy) 

2423 

No Nutrient Unit Bran Yellow Corn Soybeans Coconut Meal 

3 Methionine (Met) % 0.27 0.18 0.51 0.29 

4 
Methionine + Cystine 
(Met+Cys) % 0.64 0.36 1.15 0.59 

5 Tryptophan (Tryp) % 0.09 0.1 0.55 0.2 

6 Threonine (Thre) % 0.57 0.4 1.5 0.65 

7 Crude Fat (F) % 7 2.61 18 2.5 

8 Crude Fiber (CF) % 3 0.02 5 15 

9 Calcium (Ca) % 0.04 0.02 0.25 0.2 

10 Total Phosphorus (P) % 0.16 0.1 0.25 0.57 

11 

Metabolizable Energy 

(ME) Kkal/Kg 2860 3370 2860 2200 

12 Cost Rupiah/Kg 3000 3700 5000 4200 

 

 

              (  )   ∑
    

   
            (    ) 

 
        (5) 

 

    (     )  {
                (  )    

                 (  )               (  )   
   (6) 

 

    (      )  {
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                     (  )       

              (  )                      (  )      

 (8) 

 

         (   )   ∑ {

      (      )                          

    (      )             

    (      )            

 
      (9) 

 

     ( )  
         ( )             ( )

            ( )             ( )
      (10) 

 

2.3. Experimental setup 

In this study, we perform 4 testing scenario that aim to get insight about good swarm size, the good 

number of iteration, good acceleration coefficients, good inertia weight and performance of good parameters 

in PSO for feed formulation in laying hen diets. First control parameter choices are 0.6 for inertia weight 

coefficient and 1.7 for both acceleration coefficients. All experiment is using grower phase of laying hen. 

In the first scenario, we experiment with 5 different formula that can be seen in Table 3 to find a 

good swarm size. For all formula, we run PSO with different swarm size that has ranged between 10 and 100 

by 10 with 10,000 iterations. This scenario designed to figure out the effect of the different combination of 

feed towards best swarm size for formulating optimum diet.  

In the second scenario, the same feed combination from scenario 1 is used which using different 

total iteration that has ranged between 1,000 to 10,000 by 1,000 and best swarm size is used that derived 

from scenario 1. This scenario is intended to figure out the best number of iteration towards different feed 

combinations. 

In third scenario, we tuning cognitive and social coefficients to get the best control parameter for 

PSO in case of feed formulation problem. The value between 0.1 to 2.0 and increased by 0.1 for both 

coefficient is tested. We use the good swarm size and good number of iterations derived from scenario 1  

and 2. 

In the fourth scenario, we tuning different value of constant inertia weight for all different formula. 

The value between 0.1 to 0.9 by 0.1. We use the good swarm size, iteration, and acceleration coefficients 

derived from scenario 1, 2, and 3. 

In the fifth scenario, we use the good swarm size derived from scenario 1, good total iterations 

derived from scenario 2, good acceleration coefficients derived from scenario 3, and good inertia weight 

derived from scenario 4. We test these parameters to other parameter settings such as linearly decreasing 
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inertia weight with max = 0.9 and min = 0.4 since it is considered mostly used in PSO applications [25] and 

w = 0.729, c1 = 1.494, c2 = 1.494 [26] using formulae in Table 4. Since PSO is stochastic optimization that 

produce fluctuating results, we run PSO ten times for fair analysis. 

 

 

Table 3. Test Formulae for Good Parameters 
Formula Feed 

5A 3,4,5,25,26 

6A 2,4,10,17,24,26 

8A 1,3,8,10,11,15,18,21 
11A 2,4,8,13,15,16,19,20,21,22,26 

15A 0,2,5,6,7,8,9,10,19,25,22,23,24,26,27 

 

 

Table 4. Test Formulae for Comparison 
Formula Feed 

11B 0,1,3,11,13,16,20,22,23,26,30 

12B 0,2,3,8,10,15,17,19,20,21,24,26 

13B 1,3,5,8,9,10,13,17,19,20,24,27,30 

 

 

3. RESULTS AND DISCUSSION 

All the testing scenarios are implemented using Scala programming language that combines object-

oriented and functional paradigm. The results for each scenario is discussed in the following section: 

 

3.1. Good swarm size 

The effect of an increase in swarm size for all formula is shown in Figure 3. It is shown that each 

formula requires different minimum swarm size to found the optimum formula. Formula 5A and 6A need at 

least 20 swarm size, formula 8A neet at least 50 swarm size, formula 11A need at least 30 swarm size, and 

formula 15A need at least 180 swarm size. In 15A, increasing swarm size above 180 could not give any 

significant improvement for the average fitness value. 

