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 The paper describes the design for testability (DFT) of low voltage two stage 

operational transconductance amplifiers based on quiescent power supply 

current (IDDQ) testing. IDDQ testing refers to the integral circuit testing method 

based upon measurement of steady state power supply current for testing 

both digital as well as analog VLSI circuit. A built in current sensor, which 

introduces insignificant performance degradation of the circuit-under-test, 

has been proposed to monitor the power supply quiescent current changes in 

the circuit under test. Moreover, the BICS requires neither an external 

voltage reference nor a current source and able to detect, identify and localize 

the circuit faults. Hence the BICS requires less area and is more efficient 

than the conventional current sensors. The testability has also been enhanced 

in the testing procedure using a simple fault-injection technique. Both 

bridging and open faults have been analyzed in proposed work by using n-

well 0.18µm CMOS technology. 
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1. INTRODUCTION 

Testing of the low-voltage large VLSI circuits is the critical portion of the circuit designing and 

implementation. Current  measurement based testing has been very effective in detecting physical defects 

such as open, shorts and bridging defects [1], [2]. IDDQ testing is a current-based test method that does not 

require propagation of a fault effect to an observe output. It requires only exercising the fault circuit and then 

calculating the current from power supply. The fault is observed by the measurement of current which exceed 

some threshold limit. The circuit draws a very low current (µA) in the quiescent state but for the certain input 

state this current may raise to an abnormal level due to the presence of faults [3], [4]. IDDQ test methodologies 

can be classified into two groups, external (off- chip) and internal (on-chip) IDDQ testing. External IDDQ testing 

monitors supply current through the power pins of the integrated circuit package while internal IDDQ testing 

monitors power supply current through the built-in current sensors (BICS). On-chip built-in current sensors 

are advantageous over off-chip current sensors for detecting the defective quiescent current due to better 

discrimination and higher testing speeds [5]. Figure 1 shows the block diagram of the IDDQ testing with BICS.  

IDDQ testing can be done by adding BICS in series with power supply (VDD) or ground (GND) lines 

of the circuit under test. A series of input stimuli is applied to the device under test while monitoring the 

current of the power supply (VDD) or ground (GND) terminals in the quiescent state conditions after the 
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inputs have changed and prior to the next input change. The steady state or quiescent current testing of 

CMOS integrated circuits is known to be very efficient for improving test quality [6]-[8].  

IDDQ testing can be used as a reliability predictor due to its ability to detect defects that do not yet 

involve faulty circuit behavior, but could be transformed into functional failures at an early stage of circuit 

life. Thus, IDDQ testing became a powerful complement to the conventional logic testing. Under the fault 

conditions, the normal values of quiescent current may be increased, decreased or generally distorted. Thus, 

fault detection can be accomplished by monitoring the quiescent current fluctuations using a current sensing 

circuit. Any current above the quiescent current would indicate the presence of physical defects in the circuit. 

In this paper, a simple built-in current sensor (BICS) is presented to detect short (Bridging) and open fault in 

low voltage two-stage CMOS operational transconductance amplifier with fault injection transistor [9]-[11].  

The format of this paper is as follows; two stage operational transconductance amplifiers are 

discussed in Section 2. Section 3 introduces fault modeling whereas Section 4 describes the design 

consideration for BICS. Test simulation results and discussion are given in Section 5 and Section 6 contains 

conclusions. 

 

 

 
 

Figure 1. Block diagram of IDDQ testing 

 

 

2. TWO STAGE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER 

In high performance analog integrated circuits, operational transconductance amplifier with very 

high DC gain and high unity gain frequency are needed to meet both accuracy and fast settling requirements 

of the systems [12]. Therefore, two-stage CMOS OTA are considered ideal for above requirement. 

Operational transconductance amplifier is voltage controlled current source whose differential input voltage 

produces an output current. An OTA is basically an operational amplifier (OPAMP) without an output buffer. 

It can drive only capacitive loads.  The OTA can also be defined as an amplifier where all nodes are at low 

impedance except the input and output nodes. The characteristic feature of an ideal transconductance 

amplifier is that it has infinite input and output resistances. There is usually an additional input for a current 

to control the amplifier transconductance. It replaces operational amplifier because of its high bandwidth, 

high voltage swing, high SNR, low power dissipation, and high input impedance even at low voltages and 

low power. OTA constitute as a major building block in the analog designing due to its unique characteristic 

suited for applications such as gain control, multiplexing, comparator, analog modulation, active-c filter, 

oscillator etc. The OTA is a current-mode circuit and a versatile amplifier which convert input voltage to 

linearly proportional output differential current with transconductance gain (Gm). At higher frequencies, they 

provide more reliable performance due to its current mode operation. OTAs provide highly linear tenability 

of their transconductance (Gm) [13], [14]. In OTA the output current is linear function of differential input 

voltage as shown in Equation (1). 

