
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 6, December 2017, pp. 3664~3668

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i6.pp3664-3668  3664

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Optimal Round Robin CPU Scheduling Algorithm using

Manhattan Distance

N. Srilatha
1
, M. Sravani

 2
, Y. Divya

3

Department of Computer Science and Engineering, RGUKT, AP IIIT, Idupulapya, Kadapa, Andhrapradhesh

Article Info ABSTRACT

Article history:

Received Mar 23, 2017

Revised Sep 8, 2017

Accepted Sep 25, 2017

 In Round Robin Scheduling the time quantum is fixed and then processes are

scheduled such that no process get CPU time more than one time quantum in

one go. The performance of Round robin CPU scheduling algorithm is

entirely dependent on the time quantum selected. If time quantum is too

large, the response time of the processes is too much which may not be

tolerated in interactive environment. If time quantum is too small, it causes

unnecessarily frequent context switch leading to more overheads resulting in

less throughput. In this paper a method using Manhattan distance has been

proposed that decides a quantum value. The computation of the time

quantum value is done by the distance or difference between the highest

burst time and lowest burst time. The experimental analysis also shows that

this algorithm performs better than RR algorithm and by reducing number of

context switches, reducing average waiting time and also the average turna

round time.

Keyword:

Round robin

Quantum

Scheduling

Burst times

Copyright © 2017Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

N. Srilatha,

Department of Computer Science and Engineering,

RGUKT-AP IIIT,

RK Valley, Idupulapaya, Kadapa, Andhrapradhesh.

Email: srilathargukt16@gmail.com

1. INTRODUCTION

The Central Processing Unit (CPU) should be utilized efficiently as it is the core part of Computers.

For this reason CPU scheduling is very necessary. CPU Scheduling is a important concept in Operating

System. Sharing of computer resources between multiple processes is called scheduling. The Scheduling

operation is done by the scheduler. In operating system we have three types of schedulers [1]. The types of

the schedulers depend on the context switches of the process. They are 1. Longterm Scheduler 2. Short term

Scheduler 3. Medium term scheduler. Here are several scheduling algorithms. Different scheduling

algorithms have different properties and the choice of a particular algorithm may favor one class of processes

over another. Many criteria have been suggested for comparing CPU scheduling algorithms and deciding

which one is the best algorithm [1]. Some of the criteria include (i) Fairness (i) CPU utilization (iii)

Throughput (iv)T urnaround time (v) Waiting time (vi) Response time. It is desirable to maximize CPU

utilization and throughput, to minimize turnaround time, waiting time and response time and to avoid

starvation of any process. [1, 2] Some of the scheduling algorithms are briefly described below: FCFS: In

First come First serve scheduling algorithm the process that request first is scheduled for execution [1, 2, 3]

SJF: In shortest Job first scheduling algorithm the process with the minimum burst time is scheduled for

execution. [1, 2] SRTN: In shortest Remaining time next scheduling algorithm, the process with shortest

remaining time is scheduled for execution. [3] Priority: in Priority Scheduling algorithm the process with

highest priority is scheduled for execution. [1, 2, 3] Multilevel queue scheduling: In this the ready queue is

partitioned into several separate queues. The processes are permanently assigned to one queue generally

based on some property of the process such as memory size, process priority or process type. Each queue has

IJECE ISSN: 2088-8708 

Optimal Round Robin CPU Scheduling Algorithm using Manhattan Distance (N. Srilatha)

3665

its own scheduling algorithm. There is scheduling among the queues, which is commonly implemented as

fixed-priority preemptive scheduling. Each queue has absolute priority over low priority queues. [1]

Multilevel feedback-queue scheduling: This is like Multilevel queue scheduling but allows a process to

move between queues. [3] Round-robin: In this the CPU scheduler goes around the ready queue allocating

the CPU to each process for a time interval of up to one time quantum. If time quantum is too large, the

response time of the processes is too much which may not be tolerated in interactive environment. If time

quantum is too small, it causes unnecessarily frequent context switch leading to more overheads resulting in

less throughput. In this paper a method using Manhattan distance logic has been proposed that decides a

value that is neither too large nor too small such that every process has got reasonable response time and the

throughput of the system is not decreased due to unnecessarily context switches.

