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ABSTRACT

This paper presents a methodology based on two interrelated rapid prototyping pro-
cesses in order to find the best correspondence between theoretical, simulated, and
experimental results of a power converter controlled by a digital PWM. The method
supplements rapid control prototyping (RCP) with effective math tools to quickly se-
lect and validate models of a controlled system. We show stability analysis of the
classical and two modified buck converter models controlled by zero average dynam-
ics (ZAD) and fixed-point induction control (FPIC). The methodology consists of ob-
taining the mathematical representation of power converters with the controllers and
the Lyapunov Exponents (LEs). Besides, the theoretical results are compared with the
simulated and experimental results by means of one- and two-parameter bifurcation
diagrams. The responses of the three models are compared by changing the parameter
(Ks) of the ZAD and the parameter (N ) of the FPIC. The results show that the stabil-
ity zones, periodic orbits, periodic bands, and chaos are obtained for the three models,
finding more similarities between theoretical, simulated, and experimental tests with
the third model of the buck converter with ZAD and FPIC as it considers more pa-
rameters related to the losses in different elements of the system. Additionally, the
intervals of the chaos are obtained by using the LEs and validated by numerical and
experimental tests.
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1. INTRODUCTION
A good mathematical model derives from an appropriate balance between simplicity and accuracy.

An approach that combines theoretical, simulated, and experimental tests is pertinent to find the best balance.
Advances in electronics have allowed the development of rapid control prototyping (RCP) platforms [1], where
real-world systems can be automatically connected with mathematical models [2]. The integration of theo-
retical, simulated, and experimental methods can be achieved in order to find the best model and validate the
control strategy at the same time. In this paper, we illustrate this possibility by means of the analysis of a buck
converter.

Journal Homepage: http://iaescore.com/journals/index.php/IJECE

 
 

 

Institute of Advanced Engineering and Science 

w  w  w  .  i  a  e  s  j  o  u  r  n  a  l  .  c  o  m 

 

TH Sutikno
Typewritten Text
, DOI: 10.11591/ijece.v8i3.pp1551-1568



1552 ISSN: 2088-8708

Digital pulse–wide modulation (DPWM) is now widely used to control power converters because of
many advantages such as non-linear control implementation, advanced control algorithms, low power con-
sumption, reduction of external passive components, lower sensitivity to parameter variations, applications for
high frequency digital controllers, and others as described in [3, 4, 5, 6].

However, the quantization effects in the state variables and in the duty cycle can cause undesirable
limit-cycle oscillations or chaos [7, 8, 9, 10] and delays in the controller produce instability [11]. For these
reasons, the dynamic response of digitally controlled DC-DC converters was studied in [3] by the non-uniform
quantization. In [7], steady-state limit cycles in DPWM-controlled converters were evaluated and to avoid os-
cillations some conditions are imposed on the control law and the quantization resolution. The FPIC control
technique allows the stabilization of unstable orbits as presented in [12]. Furthermore, the parameter estima-
tion techniques allowed estimating unknown varying parameters of converters [13, 14]. In [4], the minimum
requirements for digital controller parameters, namely, sampling time and quantization resolution dimensions
are determined. All these techniques demonstrate how to control some unstable events with controllers and
have shown some advantages of using the adjustment parameters, but a low number of them have estimated the
parameters for the ZAD controllers [5]. Therefore, more research is needed to validate the effects with different
parameters and techniques to visualize the stability behaviors.

A better visualization approach has been applied in [15], where the output voltage of a buck power
converter is controlled by means of a quasi-sliding scheme. They introduce the load estimator by means of Least
Mean Squares (LMS) to make ZAD and FPIC control feasible in load variation conditions and to compare the
results for controlled buck converter with SMC, PID and ZAD–FPIC control techniques. However, this work
lacks of a complete representation of the stability events and analysis, and a comparison of the different effects
that create the control parameters with LEs and bifurcation diagrams. Furthermore, a comparison between
numerical and experimental tests is needed to identify the similarities in stability zones, the periodic orbits, the
periodic bands, and the chaos.

Therefore, this work presents a stability analysis of three models of buck converters controlled by ZAD
and FPIC, with the aim of selecting the best model that represents similar behaviors between the theoretical,
simulated, and experimental tests. For this purpose, Section 2 presents the mathematical models of buck
converter, Section 3 shows the mathematical model of the ZAD control strategy, and Section 4 illustrates the
mathematical model of the FPIC technique. Sections 5, 6, and 7 present the mathematical model for the first,
second, and third model of the buck converters, respectively. Section 8 presents the results and analysis, where
the comparison of the three models with the theoretical, simulation, and experimental tests are performed.
Finally, Section 9 shows the conclusions.

2. MATHEMATICAL MODEL
A complete schematic diagram of the system under study is shown in Figure 1. The converter is

formed by a power sourceE, an internal source resistor rs, a MOSFET (metal oxide semiconductor field-effect
transistor) as a switch S with internal resistance rM , a diode D with direct polarization voltage Vfd, a filter
LC, an internal resistance of the inductor rL, a resistance used to measure the current rMed, and a resistance
representing the load of the circuit R [16]. The variables measured in the converter are the capacitor voltage υc
and the inductor current iL. These variables are measured in real time and they are sent to the ZAD and FPIC
in order to calculate a signal for the centered pulse width modulation (CPWM), which closes the control loop.

