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 This paper presents a day-ahead (DA) multi-objective based joint energy and 

reactive power dispatch in the deregulated electricity markets. The traditional 

social welfare in the centralized electricity markets comprises of customers 

benefit function and the cost function of active power generation. In this 

paper, the traditional social welfare is modified to incorporate the cost of 

both active and reactive power generation. Here, the voltage dependent load 

modeling is used. This paper brings out the unsuitability of traditional single 

objective functions, e.g., social welfare maximization (SWM), loss 

minimization (LM) due to the reduction of amount of load served. Therefore, 

a multi-objective based optimization is required. This paper proposes four 

objectives, i.e., SWM, load served maximization (LSM), LM and voltage 

stability enhancement index (VSEI); and these objectives can be combined as 

per the operating condition. The simulation studies are performed on IEEE 

30 bus test system by considering the both traditional constant load modeling 

and the proposed voltage dependent load modeling. 
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NOMENCLATURE 

a0                      Availability price offer (in $). 

NG                    Number of generators participating in the market clearing. 

ND                    Number of load demands participating in the market clearing. 

np, nq               Voltage exponents.  

   
                    Active power output from i

th
 generating unit at hour k. 

RRi                   Ramp rate limits of i
th

 generating unit. 

CGi(PGi)            Cost function for generating the active power PGi. 

BDi(PDi)            Demand function at bus i.  

ai, bi, ci             Generator cost coefficients of i
th

 generator bus. 

di, ei, fi             Demand function coefficients of i
th

 load bus. 

Q1,i                   Operating region between (Qmin < Q ≤ 0). 

Q2,i                   Operating region between (Qbase < Q ≤ QA). 

Q3,i                   Operating region between (QA < Q ≤ QB). 

  
                      Bid price of i

th
 generator. 

  
                   Market Clearing Price (MCP) of energy only market. 

 

1. INTRODUCTION  

Independent System Operator (ISO) collects the half-hourly/hourly supply bids from the generation 

companies (GENCOs) and demand bids from distribution companies (DISCOs) for solving the day-ahead 
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(DA) market clearing (generation and load demand schedule) problem. In the deregulated power industry, 

establishing an effective and equitable reactive power market with the consideration of the voltage security 

problem is very important to provide a reliable power system. Ancillary services are necessary to support the 

transmission of electric power from producers to customers. These services are needed to ensure that the 

ISOs are able to meet their responsibilities and to enhance the system maintenance, reliability and quality.  

Reference [1] proposes a new structure for joint energy and reactive power market to resolve the 

difficulties pertaining interactions between the active and reactive power markets. A stochastic multi-

objective optimization (MOO) algorithm for simultaneous active and reactive power dispatch in electricity 

markets with wind power volatility is proposed in [2]. Reference [3] proposes a dispatching reactive power 

model based on optimal power flow (OPF) by which both the cost of procuring reactive power as auxiliary 

service and the losses of active power are minimized. Reference [4] deals with the obtaining, decomposition 

and deduction of behavior rules of spot prices, and their influence on established contractual relationships in 

a deregulated market environment which allows the power purchase agreements between consumers and 

producers. A new reactive power market structure is presented in [5] to improve the reactive power market 

and create fair competition between producers. An efficient stochastic framework to develop a coupled active 

and reactive market in smart distribution systems is proposed in [6]. Reference [7] presents an algorithm for 

procuring reactive power from reactive resources based on a reactive power pricing structure. Reference [8] 

proposes two new active/reactive dispatch models to be used by System Operators in order to assign reactive 

power and to validate the economic schedules prepared by Market Operators together with the injections 

related with bilateral contracts. A deterministic model of complete generation-grid system to obtain the active 

and reactive power spot prices and their decomposition, to deduce general rules concerning their behaviour, 

and to analyze the effect of the applied constraints is proposed in [9]. A new probabilistic algorithm for 

optimal reactive power provision in hybrid electricity markets is proposed in Reference [10].  

