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 The prediction of a natural calamity such as earthquakes has been an area of 

interest for a long time but accurate results in earthquake forecasting have 

evaded scientists, even leading some to deem it intrinsically impossible to 

forecast them accurately. In this paper an attempt to forecast earthquakes and 

trends using a data of a series of past earthquakes. A type of recurrent neural 

network called Long Short-Term Memory (LSTM) is used to model the 

sequence of earthquakes. The trained model is then used to predict the future 

trend of earthquakes. An ordinary Feed Forward Neural Network (FFNN) 

solution for the same problem was done for comparison. The LSTM neural 

network was found to outperform the FFNN. The R^2 score of the LSTM is 

better than the FFNN’s by 59%. 
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1. INTRODUCTION 

Earthquakes are a natural hazard which can cause a lot of damage and loss to human life. It does not 

follow any set of patterns in occurence and thus predicting the trend has always been an important area of 

research. A fault in geology is a fracture in rock across which there has been significant rock mass 

movement. Faults are created by the action of plate tectonic forces. The energy release caused by rapid 

movement of plates across certain faults can be called active faults and is the most common cause of 

earthquakes. This energy travels to the surface of the Earth as waves. There are three kinds of seismic waves. 

S and P waves penetrate the interior of the earth and are hence called body waves [1]. The third kind of 

waves and the most destructive are surface waves, which are similar to water and travel across the surface of 

the earth.  

Due to its destructive potential, humankind has long been searching for an earthquake trend 

prediction method. Predicting an earthquake implies stating the exact time, magnitude and location of a 

coming earthquake. Prediction models come under either short-term prediction (<1-year time scale), long 

term prediction (10 to 100 years time scale) or intermediate term prediction (1 to 10 years time scale) [2], [3]. 

Great effort has been made by the scientific community but due to the intrinsic random nature of the 

phenomenon itself, no valid and reliable method has yet been found. Nevertheless, earthquakes generation is 

not a cyclical process due to the variation of rupture area and earthquake-mediated interactions along other 

faults. This means that the time between events can be extremely irregular. Consequently, the prediction of 

the time, or a relatively close time interval, of an oncoming large earthquake is still a difficult task. Although 

considerable research is devoted to the science of short-term earthquake forecasting, standardisation of 
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operational procedures is in a nascent stage of development. The problem is challenging because large 

earthquakes cannot be reliably predicted for specific regions over time scales that span less than decades.  

There are two general approaches to predict earthquakes, precursors based and trend based. 

Precursors are anomalous phenomena that might signal an impending earthquake [4] such as radon gas 

emissions, unusual animal behaviour, electromagnetic anomalies etc. Trend based methods involve 

identifying patterns of seismicity that precede an earthquake. In this paper, a trends-based approach is 

adopted and the LSTM neural network is used to capture the trend involving statistical techniques. 

The relationship between the maximum of earthquake affecting coefficient and site and basement 

condition was studied, also proposed a model based on earthquake magnitude prediction using artificial 

neural network in the northern read sea area [5]. A multilayer using compression data for precursor detection 

in electromagnetic wave observation was proposed [6]. A time series approach composed of seismic events 

occurred in Greece was applied [7]. A study between radon and earthquake using an artificial neural 

networks model was done [8]. A relationship between radon concentration and environmental parameters for 

earthquake prediction was modelled using an ANN in the region of Thailand [9]. A neural network for 

classification after analysing the electric field data and the seismicity collected from different stations was 

studied and results were pretty accurate [10]. Investigated the seismic damage identification by using a PCA-

compressed response function and artificial neural networks [11]. Prediction of earthquake damages and 

reliability analysis using fuzzy sets [12]. The variation of Total Electron Content (TEC) as an anomaly as an 

indication of earthquake a few days or hours before it, this was used by them to build a model [13]. Recursive 

sample-entropy technique for earthquake forecasting, where the earth data based on VAN method was used 

for the modelling [14]. Models based on measurement of elastic and electromagnetic waves to predict 

earthquakes and tsunami was done [15]. Earthquake hazard assessment was done using EaHaAsTo tool for 

visualization [16]. Determined the threshold energy leading to seismic activity [17].  

 

 

2. RESEARCH METHOD 

An artificial neural network is a mathematical model that mimics the biological neurons in brain. 

A neural network is a set of input, output and hidden layers. These layers have nodes which are 

interconnected through links. These links have some associated numeric weight which determines how much 

the input contributes to and affects the results. The weights and activation functions can be modified by a 

process called learning which is governed by a learning rule [18]. In this paper we have compared the 

structures of Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) on time-series 

based data. 