This system changes the structure with the action of the switch S, which is managed by the CPWM.
This modulator consists of a circuit composed of a switch and a DC power source, which in conjunction with
the filter LC and the diode D, must supply an average voltage υc to the output during a switching period. For
this effect, the CPWM changes the switch S between the states ON (E) and OFF (−Vfd). Figure 2 shows the
general idea of the CPWM, where d is the duty cycle calculated for each period.

When the control input is u = 1, then the state of the switch S is active (ON) and the system gets into
a continuous conduction mode (CCM), which can be modeled as in (1).[

υ̇c
i̇L

]
=

[ −1
RC

1
C

−1
L

−(rs+rM+rMed+rL)
L

] [
υc
iL

]
+

[
0
E
L

]
(1)

This last equation can be simplified and written as in (2).
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Figure 1. Schematic diagram of the buck converter controlled by the ZAD and FPIC

Figure 2. Scheme of a CPWM

[
ẋ1
ẋ2

]
=

[
a h
m p2

] [
x1
x2

]
+

[
0
E
L

]
(2)

When the control input is u = 0, switch S is inactive (OFF) and the system can be modeled as shown
in (3). [

υ̇c
i̇L

]
=

[ −1
RC

1
C

−1
L

−(rMed+rL)
L

] [
υc
iL

]
+

[
0
−Vfd

L

]
(3)

This equation can be simplified and written as in (4).[
ẋ1
ẋ2

]
=

[
a h
m p3

] [
x1
x2

]
+

[
0
−Vfd

L

]
(4)

where a = −1/RC, h = 1/C, m = −1/L, p2 = −(rs + rM + rMed + rL)/L, p3 = −(rMed + rL)/L, and
x1 = υc, x2 = iL. The notation x1 = υc represents the capacitor voltage or the voltage at the load bus, and
x2 = iL represents the current through the inductor.

The state equations (2) and (4) have been simplified as shown in (5); where ẋ = [ẋ1, ẋ2]′ = [dx1

dt ,
dx2

dt ]′.
In the input matrices B1 and B2 is the information of the control inputs according to the scheme of the CPWM
(Figure 2).

ẋ =

 A1x+B1 if kT ≤ t ≤ kT + dT/2
A2x+B2 if kT + dT/2 < t < kT + T − dT/2
A1x+B1 if kT + T − dT/2 < t < kT + T

(5)

The next step is to design a control strategy that allows the capacitor voltage (x1 = υc) to be equal
to the reference voltage x1ref or a desire value. To obtain tracking or regulation, the time must be calculated
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with a predefined period T , in which the switch S must remain closed (u = 1), called the “duty cycle” d, with
(d ∈ [0, T ]). Thus, the duty cycle d is defined as the time that the switch S is closed for the period T .

3. ZAD CONTROL STRATEGY
This control technique was proposed by [17], and tested numerically and experimentally in [15, 18,

19]. This technique basically consists of defining a function and force an average value of zero at each sampling
period. For this particular case, s(t) is used as a function of the state value at the start of the sampling period
s(x(kT )). In this case, the function is defined as a linear function (Figure 3) and slopes are obtained from the
values of the state variables in the instant of sampling t = kT as shown in (6) and (7). The function s(x(kT ))
is linear in its sections, as shown in Figure 3 and it can be expressed as in (6).

s(x(kT )) =


s1 + (t− kT )ṡ+ if kT ≤ t ≤ kT + dT

2

s2 + (t− kT − dT
2 )ṡ− if kT + dT

2 < t < kT + (T − dT
2 )

s3 + (t− kT − T + dT
2 )ṡ+ if kT + (T − dT

2 ) ≤ t ≤ (k + 1)T
(6)

where
ṡ+ = (ẋ1 + ksẍ1)

∣∣∣
x=x(kT ), S=ON

ṡ− = (ẋ1 + ksẍ1)
∣∣∣
x=x(kT ), S=OFF

s1 = (x1 − x1ref + ksẋ1)
∣∣∣
x=x(kT ), S=ON

s2 = d
2 ṡ+ + s1

s3 = s1 + (T − d)ṡ−

(7)

where ks = Ks

√
LC and the term Ks is a constant of the controller and considered as a parameter in the

bifurcation analysis.

Figure 3. Commutation expressed in sections

The condition of the average zero is expressed in (8).∫ (k+1)T

kT

s(x(kT ))dt = 0 (8)

From (8), it is noted that the first and third slopes have the same values. All the information to build
s(x(kT )) is obtained from the state values x1 and x2 in the instant kT .