 

IOUT = GmVin         (1) 

 

Where Gm is the transconductance gain, IOUT is output current and Vin is the input voltage.   

The basic circuit diagram of two-stage OTA is shown in Figure 2 with differential amplifier and 

current mirror as first stage which convert differential input to single–ended output. The transistor M6 serves 

as P-channel common source amplifier which is the second stage of op-amp which provides high voltage 

swing. IBIAS of the circuit goes through current mirrors formed by P-channel MOSFETS, M8, M5 and M7. 

The sizes of the transistors are designed for a bias current of 113 µA to provide for sufficient output voltage 

swing, output-offset voltage, slew rate, and gain-bandwidth product. 
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Figure 2. Schematic diagram of two stage CMOS OTA 

 

 

3. FAULT MODELING 

3.1. Fault type 
In analog or mixed-signal integrated circuits, the most commonly observed physical failures are 

bridges, opens, stuck-at-faults and gate oxide shorts (GOS) [15], [16]: 

a. Bridging Faults: Bridging Faults are the short circuit between two different layers in very large scale 

integrated circuits, caused because of unexposed photo resist, presence of a foreign particle, metallization 

defect, scratch on the mask etc., are popularly termed as bridging faults. Bridging fault could be between 

the following nodes: 1) drain and source, 2) drain and gate, 3) source and gate, and 4) bulk and gate. 

Bridging faults can appear either at the logical output of a gate or at the transistor nodes internal to a gate.  

b. Gate-Oxide Short Defects: The defect causing a short between the gate and one of the other regions of a 

MOS transistor (drain, source or substrate) is gate-oxide short. A MOS transistor having a GOS may 

show gate current some orders of magnitude beyond the normal values depending on the device biasing. 

c. Open Fault: Logic gate inputs that are unconnected or floating inputs are usually in high impedance or 

floating node-state and cause elevated IDDQ Node. Open defects are not only caused during fabrication but 

also because of extreme circuit operation conditions. 

The faults considered in this study comprise open and bridging faults.  

 

3.2. Fault injection transistor (FIT) 

Fault injection transistor (FIT) basically n-MOS transistor is used for inducing bridging faults in the 

system to measure the fault tolerance or robustness of the system. The fault in the CUT can be activated by 

the fault injection transistor. Moreover, the use of a FIT for the fault simulation prevents permanent damage 

to the CUT by introduction of a physical metal short and also enables the operation of the CUT without any 

performance degradation in the normal mode. When FIT is inactive, CUT operates in normal mode while 

CUT work in test mode, when FIT is activated without affecting the overall operation of the circuit. 

 

 

4. DESIGN CONSIDERATION OF BICS 

In IDDQ testing, the BICS embedded in series with VDD or GND lines of the CUT checks whether 

the quiescent current is below or above a threshold level. The existence of fault without performance 

degradation of CUT is indicated by proposed BICS. For effective use of internal testing, the BICS must 

minimize the effect of capacitance and voltage drop and achieve minimum disturbances in the  

CUT [17]-[19]. 

In the present work, a simple design of a BICS is presented to detect short faults and open faults on 

CMOS OTA as shown in Figure 3. Current mirror circuit is an essential element of the proposed BICS in 

which the reference current in one branch of the circuit is accurately reproduced in the other branch, in a 

constant current stage. BICS‟s ability to detect abnormal current due to physical defects depends on 

performance of current mirror. It consists of a current differential amplifier (M12, M13), two current mirror 

pairs (M11, M12 and M13, M14) and an inverter. The n-MOS current mirror (M11, M12) is used to mirror 

the current from the constant current source which is used as the reference current IREF for the BICS. The 

current mirror (M13, M14) is used to mirror the difference current (IDEF-IREF) to the current inverter, 

which acts as a current comparator. The differential pair (M12, M13) calculates the difference current 

between the reference current IREF and the defective current IDEF from the CUT. The W/L size of the n-

MOS current mirrors (M11, M12) is set to 3.03/.18 and (M13, M14) is set to 8.1/.18. The constant reference 
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current is set to approximately the same value as the quiescent state current when the BICS in Test Mode.  

Any external voltage or current source is not required in the proposed BICS [20]. 