 

 

   
(a) (b) 

 

(c) 

  

 

(d) (e)  

 

Figure 3. Effect of swarm size to average fitness on formula: (a) 5A, (b) 6A, (c) 8A, (d) 11A, and (e) 15A 
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Each minimum swarm size gives us insight that the number of feeds in each formula is not 

associated with the minimum swarm size. With 5 and 6 different feed combination, they require minimum  

20 swarm size and the minimum value is increased with 8 different combinations that need at least 50 swarm 

size. However, when the number of feeds is increased to 11 different combinations, it requires less swarm 

size than 8A which at least 30 swarm size. Thus, the complexity of search space is not associated with the 

number of feeds 

Then, It is very difficult to find minimum swarm size for every combination of feeds. Since the 

number of combination is very large and the cost of feed is fluctuating that increase the combination 

complexity through time (the cost always change). However, with a small sample of experimentation, we can 

choose the highest swarm size to be the good parameter. The highest swarm size can make particles converge 

on all formula. It is highly likely that this good parameter is not good for another formula outside of the 

sample. Therefore, we propose to add additional swarm size for the highest swarm size found in a small 

sample. In this case, the highest swarm size is 180, then the good swarm size would be 180 + X which X is 

the arbitrary number of swarm size that possibly can help particles converge in a better solution. 

For the next experiment, we choose arbitrary value X = 50 and then the good swarm size = 230. The 

determination of this value is another problem that is not discussed in this paper. 

 

3.2. Good number of iteration 

For formula 5A and 6A, 1,000 iterations are adequate to make particle to converge as shown in 

Figure 4. By increasing the dimension, 8A require minimum iterations of 4,000, 11A require minimum 

iterations of 5,000, while 15A require minimum iterations of 14,000. Each formula shows different total 

iterations. With a small sample of 5 different formula, the highest number of iterations is found in formula 

11A. If this value is used as a good number of iterations it can make particle converge in all sample formula. 

Thus, we propose an additional number of iterations in accounting feed combination outside of sample. The 

good number of iterations should be 14,000 + Y which Y is the arbitrary number of iterations. 

For the experiment of acceleration coefficient, we choose arbitrary Y = 5,000, good number of iterations = 

19,000. This determination is another problem that is not discussed in this paper. 

 

 

   
(a) (b) 

 

(c) 

  

 

(d) (e) 

 

 

Figure 4. Effect of number of iterations to average fitness on formula: (a) 5A, (b) 6A, (c) 8A, (d) 11A,  

and (e) 15A 
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3.3. Good acceleration coefficients 
The effect of acceleration coefficients to average fitness value is shown in Figure 5. The increase of 

social coefficient gives significant improvement to average fitness for all formulae. While using small social 

coefficient with high cognitive coefficient can’t improve average fitness which leads to bad choices. The 

social coefficient above 1.0 with a small value of the cognitive coefficient is enough to produce  

optimum formula. However, with this small sample of experimentation, it is safe to choose a high value  

for both acceleration coefficient. Thus, in this study, we choose cognitive coefficient of 2.0 and social 

coefficient of 2.0. 

 

 

  
 

(a) (b) 

 

  
 

(c) 

 

(d) 

 

 
 

(e) 

 

Figure 5. Effect of acceleration coefficients to average fitness on formula: (a) 5A, (b) 6A, (c) 8A, (d) 11A, 

and (e) 15A  
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3.4. Good inertia weight 

The effect of inertia weight value to average fitness is shown in Figure 6. In all formula, except 

formula 8A, a high value of inertia weight decrease the average fitness. In formula 5A and 6A, inertia weight 

of 0.1 to 0.7 does not increase or decrease average fitness significantly and it is considered as a good 

parameter in 5A and 6A. While in 8A, inertia weight of 0.1 to 0.9 does not decrease the average fitness and 

considered as a safe value to choose as a good parameter. In 11A, inertia weight of 0.1 to 0.6 is a safe choice 

to choose. In formula 5A, 6A, 8A, and 11A, the increment of inertia weight in safe value does not improve 

significantly to average fitness. However, in 15A, average fitness gradually increased from 0.1 to 0.7 and 

decreased significantly above 0.7. 