Solving the equation related with the condition of average zero (8), the expression for the duty cycle
can be expressed as shown in (9).

dk(kT ) =
2s1(kT ) + T ṡ−(kT )

T (ṡ−(kT )− ṡ+(kT ))
(9)

As in the experimental test, the variables are measured, the data are processed, and a CPWM is
calculated with a frequency of 10 kHz with a one-delay period; thus, the expression of the duty cycle is defined
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as in (10). This implies that the control law in the current period is calculated with the values of the states
measured in the previous iteration.

dk(kT ) =
2s1((k − 1)T ) + T ṡ−((k − 1)T )

T (ṡ−((k − 1)T )− ṡ+((k − 1)T ))
(10)

4. FPIC TECHNIQUE
FPIC was first presented in [20]. Later, a numerical test was performed in [19, 21] and finally the first

experimental results were presented in [12]. In this section, the basis of the FPIC is presented.

4.1. FPIC theorem

Consider a system with a set of equations as shown in 11, where: x(t) ∈ Rn and f : Rn → Rn.

x (k + 1) = f (x (k)) (11)

Suppose that a fixed point x∗ exists that is unstable and within the orbit of control; that means x∗ =
f (x∗). Suppose also that J = ∂f

∂x is the Jacobian of the system and that under this condition the system
eigenvalues λi can be calculated. Then, when system is unstable, there is at least one i where |λi (J)| > 1.
Thus, (12) guarantees stabilization in a fixed point when the parameter N has a real positive value.

x (k + 1) =
f (x (k)) +Nx∗

N + 1
(12)

4.2. Demonstration

Initially, it should be noted that in (11), the fixed point has not been altered. In this case, the Jacobian
of the new system can be expressed as shown in (13).

Jc =
1

N + 1
J (13)

where Jc is the Jacobian of the controlled system and J is the Jacobian of the unstable system. Therefore, a
correct assignation of the parameterN guarantees stabilization at an equilibrium point, because the eigenvalues
of the controlled system will be the eigenvalues of the original system divided by the factor N + 1. One way to
calculate directly N is through the Jury stability criterion. Then, by considering the strategy of ZAD and FPIC,
a new duty cycle can be calculated with (14).

dZADFPIC(kT ) =
dk(kT ) +Nd∗

N + 1
(14)

where dk(kT ) is calculated from (10) and d∗. The value is calculated at the start of each period as in (15).

d∗ = dk(kT ) |steady state (15)

Thus, (14) includes the ZAD and FPIC techniques. Considering that the duty cycle (d) must be greater
than zero and less than 1, a new equation that corresponds to the saturation of the duty cycle is shown in (16).

d =

 dZADFPIC(kT ) if 0 < dZADFPIC(kT ) < 1
1 if 1 ≤ dZADFPIC(kT )
0 if dZADFPIC(kT ) ≤ 0

(16)

5. FIRST MODEL OF THE BUCK CONVERTER
The classical model of the buck converter is represented in Figure 4. It consists of a switch, a diode,

a filter LC, and a resistance representing the load (R). The DC source used in this case is regulated (E).
However, authors of [19] demonstrated that when using the FPIC in the buck converter, the effects of the
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Figure 4. First model of the buck converter

regulated source can be neglected. In the experiments performed in this research, we used a switched source
with nominal current of 6 A and variable voltage (0-80 VDC).

To obtain the mathematical model represented by equations in the state space, the resulting topologies
generated due to the switching must be considered. On the one hand, when u = u1 = 1, u = u2 = 0, and the
inductor current is positive, then a CCM is presented. On the other hand, when u = u2 = 0 and the inductor
current is zero, then a discontinuous conduction mode (DCM) is presented.

The converter has two energy storage elements (capacitor and inductor) and the state space model
has two state variables: the capacitor voltage (υc) and the inductor current (iL). For the case of CCM, the
representation of the state space is obtained with (17).[

υ̇c
i̇L

]
=

[
− 1
RC

1
C

− 1
L 0

] [
υc
iL

]
+

[
0
E
L

]
u (17)

The system described in (17) can be simplified as shown in (18).[
ẋ1
ẋ2

]
=

[
a h
m 0

] [
x1
x2

]
+

[
0
E
L

]
u (18)

where x1 = υc, x2 = iL, a = −1/RC, h = 1/C and m = −1/L. The DCM is presented when
the switch is open and the inductor current is equal to zero. In this case, the diode stops conducing and the
capacitor is discharged through resistor R. The equation that models the dynamics of this topology is given by
(19). It is important to note that although iL = 0, the complete control of the output is not achieved; therefore,
the control action is lost until a cycle begins.

dx1
dt

= ax1, with x2 = 0 A (19)

Considering that the system operates in CCM, it can be represented as ẋ = Ax + Bu; where ẋ =
[ẋ1, ẋ2]′ = [dx1

dt ,
dx2

dt ]′. Because the control signal u has two values u1 and u2, two different topologies for
each sampling period are presented. This system is controlled by the CPWM and the model can be expressed
as in (20).