The various scheduling parameters are:

1. Context Switch: A context switch is basically storing and restoring context or state of a pre-empted

process, so that at a later point of time , it can be started from same point once the execution is stopped.

So the goal of CPU scheduling algorithms is to optimize only these switches.

2. Throughput: Throughput is defined as number of processes completed in a period of time. Context

switching and Throughput are inversely proportional to each other.

3. CPU Utilization: This is the fraction of time when CPU is in use. Usually, to maximize the CPU

utilization is the goal of the CPU scheduling

4. Turnaround Time: This is the total time which is required to spend to complete the whole process and

amount of time it takes to execute that process.

5. Waiting Time: Waiting time is defined as the total amount of time a process that waits in ready queue.

6. Response Time: For responding to a particular system the amount of time used by the system.

The characteristic of good scheduling algorithm are:

Minimum context switches, Maximum CPU utilization, Maximum throughput, Minimum turnaround time,

Minimum waiting time

2. BACKGROUND WORK

There is a host of work and researches going on for increasing the efficiency of round robin

algorithm. Rami J. Matarneh [4] proposed a method that calculates median of burst time of all processes in

ready queue. Now if this median is less than 25 than time quantum would be 25 otherwise time quantum is

set to the calculated value. Ahad [5] proposed to modify the time quantum of a process based on some

threshold value which is calculated by taking average of left out time of all processes in its last turn.

Hiranwal et al. [6] introduced a concept of smart time slice which is calculated by taking the average of burst

time of all processes in the ready queue if number of processes are even otherwise time slice is set to mid

process burst time. Dawood [7] proposed an algorithm that first sorts all processes in ready queue and then

calculate the time quantum by multiplying sum of maximum and minimum burst by 80. Noon et al [8]

proposed to calculate the time quantum by taking average of the burst time of all the processes in ready

queue. Banerjee et al [9] proposed an algorithm which first sorts all the processes according to the burst time

and then finds the time quantum by taking average of burst time of all process from mid to last. Nayak et al.

[10] calculated the optimal time quantum by taking the average of highest burst and median of burst.

Yaashuwanth et al [11] introduced a term intelligent time slice which is calculated using the formula (range

of burst * total number of processes)/ (priority range * Total number of priority). Matthias et al. [12]

proposed a solution for Linux SCHED_RR, to assign equal share of CPU to different users instead of

process. Racu et al. [13] presents an approach to compute best case and worst case response time of round

robin scheduling. In Merywns et al [14] used Euclidian distance for calculating Quantum value. In [15] in

this section, a non-linear mathematical model for optimizing the time quantum value in RR scheduling

algorithm is proposed.

In this paper we approached the Round Robin Quantum value using the Manhattan Distance.

Quantum value = Highest Burst time – Lowest Burst time.

3. PROPOSED WORK

A major disadvantage of round robin is that a process is pre-empted and context switch occurs, even

if the running process requires time (in fractions) which is slightly more than assigned time quantum.

Another problem with round robin is the time quantum selection. If time quantum is too large, the response

time of the processes is too much, the algorithm degenerates to FCFS which may not be tolerated in an

interactive environment. If time quantum is too small, it causes unnecessarily frequent context switches

leading to more overheads resulting in lesser throughput

  ISSN:2088-8708

IJECE Vol. 7, No. 6, December 2017 : 3664–3668

3666

In this paper used the optimal Round Robin Scheduling using Manhattan distance for optimum Time

Quantum value in Round Robin process in Scheduling algorithm. Here Calculate the Quantum value using

the below Equation.