 

2.1. Feed forward neural network 

Feedforward networks are acyclic network usually arranged in layers, where each neuron receives 

inputs only from the immediately preceding layer. The architecture of an FFNN with 2 hidden layers is 

shown in Figure 1. 

 

 

 
 

Figure 1. Feed Forward Neural Network with input layer, output layer and 2 hidden layers 

 

 

FFNNs are still successfully applied to many problems but still cannot capture long term 

dependencies. Many models have implicitly captured time by concatenating each input with some number of 

its immediate predecessors and successors, presenting the machine learning model with a sliding window of 
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context about each point of interest [19]. This approach is followed by concatenating a fixed number 

(fourteen) of past earthquake data and giving them as input to the FFNM with the next earthquake as the 

target. The model uses two hidden layers with 20 nodes and 60 nodes respectively. All the nodes having the 

sigmoid function as their activation. The learning rule used it the ’rmsprop’. This model is trained for 1000 

epochs on the dataset. These attributes were selected after employing a grid search method which selected the 

best architecture based on the error rate.  

 

2.2. Long short-term memory 

 Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN) architecture (an artificial 

neural network) proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [20]. RNNs can capture the 

dynamics of sequences via cycles in the network. But some RNNs suffer from the vanishing and exploding 

gradients problem in which gradients are either squashed to zero or increase without bound during back 

propagation through a large number of time steps. LSTM is introduced primarily to overcome the problem of 

vanishing gradients. It has chain like structure, having three or four neural network layer or “gates” which are 

implemented using logistic function.  

The information given in [19] depicts about the forward pass and backward pass in LSTMs. In terms 

of the forward pass, the LSTM can learn when to let activation into the internal state. As long as the input 

gate takes value zero, no activation can get in. Similarly, the output gate learns when to let the value out. 

When both gates are closed, the activation is trapped in memory cell, neither growing nor shrinking. In terms 

of backwards pass, the constant error carousel enables the gradient to propagate back across many time steps, 

neither exploding nor vanishing. Figure 2 shows a chunk of neural network, A, which looks at some input xt 

and outputs a value ht. A loop allows information to be passed from one step of the network to the next. 

 

 

 
 

Figure 2. RNN-LSTM architecture. The input of xt is fed into the memory cell A which gives output ht 

 

 

The LSTM RNN model proposed in this study includes two hidden layers with 40 hidden units each 

that are LSTM cells. The backpropagation through time is limited to 15 steps. A dropout layer is included 

between the 2 hidden layers for regularisation [21]. It will randomly exclude 30% of the activations of the 

previous layer from propagating to prevent overfitting. The Root Mean Square (RMS) loss is reduced using 

the Adagrad algorithm which increases the learning rate for more sparse parameters and decreases the 

learning rate for less sparse ones. This strategy often improves convergence performance over standard 

stochastic gradient descent in settings where data is sparse [22]. The initial learning rate is taken to be 7 and 

is exponentially decreased when the RMS loss does not improve for more than 10 epochs. The training was 

stopped after the loss started to fluctuate despite very low learning rate. The number of epochs came to be 

1600. These parameters were selected after trying out other architectures. 

 

 

3. RESULTS AND ANALYSIS 

3.1. Data exploration 

Number of occurrences of earthquakes recorded over various regions is shown in Figure 3. 

The Afghanistan - Tajikistan region recorded close to 5000 earthquakes being the highest. The Lakshadweep 

region recorded the lowest number of earthquakes. The distribution of count of earthquakes based on the 

magnitude recorded on each earthquake is shown in Figure 4. Earthquakes of magnitude 3.4 on the Richter 

scale were highest in amount being close to 45 occurrences whereas that of higher range close to 7.9 are low 

in occurrences. Figure 5 shows the average magnitude of earthquakes in each region. The western xizang-

india border has the highest average magnitude whereas Thailand and North-Eastern India has the lowest. 

Figure 6 shows the average depth of each earthquake recorded in kilometres. An earthquake of 140 km is the 
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deepest recorded earthquake, occurred in the Tajikistan region. The earthquakes recorded in the the 

Lakshadweep and Laos region were the lowest in depth being very close to the surface. 