ẋ =

 Ax+Bu1 if kT ≤ t ≤ kT + dT/2
Ax+Bu2 if kT + dT/2 < t < kT + T − dT/2
Ax+Bu1 if kT + T − dT/2 < t < kT + T

(20)

5.1. Analytical solution for the first model

Some sections of the system shown in (20) are linear and time invariant [17, 19]. Thus, each section
has a linear system in the form ẋ = Ax+Bu, which is solved analytically by using (21).

x(t) = eAtx(0) +

t∫
0

eA(t−τ)Bu(τ)dτ (21)
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After solving each section of (21), the solution in the continuous time is defined as in (22).

x(t) =

 eAtM1 −A−1B if kT ≤ t ≤ (k + d/2)T
eAtM2 if (k + d/2)T < t< (k + 1− d/2 )T
eAtM3 −A−1B if (k + 1− d/2 )T ≤ t ≤ (k + 1)T

(22)

where:
M1 = x(0) +A−1B

M2 = M1 − e−AT
d
2A−1B

M3 = M2 + e−AT (1− d
2 )A−1B

(23)

The solution for the system in DCM is given by (24) and is possible when the inductor current is equal
to zero. [

x1(t)
x2(t)

]
=

[
x(0)e−

1
RC t

0

]
(24)

Starting from the solution in continuous time given in (22) and performing discretization in the output
signals for each sampling period T , the following expression in discrete time [19] is given by (25), which is the
solution in CCM for the studied converter.

x((k + 1)T ) = eATx(kT ) + [eAT − eAT (1− d
2 ) + eAT

d
2 − I]A−1B (25)

The solution for the system in DCM during the discrete time is given by (26).

[
x1((k + 1)T )
x2((k + 1)T )

]
=

[
x1(kT )e−

1
RC T

0

]
(26)

5.2. ZAD control

Following the procedure described in Section 3. and considering a time delay, the duty cycle with the
ZAD is calculated as shown in (27).

dk(kT ) =
2s1((k − 1)T ) + T ṡ−((k − 1)T )

T (ṡ−((k − 1)T )− ṡ+((k − 1)T ))
(27)

where:

s1 ((k − 1)T ) = (1 + aks)x1 ((k − 1)T ) + kshx2((k − 1)T ) − x1ref
ṡ+((k − 1)T ) = (a+ a2ks + kshm)x1((k − 1)T ) + (h+ aksh)x2((k − 1)T ) + ksh

E
L

ṡ−((k − 1)T ) = (a+ a2ks + kshm)x1((k − 1)T ) + (h+ aksh)x2((k − 1)T )
(28)

5.3. FPIC control

In the steady state x1 = x1ref and ẋ1 = ẋ1ref = 0. With the last definition, the following con-
sideration is obtained: s(x(t)) = 0. From the first equation of the system, ẋ1 = ax1 + hx2, is obtained
that x2 = (ẋ1ref − ax1ref )/h. Therefore, when regulation is considered, the expressions x∗1 = x1ref and
x∗2 = (ẋ1ref − ax1ref )/h for the steady state are calculated. Then, x∗1 and x∗2 are the new state variables,
depending only on the reference signal x1ref and its derivate ẋ1ref .

Replacing x∗1 and x∗2 in (27) and the parameters of the model (17), the duty cycle is calculated as in
(29).

d∗ =

[
x1ref

Emeasured

]
(29)
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5.4. ZAD-FPIC control

To control the converter with the ZAD and FPIC techniques, equation (30) is used, where N is the
control parameter of the FPIC technique.

dZADFPIC(kT ) =
dk(kT ) +N · d∗

N + 1
(30)

Thus, (30) includes both the ZAD (27, 28) and FPIC techniques (29). Considering that the duty cycle
must be greater than zero and less than 1, then d can be expressed as in (31).

d =

 dZADFPIC(kT ) si 0 < dZADFPIC(kT ) < 1
1 si 1 ≤ dZADFPIC(kT )
0 si dZADFPIC(kT ) ≤ 0

(31)

5.5. Stability analysis

This section determines the stability of the periodic orbit 1T for the first model of the buck converter
controlled by the ZAD and FPIC with LEs. The LEs are a very powerful tool that helps to determine the con-
vergence of two orbits of a recurrent equation whose initial conditions differ infinitesimally from one another.

Because knowledge of the orbits is required, the analytical calculation becomes very complex. Thus,
a numerical procedure is preferred to find them. On one hand, when trajectories are very close to convergence,
the associated LEs will be negative. On the other hand, when trajectories diverge, then at least one of the LEs
is positive [22]. LEs are directly calculated from the Poincaré application given in (25) and rewritten in (32).

x((k + 1)T ) = eATx(kT ) + [eAT − eAT (1− d
2 ) + eAT

d
2 − I]A−1B (32)

Equation (32) can be simplified as x(k + 1) = F(x(k)).
In the functioning scheme with a time delay (n = 1), the system presents four state variables (two

current time variables and two delay time variables). This is because the duty cycle dk(kT ) calculated with the
ZAD is obtained with the samples measured in (k − 1)T , as shown in (27); thus, when applying the ZAD and
FPIC techniques, the following expressions are used for (28)-(31).

Therefore, the solution of the system x(k + 1) = F(x(k)) can be expressed as shown in (33).

x1(k + 1) = f1(x1(k), x2(k), x3(k), x4(k))

x2(k + 1) = f2(x1(k), x2(k), x3(k), x4(k))

x3(k + 1) = x1(k)

x4(k + 1) = x2(k)

(33)

where f1 is the discrete solution in the time for υc, f2 is the discrete solution in the time for iL, x3(k+ 1), and
x4(k + 1) are the variables υc and iL in the previous instant (k).

The Jacobian of the system is given by (34).