The real and reactive power dispatch models used by the ISOs to assign the reactive power and to 

validate the economic schedules prepared by the market operators with bilateral contracts is described in 

Reference [11]. A multi-objective based day-ahead reactive power market clearing model is proposed in 

Reference [12]. A joined real and reactive power market clearing in the restructured electrical systems is 

presented in Reference [13]. In [14], uses multi-objective directed bee colony optimization algorithm to 

optimize the combined emission and generation cost. An optimal reactive power scheduling problem in 

restructured power system using the evolutionary based Cuckoo Search Algorithm is proposed in [15]. A 

meta-heuristic based approach to solve the Optimal Reactive Power Dispatch problem using Crow Search 

algorithm is proposed in [16]. 

From the literature review, it can be observed that most of the works in the literature doesn't 

considers the energy and reactive markets, simultaneously. Therefore, the motivation of this paper is to clear 

the market by optimizing both the energy and reactive powers, simultaneously, and considering the voltage 

dependent load modeling. In this paper, it is considered that the traditional single objectives such as Social 

Welfare Maximization (SWM) and Loss Minimization (LM) objectives are not feasible with voltage 

dependent load modeling due to the reduction in the amount of load served (LS). A MOO is required for 

solving the problems of this kind.  

 

 

2. SEPARATE ACTIVE AND REACTIVE POWER MARKET CLEARING 

Typically, the market clearing problem is solved by the system operator to know the accepted offers 

and bids and the resulting Market Clearing Price (MCP).  

 

2.1. Centralized separate energy market 

The concept of social welfare maximization (SWM) can be applied for the centralized electricity 

market with demand elasticity. The social welfare (SW) is the total surplus of generators and customers. The 

system operator solves the SWM [17] objective function, and it is formulated as, 
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2.2. Reactive power market clearing 

The synchronous generator's capability curve [18] consists of 3 operating regions. These regions 

reflect the armature, field current heatings and the under-excitation limits.  

 

2.2.1. Reactive power bid structure 

Similar to the real power, synchronous generators bids for the reactive power [18]. These bids 

consist of a capacity component which is paid in advance for their readiness to absorb/ produce the reactive 

power.  

Expected Payment Function (EPF): The reactive power payment of generators consists of different 

cost components depending upon their operating regions. EPF is a mathematical formulation of generator 

reactive power cost components of generator’s expectation of payment towards utilization, capacity and 

compensation components. Figure 1 depicts the EPF of a generating unit, as a function of amount of reactive 

power output. The terms of EPF i.e., opportunity cost, cost of loss are presented in Reference [18]. 
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Figure 1. Structure of reactive power offers from the generating units 

 

 

Figure 1 depicts the operating regions of generator on the reactive power coordinates and these 

regions are clearly presented in Reference [19]. The expected payment function (EPF) of a generator is 

expressed as, 
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                                    (4) 

 

Where a0, m1, m2 and m3 in the above equation represent different components of reactive power 

cost offered by the generator. m1 is cost of loss price offer for operation in the under-excited mode  

(Qmin ≤ Q ≤ 0) ($/Mvar-h), m2 is cost of loss price offer for the operating in region (Qbase ≤ Q ≤ QA) in 

($/Mvar-h), and m3 is opportunity price offer, for operating in region (QA ≤ Q ≤ QB) (($MVar-h)/MVar-h). 

The Total Payment Function (TPF) is expressed as [20], The last term in equation 5 represents the LOC 

payment. 
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3. DESIGN OF COUPLED ACTIVE AND REACTIVE POWER MARKET CLEARING 

In this section, different objective functions for the coupled ARPMC are proposed.  