 

 

 
 

Figure 3. Number of occurrences of earthquake based on the regions 

 

 

 
 

Figure 4. Distribution of earthquake magnitudes from low to high 

 

 

 
 

Figure 5. Average magnitude of earthquake in each region 
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Figure 6. Average depth of occurring earthquake  

 

 

3.2. Experimental Results 

3.2.1.  Feed forward neural network 

Figure 7 shows the Mean Square Error after every epoch for FFNN. As the model converges, the 

error becomes static and achieves highest value showing its inability to model sequence data. Figure 8 shows 

the R^2 score for each variable used for prediction and are negative which indicates that the FFNM is not 

able to capture the chaotic nature of the attributes. Figure 9 shows the original data set plotted on map. 

Figure 10 shows the predicted 6000 earthquakes by the FFNN plotted on the map, as seen the region is 

clustered showing a weak prediction trend. Figure 11 shows the region wise distribution of earthquakes of the 

earthquakes predicted by the FFNN, as observed the data is skewed and it shows the Xizang region will have 

more than 7000 earthquakes in the prediction trend. 

 

 

 
 

Figure 7. MSE after every epoch for FFNN 

 
 

Figure 8. R^2 Score for each variable at the end of 

training of FFNN 

 

 

  
 

Figure 9. Given data plotted on a map 

 

Figure 10. Next 8988 FFNN predicted earthquakes 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Earthquake trend prediction using long short-term memory RNN (Vardaan Kishore) 

1309 

 
 

Figure 11. Region wise distribution of predicted earthquake by FFNN  

 

 

3.2.2.  Long short-term memory 
Figure 12 shows the MSE after every epoch for LSTM. As we can see the MSE converges at a point 

lower than that of the FFNN model, this show that the model is converging and the error rate is low as well. 

Figure 13 shows the R^2 score of every variable on the test set. The scores are all positive. There is a drastic 

improvement in the score for Timestamp and this pulls up the overall score to -0.252 which is 59% more than 

the score for FFNN but is still negative. This indicates that though explicitly capturing sequence information 

by using LSTMs leads to better results than traditional neural networks. The R^2 score is used to evaluate our 

models. R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be 

negative (because the model can be arbitrarily worse). A constant model that always predicts the expected 

value of y, disregarding the input features, would get a R^2 score of 0.0. R^2 scores are considered to be 

better than the MSE because it is scaled between 0-1, where as MSE is not scaled to any particular values. 

R^2 can be interpreted more easily. Table 1 gives the comparison of the R^2 scores between the Feed 

Forward Neural Network and Long Short-Term Memory RNN.  

 

 

 

 

 
 

Figure 12. MSE after every epoch for LSTM 
  

Figure 13. R^2 score for each variable at the end of 

training of LSTM  

 

 

Table 1. Comparison of R^2 Score 
Attribute FFNN LSTM 

Overall  
TimeStamp 

Depth 

Magnitude 
Longitude 

Latitude 

-0.6188 
-4.677 

-0.201 

-0.004 
-0.040 

-0.029 

-0.252 
-0.524 

-0.032 

-0.246 
-0.31 

-0.083 
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By plotting the earthquakes predicted from the data set on a map across epochs we can get a feel of 

how the data is spread. Figure 14 shows the Future 6000 predicted earthquakes on the map; the spread-out 

points show that the LSTM is better than the FFNN in prediction. Figure 15 shows the region wise 

distribution of the earthquakes predicted by the LSTM network. Nepal region is predicted to have the highest 

number of earthquakes in the future.  

 

 

 
 

Figure 14. Map of Next 6001 predicted earthquake of LSTM 

 

 

 
 

Figure 15. Region wise distribution of earthquake from LSTM prediction 

 

 

Table 2 shows comparison of future predicted earthquakes of both models against the original 

dataset, it can be observed that the FFNN shows a large number of earthquakes in Xizang and totally zero 

earthquakes for Southern India, this indicates that the model is weak. LSTM shows a changing earthquake 

trend in the future with much more earthquakes along Nepal and South India.  

 

 

Table 2. Comparison of Future Predicted Earthquakes of Both Models against the Original Dataset 
Area Original Data FFNN LSTM 

Xizang 4800 7400 1400 

Nepal 300 500 2400 

Southern India 900 0 1750 
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4. CONCLUSION 

LSTM model predicts earthquake magnitude, depth, time, latitude and longitude and got significant 

results that indicate that the present model does indeed capture some trends in the given earthquake data. The 

results clearly show the superiority of LSTMs over regular FFNMs in the task of modelling the sequence of 

earthquakes. The R^2 score yielded by LSTM on the test data is 59% higher than the FFNN’s. Future work 

can be done by collecting data of earthquakes in regions like Sikkim in India which are earthquake prone. 

The present model can be improved by combining different deep learning models for real time use.  
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