DF(x(k)) =


∂f1

∂x1(k)
∂f1

∂x2(k)
∂f1

∂x3(k)
∂f1

∂x4(k)
∂f2

∂x1(k)
∂f2

∂x2(k)
∂f2

∂x3(k)
∂f2

∂x4(k)

1 0 0 0
0 1 0 0

 (34)

The term qi(DF (x)) is the i-eigenvalue ofDF(x(k)). The LE λi of the respective eigenvalue is given
by (35).

λi = lim
n→∞

{
1

n

n∑
k=0

log |qi(DF (x))|

}
(35)
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Figure 5. Second model of the buck converter

6. SECOND MODEL OF THE BUCK CONVERTER
In this second model, the losses are considered by adding an inductor rL and a resistance used to

measure the current rMed as shown in Figure 5. Therefore, rMed was considered with an approximate value of
1.007 Ω.

The mathematical model of the CCM is described in (36).[
υ̇c
i̇L

]
=

[ −1
RC

1
C

−1
L

−(rMed+rL)
L

] [
υc
iL

]
+

[
0
E
L

]
u (36)

The system (36) can be simplified and expressed as shown in (37), where x1 = υc, x2 = iL.[
ẋ1
ẋ2

]
=

[
a h
m p

] [
x1
x2

]
+

[
0
E
L

]
u (37)

The system in CCM can be represented similar to the model in (5.), according to the simplified form
ẋ = Ax + Bu. As with the simplified model, this system can be represented with the simple equation shown
in (38).

ẋ =

 Ax+Bu1 if kT ≤ t ≤ kT + dT/2
Ax+Bu2 if kT + dT/2 < t < kT + T − dT/2
Ax+Bu1 if kT + T − dT/2 < t < kT + T

(38)

In the DCM, the system is modeled in the same way as for the first model of the buck converter as
shown in (19). The analytical solutions for the continuous case and the discrete case are the same as the solution
for the first model and are given by (22), (24), (25) and (26). In this case, the matrix of the state transition eAT

is changed, which is affected by the internal resistances rL and rMed.

6.1. ZAD-FPIC control for the second model of buck converter

The procedure to apply the ZAD technique is the same as described in Section 3. With this procedure,
the mathematical expression shown in (39) is obtained.

dk(kT ) =
2s1((k − 1)T ) + T ṡ−((k − 1)T )

T (ṡ−((k − 1)T )− ṡ+((k − 1)T ))
(39)

where:
s1 ((k − 1)T ) = (1 + aks)x1 ((k − 1)T ) + kshx2((k − 1)T ) − x1ref
ṡ+((k − 1)T ) = (a+ a2ks + kshm)x1 ((k − 1)T )+

(h+ aksh+ kshp)x2((k − 1)T ) + ksh
E

L

ṡ−((k − 1)T ) = (a+ a2ks + kshm)x1 ((k − 1)T )+

(h+ aksh+ kshp)x2((k − 1)T )

(40)
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Figure 6. Third model of the buck converter

For the FPIC technique, the procedure described in Section 5.3. is used. Then, the equation shown in
(41) is obtained.

d∗ = x1ref .

[
1 + rL+rMed

R

Emeasured

]
(41)

6.2. Stability analysis

As in the first model of the buck converter, stability analysis for the second model of the buck converter
is performed by using LEs. The procedure is the same as described in Section 5.5.

7. THIRD MODEL OF THE BUCK CONVERTER
For this model, other types of losses are included for the buck converter model by considering the

resistance of the source (rs) and the resistance of the MOSFET (rM ) as shown in Figure 6. The internal
resistance of the source is increased due to the resistances of the contacts, cables, series switch, and shut-down
converter.

The MOSFET resistance rM and the forward voltage in the fast diode Vfd were taken from datasheets.
Additionally, the internal resistance was measured in a laboratory test.

For the control input u = u1 = 1, the equation in the state space is given as in (42). In a simplified
way, this equation can be expressed as in (43). When the switch is open (u = u2 = 0), the system is modeled
as in (44) and simplified as in (45).[

υ̇c
i̇L

]
=

[ −1
RC

1
C

−1
L

−(rs+rM+rMed+rL)
L

] [
υc
iL

]
+

[
0
E
L

]
(42)

[
ẋ1
ẋ2

]
=

[
a h
m p2

] [
υc
iL

]
+

[
0
E
L

]
(43)

[
υ̇c
i̇L

]
=

[ −1
RC

1
C

−1
L

−(rMed+rL)
L

] [
υc
iL

]
+

[
0
−Vfd

L

]
(44)

[
ẋ1
ẋ2

]
=

[
a h
m p3

] [
υc
iL

]
+

[
0
−Vfd

L

]
(45)

where x1 = υc, x2 = iL.
For the CCM, these equations have been simplified as shown in (46), where the term ẋ = [ẋ1, ẋ2]′ =

[dx1

dt ,
dx2

dt ]′, B1, and B2 consider the information of the control input such as the voltage source (E) and direct
polarization voltage of the diode (−Vfd). Likewise the previous cases, the system controlled by the CPWM
operates as expressed in (46).