 

3.1. Loss opportunity cost (LOC) formulation 

The LOC of a generator plays a vital role in the reactive power scheduling and pricing [19]. To use 

the LOC in Equation (7), the results of separate energy dispatch are required. Therefore, the separate energy 

dispatch must be performed before the coupled ARPMC problem. Here, the LOC of a generator, which is  
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forced to produce the reactive power, can be expressed as [20]: 
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The TPF for reactive power compensation in coupled ARPMC consists only operation and 

availability payments [18], and this can be expressed as,  

 

     ∑ [                        (            )]
  
                                      (8) 

 

3.2. Load modeling 

Generally, the active and reactive power loads are modeled as the constant power loads. But, they 

are voltage dependent [21] in the practical real time operation. In this paper, for the sake of simplicity, 

exponential load demand model is used, and it can be expressed as, 
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where np and nq are depend on composition and type of the load demand. The objective functions 

considered in the centralized DA coupled ARPMC problem are as follows. 

 

3.3. Social welfare maximization (SWM) in coupled ARPMC 

In this paper, an OPF based approach is used to find the market clearing price (MCP), and to get the 

active and reactive power schedules that satisfy the system operation requirements. In coupled ARPMC 

model, the objective is to maximize social welfare (SW). SWM objective function can be formulated as [17], 

SWM is an important objective under all system operating conditions. 

 

maximize,    ∑    (   )  ∑    (   )
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                    (11) 

 

3.4. Loss minimization (LM) 

The goal of this objective is to find the optimal settings of control variables which result in optimum 

transmission losses. The LM objective is suitable only for the constant load modeling at light loading 

condition. If load demands are modeled as voltage dependent, the SWM and LM objectives lead to the load 

served (LS) reduction through the voltage reduction. This LM objective is expressed as [22], 

 

      ∑ *   (  
    

          (     ))+                                            (12) 

 

3.5. Amount of load served maximization (LSM) 

The practice, the load demands are the function of voltages, therefore the voltage dependent load 

modeling is utilized. The improvement of system voltages increases the amount of load served (LS). Under 

the voltage dependent load modeling, the LSM objective is appropriate at light loading conditions, and it is 

formulated as Equation (13). This LSM objective will never be used as an independent objective. 
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3.6. Voltage stability enhancement index (VSEI) 

To monitor the voltage stability in the system, L-index [23] of the load/demand buses is considered. 

L-index/VSEI uses the information from the power flow and is in the range of 0 (no load) to 1 (voltage 

collapse). L-index presents the stability of complete system, and it is expressed as, 
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where j = ng + 1, ..., n. The values of Fji are calculated from the Y-Bus matrix [18]. In the case of 

voltage dependent load modeling, the L-index/VSEI minimization objective improves the voltage profile of 

the system and hence the amount of load served (LS). 

 

3.7. Equality and inequality constraints for the coupled ARPMC problem 

3.7.1. Equality constraints 

The nodal power balance constraints include the active and reactive power balance equations. They 

are expressed as,  
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3.7.2. Generator constraints 

The generator outputs are limited by their minimum and maximum active power outputs as, 
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Using the reactive power offers from the generators in different operating regions, the constraints 

are formulated as, 
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3.7.3. Demand limits 
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3.7.4. Constraints on MCPs 
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3.7.5. Generator reactive power constraints 
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The minimum limit of reactive power generation (  
   ) is given by, 
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3.7.6. Security constraints 
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where     is power flow in a line/MVA flow,    
    is maximum power flow/thermal limit of the 

transmission line connected between the buses p and q. In this paper, the single objective optimization 

problem is solved using the Genetic Algorithm (GA), and the Strength Pareto Evolutionary Algorithm 2+ 

(SPEA 2+) algorithm is used to solve the coupled ARPMC problem. The fuzzy min-max approach [22] is 

used to determine the best-compromise solution [24]. 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

Here, IEEE 30 bus system [25] is considered to test the effectiveness and feasibility of the proposed 

centralized day-ahead (DA) coupled ARPMC problem. Five generator active powers, 21 power demands, 6 

generator bus voltage magnitudes, 4 transformer taps and 9 bus shunt admittances are considered as the 

control variables. Here, the exponential (i.e., voltage dependent) load modeling with np = 1 and nq = 2 are 

utilized [18]. In this paper, they assumed as QBase = 0.1∗Qmax; QA is restricted by armature or field heating 

limit; QB = 1.5∗QA.  