 

 

  
 

Figure 3. CMOS Built-in Current Sensor (BICS) with the CUT 

 

 

The CUT works in two modes: the normal mode and the test mode. In the normal mode, the BICS is 

totally isolated from the CUT so that the operation of CUT is not affected by the BICS. In the test mode, the 

CUT is connected to the BICS. The Venable signal which is applied to the gate of transistor M9 decides the 

mode of operation of CUT. During the normal mode, the „VENABLE‟ signal is at logic „1‟ and all the IDD 

current flows to ground through M9 (enable transistor) whereas during the test mode, the „VENABLE‟ signal 

is at logic „0‟, the quiescent current from the CUT is diverted in to the BICS and compared with reference 

current to detect the presence of the fault. When the quiescent state current is greater than the reference 

current, the output signal PASS/FAIL is set to 1, which indicates the existence of fault in the circuit. When 

the quiescent state current is less than the reference current, the output signal PASS/FAIL is set to 0, which 

indicates the nonexistence of fault [21]-[24]. 

The built-in current sensor of the present work requires less area and is more efficient than the 

conventional current sensors. It is shown that with the use of a novel fault injection technique, combined with 

a built-in current sensor design, has significantly improved the testing of mixed signal integrated circuits. 

 

 

5. SIMULATION RESULTS AND DISCUSSION 

 The fault coverage is achieved by the IDDQ test approach based on the simulated results obtained 

from PSPICE (Cadence PSPICE A/D Simulator) simulations. SPICE level 7 MOS model parameters used in 

simulation. The CUT is simulated using 0.18µm n-well CMOS technology. Figure 4 shows the simulated 

output of CUT without BICS. When CUT is given a pulse signal of 1.5V and 1V peak-to-peak, the output 

obtained is a pulse wave of 1.8V peak-to-peak. The simulated output response of CUT with BISC when fault 

are not activated i.e. when fault free circuit with BICS is in normal mode is shown in Figure 5. Since the 

output of CUT is 1.5V peak-to-peak, we can see that there is no performance degradation of the CUT with 

BICS. In the present work, seven bridging faults viz., short between gate and drain of M3 transistor (XFIT1 

1-M3GDS), drain-source short of M4 transistor (XFIT2-M4DSS), drain-source short of M6 transistor 

(XFIT3-M6DSS), gate-drain short of M2 transistor (XFIT4-M4GDS), drain-source short of M7 transistor 

(XFIT5-M7DSS), drain-source short of M5 transistor (XFIT6-M5DSS), gate drain short of M5 transistor 

(XFIT7- M5GDSS) and one open fault of M7 transistor (XFIT8-M7) have been introduced in CUT with 

BICS  as shown in Figure 6. During the test mode, the „Venable‟ signal is at logic „0‟ and fault injected 

transistor are activated using error signal Ve1, Ve2, Ve3, Ve4, Ve5, Ve6, Ve7 and Ve8 respectively. The 

value of W/L of FIT is taken as 3.5/0.18. The load capacitance is assumed to be 3pF. 
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Figure 4. Simulated input and output response of Two stage CMOS OTA without BICS 

 

 

 
 

Figure 5. Simulated input and output response of CUT with BICS (Without Fault) 

 

 

 
 

Figure 6. Schematic diagram of CMOS OTA with BICS and Seven FITs 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 :  1467 – 1477 

1472 

The simulated BICS output when the fault XFIT1 is activated with Venable signal low and Ve1 high 

i.e. when CUT is in test mode is shown in Figure 7. We can see that BICS output PASS/FAIL is at logic „1‟ 

during the period when fault XFIT1 is activated and thus the fault XFIT1 is detected. Similarly Figure 8 to 

Figure 14 shows the simulated BICS outputs when faults XFIT2, XFIT3, XFIT4, XFIT5, XFIT6, XFIT7 and 

XFIT8 are activated  with Venable signal low and Ve2,Ve3, Ve4,Ve5, Ve6, Ve7and Ve8 high respectively. 

We can observed from the results that except faults XFIT2, XFIT3 and XFIT8, all the other faults have been 

detected by proposed test methodology providing high fault coverage. From the simulated result, since the 

output signal PASS/FAIL is 1 only when faults are activated with Venable signal at logic 0, we can observed 

that the proposed BICS detects the faults. Consequently, we know the proposed BICS detects perfectly a 

defective circuit. 

The average power dissipation, the propagation delay time and transition time are also analyzed to 

compare the performance of the CUT without BICS and the CUT with BICS. Table 1 lists the simulation 

results of the power dissipation, propagation delay time and the transition time. The average power 

dissipation of CUT without BICS and with BICS is 1.1mW and 1.3mW, respectively. Therefore, the average 

power dissipation overhead is about 15.38% due to the inclusion of the proposed BICS. The low-to high-

level transition time of CUT without BICS and CUT with BICS are 0.5ns and 0.9ns, respectively, while the 

high-to-low-level transition time without BICS and with BICS are 1.5ns and 1.6ns, respectively whereas 3ns 

and 3.2 ns respectively are the average propagation delay time of CUT without BICS and with BICS. 

Therefore, we can conclude from the simulations results that the performance degradation is negligible. 