ẋ =

 A1x+B1 if kT ≤ t ≤ kT + dT/2
A2x+B2 if kT + dT/2 < t < kT + T − dT/2
A1x+B1 if kT + T − dT/2 < t < kT + T

(46)
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7.1. Analytical solution for the third model of the buck converter

The system operating in CCM has the solution in continuous time given by (47).

x(t) =

 eA1tM1 − V1 si kT ≤ t ≤ (k + d/2)T
eA2tM2 − V2 si (k + d/2)T < t< (k + 1− d/2 )T
eA1tM3 − V1 si (k + 1− d/2 )T ≤ t ≤ (k + 1)T

(47)

where:
M1 = x(0) + V1
M2 = Q12M1 −∆V e−A2T

d
2

M3 = Q21M2 + ∆V e−A1T (1− d
2 )

Q12 = e(A1−A2)T ( d
2 )

Q21 = e(A2−A1)T (1− d
2 )

V1 = A−11 B1

V2 = A−12 B2

∆V = V1 − V2

(48)

The solution of the system in DCM is given in (49) and it occurs when the inductor current is equal to
zero. [

x1(t)
x2(t)

]
=

[
x(0)e−

1
RC t

0

]
(49)

Starting from the solution in the continuous time given in (47) and performing discretization in the
output signals for each sampling period T , the following expression is obtained in (50), which is a stroboscope
map of the solution in CCM for the third model.

x((k + 1)T ) = eA1TQx(kT ) + eA1TQV1 −Q12e
A2T (1− d

2 )∆V + eA1T
d
2 ∆V − V1 (50)

The matrix Q is given in (51) and the other expressions are given in (48).

Q = e(A2−A1)T e(A1−A2)Td (51)

The solution of the system for the DCM in the discrete time is given by (52).[
x1((k + 1)T )
x2((k + 1)T )

]
=

[
x1(kT )e−

1
RC T

0

]
(52)

7.2. ZAD-FPIC control for the third model of the buck converter

The necessary steps to apply the ZAD control technique are the same described in Section 3. It is
important to consider that when the topology changes through the action of the switch, the state matrices of the
system and the input arrays also change.

The duty cycle with the ZAD technique is calculated as in (53).

dk(kT ) =
2s1((k − 1)T ) + T ṡ−((k − 1)T )

T (ṡ−((k − 1)T )− ṡ+((k − 1)T ))
(53)

where,

s1 ((k − 1)T ) = (1 + aks)x1((k − 1)T ) + kshx2((k − 1)T )− x1ref
ṡ+((k − 1)T ) = (a+ a2ks + kshm)x1((k − 1)T )+

(h+ aksh+ kshp2)x2((k − 1)T ) + ksh
E
L

ṡ−((k − 1)T ) = (a+ a2ks + kshm)x1((k − 1)T )+

(h+ aksh+ kshp3)x2((k − 1)T )− kshVfd

L

(54)
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When the FPIC control technique is used, then the procedure described in Section 4. must be consid-
ered and the equation shown in (55) is obtained.

d∗ =

[
x1ref .(1 + rMed+rL

R ) + Vfd

−x1ref .( rs+rMR ) + Emeasured + Vfd

]
(55)

7.3. Stability analysis

As in the first and second model of the buck converter, the stability analysis for the third model of the
buck converter is performed by using LEs. The procedure is the same as described in Section 5.5. For this case,
the LEs are directly calculated by using the application of Poincaré.

8. RESULTS AND ANALYSIS
In this section, comparisons between the theoretical, simulation, and experimental tests for the ZAD

and FPIC techniques are performed. The theoretical test considers the evaluation of stability with LEs, the
simulation test is performed by using the Poincaré map, and the experimental test is performed by using an
electronic circuit.

8.1. Parameters for the test

The software used for programming the controllers is developed in the control board and DS1104 of
dSPACE GmbH. In this board, the ZAD and FPIC were implemented and programmed with the MATLAB-
Simulink and ControlDesk software. The controller was implemented in Simulink and uploaded to the DS1104
in order to work as a real-time application. The parameters for all the models are shown in Table 1. All the
parameters included were used to build the circuit and compare the results with the models of the theoretical
and simulation tests. The effects of the quantization come from the control board and the DS1104, where the
controller was implemented with 12 bits for the analogue signals measured in the test υc and iL. The duty cycle
d was considered as 10 bits.

Table 1. Parameters for the three models of the buck converter controlled by the ZAD and FPIC

Parameter Description Value
rs Internal resistance of the source 0.3887 Ω
rM MOSFET resistance 0.3 Ω
Vfd Forward voltage 1.1 V
rMed Resistance of the measurement iL 1.007 Ω
rL Internal resistance of the inductor 0.338 Ω
υref Reference voltage 32 V
E Voltage of the source 40.086 V (switched source)
R Resistance of the load 39.3 Ω
C Capacitance 46.27 µF
L Inductance 2.473 mH
N Parameter of the FPIC control 1
Ks Parameter of bifurcation Variable between 0 and 5
Fc Switched frequency 10 kHz
Fs Sampling frequency 10 kHz