 

 

  
(a) (b) 

 

 
 

(c) (d) 

 

 
(e) 

 

Figure 6. Effect of inertia weight to average fitness on formula: (a) 5A, (b) 6A, (c) 8A, (d) 11A, (e) and 15A  

 

 

The simulation results show us that a good parameter of inertia weight differs from formula to 

another formula. The choice should be below 0.7 since it is the safe choice to choose that not decreasing the 

average fitness that found in formula 5A, 6A, 8A, and 15A. However, 0.7 is considered to be a bad choice 

because it will decrease the average fitness in formula 11A. With a small sample, the inertia weight in 

[0.5,0.6] should be chosen as a good choice parameter since it is safe to choose in the small sample of 

experimentation. 
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3.5. Comparison results 

The good parameter choices of PSO which are swarm size = 230, iterations = 19,000, c1 = 2,0,  

c2 = 2,0, and w = 0,6 is compared to other PSO parameters. The comparison is simulated with the same 

swarm size and iterations in order to know how acceleration coefficients and inertia weight could affect the 

PSO performance and for a fair comparison. As shown in Table 5, all formulae produced by PSO-1 have the 

highest fitness value than PSO-2 and PSO-3. The inertia weight of PSO-2 and PSO-3 may reduce the average 

fitness since as found in inertia weight experimentation; the inertia weight above 0.7 could reduce the 

average fitness. However, PSO-3 is more stable than PSO-1 and PSO-2 as shown in the lowest standard 

deviation that found in 11A and 13A. The simulation results show us that good parameter choice could 

improve the fitness or solution quality rather than just pick some swarm size, a number of iteration, and 

control parameter recommendation. This parameter can be used as a reference for PSO to solve poultry diet 

formulation problem. 

 

 

Table 5. The comparison results of PSO with good parameter (PSO-1), PSO with linear decreasing inertia 

weight (PSO-2), and PSO with proposed parameter [26] (PSO-3) 
Formula PSO-1 PSO-2 PSO-3 

Average Fitness Standard 
Deviation 

Average Fitness Standard 
Deviation 

Average Fitness Standard 
Deviation 

11A 3.701377131 0.101223253 3.691529062 0.079904612 3.697482264 0.071724442 

12A 7.287655999 0.063370121 7.2825648 0.054083732 7.285043867 0.088006539 

13A 6.707823326 0.512793285 6.69813167 0.474649413 6.533627663 0.435799354 

 

 

3.6. Formulation result 

This section presents the formulation result after all good parameter were obtained. Ten different 

ingredients were selected and formulated by PSO in grower phase. The composition of each ingredient and 

the amount of each nutrient are shown in Table 6 and 7 respectively. In Table 6, not all ingredients are used 

which PSO can selectively determine precise composition. While in Table 7, all nutrient requirements are 

satisfied. This simulation shows that PSO as promising algorithm to solve feed formulation problem, 

particularly in laying hens. 

 

 

Table 5. Ingredients Composition and Cost 
Ingredient Composition Cost / Kg.  

Corn Bran 24.166% IDR 966.64  
Wheat 0% IDR 0  

Menir 15.118% IDR 907.08  

Pollard 7.531% IDR 173.213  
Cotton Seed Meal 4.553% IDR 113.825  

Soybean Meal 5.369% IDR 161.07  

Foka 42.428% IDR 848.56  
MBM 0.146% IDR 7.3  

Blood Flour 0.333% IDR 16.65  

Bone Flour 0.356% IDR 21.36  
TOTAL IDR 3,215.698  

 

 

Table 6. Nutrient Penalty 
Nutrient Amount Requirement Description 

Met 0.3 Min. 0.30 Satisfied 

P 0.46 Min. 0.46 Satisfied 

Lys 0.7 Min. 0.70 Satisfied 
CF 0.0 Max. 8.00 Satisfied 

CP 15.5 Min. 15.50 Satisfied 

Thre 0.5 Min. 0.50 Satisfied 
Tryp 0.17 Min. 0.17 Satisfied 

Ca 0.8 0.80 – 1.20 Satisfied 

Met+Cys 0.6 Min. 0.60 Satisfied 
Nutrient Amount Requirement Description 

F 3.0 Min. 3.00 Satisfied 

EM 2,700 Min. 2,700 Satisfied 
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4. CONCLUSION 

This study presents the selection of PSO parameters to produce a better solution of laying hen diet. 