 

4.1. Case study 1: Solving the coupled ARPMC problem using the constant load modeling with light 

loading condition 

Table 1 presents the control variables and objective function values for the Case Study 1 considering 

the single and multiple objectives with constant load modeling. When the SWM objective is optimized 

independently then the obtained SW is 602.88 $/hr, which is the optimum value, but VSEI and losses are 

deviated from the optimum. When LM objective is optimized independently, then the obtained optimum loss 

is 2.8977 MW, but the obtained SW and VSEI are not optimum. In the same way, when one objective 

function is optimized independently, then the other objectives are deviated from the optimum value. 

Therefore, there exists a conflict between the optimum objective values when one objective is optimized 

independently. 

 

 

Table 1. Optimum Objective Function Values and Control Variables for Case Study 1 
Objective & Control 

variables values 

Single Objective ARPPC MO ARPPC 

SWM LM VSEI SWM & LM 

PG1 (MW) 162.49 62.87 106.53 77.23 

PG2 (MW) 49.67 72.10 67.99 64.44 

PG5 (MW) 24.35 44.78 28.08 41.25 
PG8 (MW) 26.78 33.42 34.60 34.96 

PG11 (MW) 12.81 25.69 10.40 29.99 

PG13 (MW) 12.89 29.48 26.04 25.73 
V1 (pu) 1.0206 1.0488 1.0947 1.0934 

V2 (pu) 1.0565 1.0424 1.1000 1.0959 

V5 (pu) 1.0088 1.0294 1.0994 1.0759 
V8 (pu) 1.0424 1.0247 1.0994 1.0847 

V11 (pu) 1.0959 1.0953 1.0994 1.0888 

V13 (pu) 1.0347 1.0965 1.0994 1.0988 
Generation (in MW) 288.99 268.34 273.64 273.60 

Amount of Load Served (in MW) 278.38 265.45 267.58 269.85 

Generation Cost (in $/hr) 1336.75 1452.42 1346.83 1415.14 
Demand Cost (in $/hr) 1939.63 1868.65 1891.58 1905.85 

Social Welfare (in $/hr) 602.88 416.24 544.75 490.71 

Total System Losses (in MW) 10.6041 2.8977 6.0629 3.7451 
VSEI 0.12296 0.10702 0.06133 0.08647 
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In this case study, SWM and LM objectives are selected as the appropriate objectives for the DA 

multi-objective coupled ARPMC problem. As it is the normal operating condition, the VSEI value is away 

from the voltage collapse point, so there is no need to optimize the VESI objective. Figure 2 depicts the 

Pareto optimal set of SWM and LM objectives for multi-objective based coupled ARPMC problem for case 

study 1. In this paper, SPEA 2+ algorithm is used to obtain the Pareto optimal front. The best-compromise 

solution can be obtained by using the fuzzy min-max method. The obtained best-compromise solution has the 

social welfare of 490.71 $/hr, and the loss of 3.7451 MW, and this is the better compromise solution as 

compared to the single objective coupled ARPMC problem. 

 

 

 
 

Figure 2. Pareto optimal front of SWM and LM objectives for case study 1 

 

 

4.2. Case Study 2: Coupled ARPMC with voltage dependent load modeling at light loading condition 

Table 2 depicts the control variables and objective function values obtained when the single and 

multiple objectives are optimized with voltage dependent load modeling. When the social welfare 

maximization objective is optimized individually, then the obtained optimum SW is 580.64 $/hr, and it is less 

than the social welfare obtained by constant load modeling, and load served (LS) is 259.46 MW, which is 

less than the load served by the constant load modeling. In this case, the SWM leads to reduction in voltages 

and therefore, the reduction in the amount of load served (LS). Due to this reason, the SWM should not be 

optimized individually. When the LSM objective is optimized individually, then the amount of load served 

(LS) is 314.90 MW, but the social welfare has decreased to 537.97 $/hr. As explained earlier, the LSM 

objective cannot be used as an independent objective. 