1T p Delay time 100 µs

8.2. Results for the first model

Figure 7 shows the stability analysis and the comparison between the theoretical, simulation, and ex-
perimental tests for the first model of the buck converter controlled by the ZAD and FPIC. Figure 7a shows the
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evolution of the LEs with the mathematical solution. Figure 7b shows the bifurcation diagram obtained with
the numerical analysis of the controlled variables υc versus Ks using a Poincaré map. Figure 7c shows the
bifurcation diagram for the experimental test with the implemented electronic circuit. The stability behaviors
shown for the two first figures were created by changing the control parameter Ks from 0 to 100 and main-
taining the control parameter N equal to 1. The stability behavior shown in the third figure was created by
changing the control parameter Ks from 0 to 5 and maintaining the control parameter N equal to 1. The term
υc is the capacitor voltage or the output voltage, the visualization range of which was maintained between 28
V and 36 V.

(a) Theoretical test (b) Simulation test (c) Experimental test

Figure 7. Stability of the first model controlled by the ZAD and FPIC

Using this mathematical method, the bifurcation point, the trace of the stability behavior, and the
stability zones were detected and plotted (Figure 7a). The point Ks = 47.563 represents a stability limit, where
the greater values of Ks represent the stable zone and the lower values of Ks represent the unstable zone.

The simulations confirm that there is a stability zone (right side of Figure 7b) and an instability zone
with a limit point close to that determined with the mathematical model. In addition, an unstable zone and
chaos are presented when the parameter Ks is decreased. The point determined with the theoretical analysis is
validated as a point representing the stability limit of the system when Ks ' 50.

Similar to the previous results presented in this paper, the experimental test shows a stable zone (right
side of Figure 7c) where the signals remain with low variations, and an unstable zone (left side of the Figure
7c) where the signals change abruptly. Comparison with the two previous figures show that the system can
represent similar stability behavior. Besides, the controlled variable υc is very close to the reference signal
υref . From this figure, the diagram obtained with the simulation is shifted to the right with respect to the
diagram of the experimental test. In addition, the chaos and periodicity zones are expanded on the axis Ks

as shown in Figure 7b. Figure 7c shows for the experimental test that a stability limit is obtained when the
controlled parameter is Ks ' 3.75. Therefore, the three figures show some coincidence and correlation when
comparing the responses of the system as they represent similar events. However, the experimental test shows
deviations with respect to theoretical and simulated tests when the parameter Ks changes. These deviations
could be corrected by adding new elements that represent the losses of other elements in the system that are not
considered in the simulation model.

8.3. Results for the second model

Figure 8 shows the stability analysis and the comparison between the theoretical, simulation, and
experimental tests for the second model of the buck converter controlled by the ZAD and FPIC. As previously
described, an internal resistance rL and a resistance of measurement rMed were added to the model. Figure
8a shows the evolution of the LEs with the mathematical solution. Figure 8b shows the bifurcation diagram
obtained with the numerical analysis of the controlled variables υc versus Ks by using a Poincaré map. Figure
8c shows the bifurcation diagram for the experimental test with the implemented electronic circuit. The stability
behaviors shown in the three figures were created by changing the control parameter Ks from 0 to 5 and
maintaining the control parameter N equal to 1. The term υc is the capacitor voltage or the output voltage, the
visualization range of which range was maintained between 28 V and 36 V.

The stability limit calculated with the LEs was reduced with respect to the results of the first model
because with the elements added, some fixed stable points for values of Ks ' 4.58 are presented. The two
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(a) Theoretical test (b) Simulation test (c) Experimental test

Figure 8. Stability of the second model controlled by the ZAD and FPIC

exponents become negative for values of Ks > 4.588. Therefore, the analysis determined that for this second
model, the stability of the system is found for values of Ks < 4.588, which must be validated with other
analyses. The bifurcation diagram is shifted to the left of the axis of the parameter Ks. The stability limit is
represented close to the value obtained with the LEs. However, the signals in the instability zone are larger
than the obtained with the mathematical calculation.

Therefore, by using the second model presented in this research, the three figures present more coin-
cidence and correlation as they represent better the events when the parameter Ks is changed. Compared with
the results of the first model, the bifurcations diagrams of the simulation and experimental test are more similar
and represent more details of the events. However, the equilibrium point is shifted to the right with respect
to the diagram of the experimental tests, although it is improved with respect to the first model. Therefore,
by adding the internal resistance of the inductor rL and a resistance for measuring the current rMed, better
similitude is presented between the simulation and experimental tests.

8.4. Results for the third model

Figure 9 shows the stability analysis and the comparison of the theoretical, simulation, and experi-
mental test for the third model of the buck converter controlled by the ZAD and FPIC. As previously described,
the additional parameters added to the model were rs, rM , and Vfd. First, Figure 9a shows the evolution
of the LEs with the mathematical solution. Second, Figure 9b shows the bifurcation diagram obtained with
the numerical analysis of the controlled variables υc versus Ks, by using a Poincaré map. Finally, Figure 9c
shows the bifurcation diagram for the experimental test with the implemented electronic circuit. The stability
behaviors presented in the three figures were created by changing the control parameter Ks from 0 to 5 and
maintaining the control parameter N equal to 1. The term υc is the capacitor voltage or the output voltage, the
visualization range of which was maintained between 28 V and 36 V.