According to the experimental results, the choices of feed ingredients need different minimum swarm size 

and different total iterations. It shows us that the search space formed by the choices of feed ingredients that 

have nutrient value and cost property. It is become a hard task to find minimum swarm size and iteration for 

each combination. However, with a small sample of experimentation, the minimum swarm size and iteration 

should be above 180 and 14,000 respectively. In the other hand, acceleration coefficients require a high value 

to produce an optimum and stable formula. The cognitive coefficient of 2,0 and the social coefficient of 2,0 

became the good choice to choose since it is a safe parameter to produce a better formula. While high value 

of inertia weight would reduce the fitness. Thus, the constant inertia weight between 0,5 and 0,6 should be 

chosen as good parameters. 

Since the best parameter is different for each formula, the adaptive technique for inertia weight or 

swarm size can be beneficial for PSO to produce a better solution. Furthermore, multi-swarm with different 

parameter also advantageous to handle different combination and to avoid local optima in the complex multi-

modal problem. 
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APPENDIX 

Feed Ingredients: 

 

 
Index Ingredients Price in 

Rupiah 

ME CP Crude 

Fat 

CF Ca P Na K Cl 

0 Bran 2500 1630 8 8 12 0.12 0.21 0.07 1.7 0.07 

1 Corn Bran 4000 2950 10.6 6 5 0.04 0.15 0.06 1.2 0.07 

2 Wheat 20000 2980 10.7 2.1 2.1 0.05 0 0 0 0 

3 Yellow Corn 5000 3370 8.54 2.61 4.76 0.02 0.1 0.02 0.28 0.04 

4 Menir 6000 3390 8.9 4 3 0.03 0.4 0 0 0 

5 Pollard 2300 1300 15 4 10 0.14 0.32 1.2 1.1 0.09 

6 Sorghum 6000 3250 10 2.8 2 0.03 0.1 0.01 0.35 0.08 

7 Cotton Seed Meal 2500 2100 41 4.8 12 0.18 0.33 0.03 1.2 0.05 

8 Rubber Seed Meal 4500 2159 24.2 3.45 9.8 0.11 0 0 0 0 

9 Soybean Meal 3000 2240 42 0.9 6 0.29 0.65 0.03 1.2 0.03 

10 Coconut Meal 3500 2200 18.5 2.5 15 0.2 0.57 0.04 1.1 0.03 

11 Peanut Meal 3000 2200 42 1.9 17 0.2 0.2 0.07 1.2 0.03 

12 Foka 2000 2700 14 1.8 10.1 2.25 1 0.1 1.1 0.07 

13 Hidrolisis I. Rumen 2500 2000 16.2 2.3 25.4 0.38 0.55 0 0 0 

14 MBM 5000 2190 52 10 2.8 10 5.1 0.7 1.45 0.69 

15 Skim Milk 30000 2510 33 0.9 0.2 1.3 1 0.5 1.5 0.9 
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Index Ingredients Price in 
Rupiah 

ME CP Crude 
Fat 

CF Ca P Na K Cl 

16 Fish Flour 

(Ancovetta) 

7500 2830 65 4 1 4 2.6 0.8 0.7 0.3 

17 Fish Flour (Herring) 8000 2640 72 10 1 2 1.5 0.5 1.1 1 

18 Fish Flour 

(Menhaden) 