 

 

Table 2. Optimum Objective Function Values and Control Variables for Case Study 2 

Objective & Control Variables Values 
Single Objective ARPMC MO ARPMC 

SWM LSM VSEI SWM & LSM 

PG1 (MW) 144.89 120.08 158.36 132.50 

PG2 (MW) 49.13 66.40 44.06 65.57 
PG5 (MW) 23.94 47.50 45.15 36.95 

PG8 (MW) 24.55 34.53 25.48 34.71 

PG11 (MW) 15.07 28.07 10.06 10.32 
PG13 (MW) 12.3 25.55 12.57 17.65 

V1 (pu) 0.9529 1.0718 1.0971 1.0768 

V2 (pu) 0.9959 1.0988 1.0912 1.0613 
V5 (pu) 0.95 1.1 1.0912 1.0796 

V8 (pu) 0.9541 1.1 1.1 1.0671 

V11 (pu) 0.95 1.0988 1.1 1.0542 
V13 (pu) 0.9512 1.0994 1.0941 1.0583 

Generation (in MW) 269.87 322.13 295.68 297.70 

Total System Losses (in MW) 10.4092 7.231 7.6954 8.0654 
Generation Cost (in $/hr) 1278.40 1558.88 1412.36 1405.21 

Demand Cost (in $/hr) 1859.05 2096.85 1970.38 1967.91 

Social Welfare (in $/hr) 580.64 537.97 558.02 562.70 
Amount of Load Served (in MW) 259.46 314.90 287.98 289.63 

VSEI 0.29138 0.10192 0.07499 0.15043 

 

 

When the VSEI objective is optimized individually, then the obtained optimum value is 0.07499, 

which is away from the voltage collapse point. Hence, there is no need to optimize VSEI at this operating 

2 3 4 5 6 7 8 9
420

440

460

480

500

520

540

560

580

Total System Losses (MW)

S
o
c
ia

l 
W

e
lf
a
re

 (
$
/h

r)

Social Welfare maximization and Total System Loss minimization

X: 3.745

Y: 490.7



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 5, October 2018 :  3427 – 3435 

3434 

condition. Therefore, the SWM and LSM objectives are considered to be the appropriate multiple objectives 

to be optimized simultaneously. The compromise solution has social welfare of 562.70 $/hr and 289.63 MW 

of load served. Figure 3 depicts the Pareto optimal front of SWM and LSM objectives for the coupled 

ARPMC for Case Study 2. 

 

 

 
 

Figure 3. Pareto optimal set of SWM and LSM objectives for case study 2 

 

 

In this paper, it has been shown that the LM and SWM objectives do not make valid single or joint 

objectives with this voltage dependent load model, due to reduction of load served. SWM and LSM are best 

suited objectives to be optimized simultaneously for light to moderate loading condition.  

 

 

5. CONCLUSIONS 

This paper has proposed a day-ahead (DA) multi-objective based centralized coupled active and 

reactive power scheduling and pricing mechanism using the practical voltage dependent load modeling. 

Different objective functions such as SWM, LSM, LM and VSEI are proposed. The SWM objective includes 

the offer cost for generators active power production, reactive compensations and the LOC payments for 

generators and benefit function of customers. In this paper, it is shown that SWM and LM objectives do not 

make valid single or multiple objectives with the voltage dependent load model, due to the reduction in the 

amount of load served (LS). Simulation studies on IEEE 30 bus test system shows the suitable and optimum 

choice of multiple objectives to be selected for a given operating condition. SWM and LSM objectives are 

appropriate for unstressed loading condition to moderate loading condition, with voltage dependent load 

modeling. The Pareto optimal front allows the system operator to make a better decision, by considering the 

better compromised solution. 
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