(a) Theoretical test (b) Simulation test (c) Experimental test

Figure 9. Stability of the third model controlled by the ZAD and FPIC

Because most of the losses are included with the inclusion of the parameters rs, rM , rMed, and rL,
a regulated voltage is obtained with an error in the steady state lower than 0.2 %. The bifurcation diagram
obtained in the simulation test shows that the stability limit is obtained with a reduced Ks lower than that
obtained in the second model, which is Ks ' 3.6. Furthermore, it can be concluded that the results obtained
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in the simulation test are more similar to those obtained in the experimental test, but some low differences are
still found that will be investigated in future research.

The experimental test shows a small cloud of electromagnetic noise produced by the switch commu-
tation; however, this noise can be neglected. In the results obtained by the simulation test, the stability limit
is shifted to the right more than in the experimental test. This displacement can be attributed to some parame-
ters not included in the model of the controller such as internal resistance, parasitic capacitances and parasitic
inductances presented in the circuit, and the gains of the circuit used for setting the signal.

The results show that the LEs are negative for Ks ≥ 3.6 in the theoretical test, which indicates
the stability of the system and is similar to the results obtained in the simulation and experimental tests. The
stability limit in the experimental test is obtained whenKs ≥ 2.7, whereas for the simulation test it isKs ≥ 3.6.
The number of bands and their behaviors illustrated in the figures are similar for both the simulation and
experimental tests.

In the experimental test, when Ks < 2.7, the system slowly loses regulation capacity, starting with
chaotic behavior. Next, some periodic bands appear and a new chaos proceeds and, finally, a chaotic band
behavior occurs. For both the simulation and experimental tests, the error in regulation increases when the
value of Ks is decreased.

Because most of resistive losses have been included, the diagrams obtained in simulation are very
similar to the experimental test. In this case, it is clear that the controlled variable υc reaches the reference
when Ks > 4. Therefore, we can conclude that the third model is the best to represent similar events in the
theoretical, simulation, and experimental tests.

8.5. Two-parameter bifurcation diagrams

Figures 10 and 11 show the two-parameter bifurcation diagrams for the three models of the buck
converter controlled by ZAD and FPIC, and the third model with the quantization effects. The colors in this
figure indicate the presence of multiple orbits due to the quantization noise.

(a) First model (b) Second model

Figure 10. Two-parameter bifurcation diagrams for the (a) first model and (b) second model

Because the bifurcation diagrams have been created with N=1 and Ks changing between 0 and 5, the
system operates in the stability limits between the fixed points and chaos, as observed in Figures 10a, 10b, and
11a. Although the results show good similitude between the simulation and experimental tests, there are some
small differences in magnitude, time, and signal deviation that need to be investigated in future research by
considering other parameters.

In general, the first three bifurcation diagrams of two parameters tend to be similar and the fourth
tends to be similar to the two first ones but with some differences due to the quantization noise. The two-
parameter bifurcation diagram including the quantization effects, as shown in Figure 11b, considered N = 1
and Ks between 0 and 5, which satisfies the regulation conditions (steady-state error< 3 %); thus, in this area,
the system can operate under stability.
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(a) Third model (b) Third model with quantization effects

Figure 11. Two-parameter bifurcation diagrams for the (a) third model and (b) third model with quantization
effects

9. CONCLUSIONS
This paper presented a detailed report of a theoretical analysis, control design and simulated and real

responses of a power converter. If each process had been done separately, then the best model could not be
found or the research would have been delayed. The integration of rapid control prototyping (RCP) processes
with effective math tools, such as Lyapunov exponents and bifurcation diagrams, allowed the selection and
validation of the most appropriate model.

The paper has presented a stability analysis for the classical and two modified buck converter models
controlled by ZAD and FPIC. Mathematical representations of the buck converters with the controllers were
presented and the LEs were calculated. The theoretical results were compared with the simulation and exper-
imental results by using one and two-parameter bifurcation diagrams. The quantization effects in the input
variables and the signals of PWM were applied for the best model to identify the differences with the other
three models. After these studies, we can conclude that the inclusion of the internal resistance rL, rs, and rM ,
the system becomes more stable. Thus, the test that changes the parameter Ks shows that the equilibrium point
is shifted to the left of the bifurcation diagram. The stability of the periodic orbit 1T for the three models of
the buck converters controlled by ZAD and FPIC were determined by using LEs. When the number of bits
of the measured signals and the duty cycle are decreased, the system starts losing stability, presents dynamic
behaviors such as periodic bands and chaos, and becomes more chaotic. It is important to note that even with a
low number of bits in the input variables and the duty cycle, the system controlled by ZAD and FPIC follows
the reference signal with low error (< 3%) in the steady state.

The most elaborate model is not always the most accurate. In our illustrative case, the model that
includes the effects of quantization does not achieve a better correspondence between experimental and simu-
lated performance. We recommend gradually varying the model until a tolerable level of difference is sensed
between experimental and simulated tests. The stages of modeling, control design and experimental valida-
tion should be integrated because in many cases, non-modeled dynamics could influence the calibration of the
control system and the closed-loop responses.
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