8500 2650 54 9 1 5.5 2.8 0.3 0.7 1.2 

19 Snail Flour 6500 4906 61 6.1 4.5 2 0 0 0 0 

20 Quill Flour 5000 2310 85 2.5 1.5 0.32 0.32 0 0 0 

21 Meat Flour 5000 2957 57 12 0 5.96 0 0 0 0 

22 Blood Flour 5000 2750 85 1.1 1 0.15 0.32 0.32 0.09 0.27 

23 Lamtoro Flour 4500 828 18.9 5.9 16.3 0.05 0 0 0 0 

24 Chalk 1100 0 0 0 0 38 0 0 0 0 

25 Clamshell 6000 0 0 0 0 37 0 0 0 0 

26 Bone Flour 6000 818 12 3 2.3 26 13.5 0 0 0 

27 Fish Oil 150000 8450 0 100 0 0 0 0 0 0 

28 Coconut Oil 11500 8600 0 100 0 0 0 0 0 0 

29 Plant Oil 12000 8950 0 100 0 0 0 0 0 0 

30 Cassava Flour 2400 2970 1.5 0.7 0.9 0.18 0.09 0.06 0.01 0.07 

 

 
Index Ingredients Mn Zn Arg Cys Gly His Isol Leu Lis Met 

0 Bran 200 30 1.4 0.4 0.8 0.56 0.61 1.2 0.77 0.29 

1 Corn Bran 115 80 0.8 0.2 0.9 0.3 0.6 0.9 0.5 0.17 

2 Wheat 0 0 0 0 0 0 0 0 0 0.31 

3 Yellow Corn 5 10 0.5 0.18 0.4 0.2 0.4 0.1 0.2 0.18 

4 Menir 0 0 0.36 0 0 0 0 0 0 0.27 

5 Pollard 18 15 0.7 0.1 0.8 0.18 0.38 0.6 0.3 0.17 

6 Sorghum 13 17 0.36 0.15 0.4 0.19 0.46 1.4 0.2 0.13 

7 Cotton Seed Meal 23 0 4.4 1 2.4 1.1 1.6 2.4 1.6 0.6 

8 Rubber Seed Meal 0 0 0 0 0 0 0 0 0 0 

9 Soybean Meal 35 27 3.2 0.67 2.1 1.1 2.5 3.4 2.9 0.65 

10 Coconut Meal 55 100 2.7 0.3 1 0.56 0.66 1.49 0.64 0.29 

11 Peanut Meal 29 20 5.2 0.8 2.6 1.1 2.2 3.2 1.8 0.5 

12 Foka 0 0 0.013 0.37 0.2 0.52 0.56 1.4 0.71 0.27 

13 Hidrolisis I. Rumen 0 0 0 0 0 0 0 0 0 0 

14 MBM 14 93 3.28 0.69 6.65 0.96 1.54 3.28 2.61 0.69 

15 Skim Milk 2 40 1.1 0.42 0.7 0.84 2.1 3.3 2.3 1 

16 Fish Flour 

(Ancovetta) 

22 110 3.4 1 4.6 1.5 3.6 5 5.2 1.8 

17 Fish Flour (Herring) 10  6.8 1.2 5.9 1.6 3.7 5.19 6.4 2 

18 Fish Flour 

(Menhaden) 

36 150 3.8 0.94 4.4 1.4 3.6 5 4 1.3 

19 Snail Flour 0 0 0 0 0 0 0 0 0 4.35 

20 Quill Flour 0 0 5.6 3 0 0 0 0 1.5 0.5 

21 Meat Flour 0 0 0 0 0 0 0 0 0 3.31 

22 Blood Flour 5 0 3.5 1.4 3.4 4.2 1 10.2 6.9 6.9 

23 Lamtoro Flour 0 0 0 0 0 0 0 0 0 0.55 

24 Chalk 0 0 0 0 0 0 0 0 0 0 

25 Clamshell 0 0 0 0 0 0 0 0 0 0 

26 Bone Flour 0 0 0 0 0 0 0 0 0 1.27 

27 Fish Oil 0 0 0 0 0 0 0 0 0 0 
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Index Ingredients Mn Zn Arg Cys Gly His Isol Leu Lis Met 

28 Coconut Oil 0 0 0 0 0 0 0 0 0 0 

29 Plant Oil 0 0 0 0 0 0 0 0 0 0 

30 Cassava Flour 115 90 0.04 0.1 0.1 0.15 0.3 0.45 0.03 0.09 

 

 