 

 

Table 1. Simulation Result of each Parameter 
Parameters CUT without BICS CUT with BICS 

PD 1.1mW 1.3mW 

t P D 3ns 3.2ns 

t T L H 0.5ns 0.9ns 
t T H L 1.5ns 1.6ns 

 

 

 
 

Figure 7. Simulated BICS O/P of CUT when error signal 1(Ve1) for fault XFIT1 (M3GDS) is activated 
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Figure 8. Simulated BICS O/P of CUT when Error signal 2 (Ve2) for fault XFIT2 (M4DSS) is activated 

 

 

 
 

Figure 9. Simulated BICS O/P of CUT when Error Signal 3 (Ve3) for fault XFIT3 (M6DSS) is activated 

 

 

 
 

Figure 10. Simulated BICS O/P of CUT when Error Signal 4 (Ve4) for fault XFIT4 (M2DGS) is activated 
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Figure 11. Simulated BICS O/P of CUT when Error Signal 5 (Ve5) for fault XFIT5 (M7DSS) is activated 

 

 

 
 

Figure 12. Simulated BICS O/P of CUT when Error Signal 6 (Ve6) for fault XFIT6 (M5DSS) is activated 

 

 

 
 

Figure 13. Simulated BICS O/P of CUT when Error Signal 7 (Ve7) for fault XFIT7 (M5GDS) is activated 
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Figure 14. Simulated BICS O/P of CUT when Error Signal 8 (Ve8) for Open fault XFIT8 is activated 

 

 

Table 2 shows the simulated fault coverage by IDDQ test methodology. It is concluded from the 

results that total fault coverage is 62% which includes seven short and one open fault. 

 

 

Table 2. Simulated Fault Coverage of IDDQ Testing 
Fault Type Total Fault Injected Fault Detected Fault Coverage (%) 

Short 7 5 71 

Open 1 0 0 

Total 8 5 62 

 

 

Table 3 summarizes the comparison of the proposed BICS and the previous published BICS. 

Although a direct comparison cannot be made because the BICS are designed in different technologies, some 

important results can be drawn from the table. The proposed BICS requires the least devices, i.e., seven 

transistors and one inverter, among all designs. The BICS does not require any clock signal as well as an 

external voltage reference or a current source. Hence, the BICS has negligible performance degradation. 

Furthermore, mode selection is provided which is more economical than other designs. Consequently, it is 

obvious that this design is competitive with previously proposed BICS‟s. 

 

 

Table 3. Comparison of the Proposed BICS and Previous published BICS 

 
Number of 
Elements 

Technology 
Used 

Clock Signal 
Mode 
Select 

Control 
Pin 

Voltage 
Degradation 

Output 
Pin 

Nigh‟s Design [17] 

Transistor: 10 

Inverter: 2 

 

3 µm Two Phase Clock Y 3 Exists 1 

Maly‟s Design[18] 

Transistor: 10 

Inverter: 2 
NAND:1 

2 µm Single Clock Y 5 Exists 1 

Shen‟s Design [19] 

Transistor: 1 

Diode:1 
 

2 µm Two Phase Clock N 3 Exists 1 

Miura‟s Design [20] 

Transistor: 16 

R: 2 
C:1 

0.35 µm Not Used 
Not 

Reported 
3 

Reduced due to 

using more than 
one supply voltage 

1 

Tang‟s Design [21] 

Transistor: 10 

Inverter: 2 
NAND:1 

0.8 µm Single Clock N 3 

Reduced using OP 

AMP to adjust 
supply of CUT 

1 

Ahmed Design [22] 

Transistor: 48 

 
 

0.25 µm Not Used N - Negligible - 

Proposed Design 

Transistor:7 

Inverter: 1 
 

0.18µm Not used Y 2 

Negligible due to 

presence of two 
modes of operation 

1 
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6. CONCLUSION 

In this paper, IDDQ testing technique has been explored on low voltage two stage CMOS operational 

transconductance amplifier using PSPICE. The proposed BICS design converts the current difference 

between a faulty current and the reference current to a voltage that differentiates between faulty CUT and 

fault free circuit. During the normal mode, the bottom of the CUT is connected to ground bypassing the 

BICS. Therefore, a level shift or disturbance on the output during normal mode of the CUT is avoided. The 

simulation and test results show that the proposed BICS functions correctly with negligible performance 

degradation of CUT, requires less area, no external reference source and provides high fault coverage. Hence, 

the proposed BICS is superior to other BICS‟s. Out of eight faults which include seven bridging and one 

open fault, five faults have been detected by this test methodology. Thus, IDDQ testing methodology is a 

valuable tool to achieve high fault coverage and also improve reliability and quality of analog and mixed- 

signal CMOS integrated circuits without incurring significant test development cost. It is concluded that IDDQ 

testing is very effective in detecting short faults. However, it may not detect an open fault. 
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