 D = ∑ |X𝑛
𝑖=0 i-Yi|

X and Y values are the burst times of Process.

X= highest burst time

Y=lowest burst time

By using the above formula we can get the Q value. It gives the minimum context switches, best cpu

utilization and also it gives the minimum averaging time.

3.1. Optimal Round Robin Scheduling using Manhattan Distance Algorithm

The following data structures are needed:

Process (Pi). Number of processes in ready queue for i=1, 2, 3,4,…...n

Burst Time (Bi): Processing time required by each Pi

1. Calculate the Manhattan Distance ‘MD’ of the cpu burst times of processes.

2. Time quantum = highest burst time – lowest burst time.

3. Schedule processes according to the calculated time quantum.

4. EXPERIMENTAL ANALYSIS

For the purpose of simplicity, a demonstration is done using group of five processes in three

different cases that the ORRSM algorithm is more efficient than the classic Simple Round Robin (SRR). For

SRR, a time quantum is assumed in all cases in order to compare the two algorithms fairly.

Case 1: Assume five processes arrive at time 0 with following burst times: P1=24, P2=11, P3=31,

P4=12, P5=20.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P5 P3

0 8 16 24 32 40 48 51 59 63 71 79 87 91 98

Figure 1. Gantt Chat for SRR (case1)

Quantum =Max_burst T ime - Min_Burst Time= 31-11=2

P1

P2

P3

P4

P5

P3

P5

0 20 31 51 63 83 87 98

Figure 2. Gantt Chat for ORRSM (case1)

Table 1. Computational table for case1
Process Burst Time Waiting Time Turn Around Time

P1 24 63 87

P2 11 20 31
P3 31 67 98

P4 12 51 63

P5 20 63 83

Average Waiting Time = 264 /5 = 52.8

IJECE ISSN: 2088-8708 

Optimal Round Robin CPU Scheduling Algorithm using Manhattan Distance (N. Srilatha)

3667

Table 2. Comparison between SRR and ORRSM

Algorithm Time Quantum
Average

Waiting Time

Average
Turnaround

time

Context

Switch

SRR 8 56.7 76.4 14
ORRSM 20 52.8 72.4 7

Case 2: Assume five processes arrive at time 0 with following burst times: P1=7, P2=13, P3=24,

P4=10, P5=18.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P5 P3

0 6 12 18 24 30 31 37 43 47 53 54 60 66

Figure 3. Gantt Chat for SRR (case2)

Quantum = Max_Burst T ime - Min_Burst Time = 17

 P1 P2 P3

P4

P5

P3

 P5

0 7 20 37 47 64 71 72

Figure 4. Gantt Chat for ORRSM (case 2)

Table 3. Computational table for case 2
Process Burst Time Waiting Time Turn Around Time

P1 7 0 7
P2 13 7 20

P3 24 47 71

P4 10 37 47
P5 18 54 72

Average Waiting Time = 145 /5=29

Average Turn Around time = 43

Table 4. Comparison between SRR and ORRSM

Algorithm Time Quantum
Average

Waiting Time

Average

Turnaround
time

Context

Switch

SRR 6 39.4 54 14

ORRSM 17 29 43 7

From the above comparisons and as can be seen in Figure 7, Figure 8 and Figure 9, the ORRSM

algorithm using Euclidean distance method for calculating time quantum is clearly more efficient than the

SRR algorithm resulting in reduction of turnaround time, waiting time and context switches. Although three

cases with each case having five processes are shown, the number of processes does not affect the working of

ORRSM algorithm as it works well even with large number of processes.

5. CONCLUSION

The performance of round robin algorithm is entirely dependent on the time quantum selected.

Many attempts have been made in the past to select an optimum time quantum. Some approaches required

making use of other algorithms like shortest job first or priority scheduling, thereby carries forward the

deficiencies of those algorithms into round robin scheduling. The Optimal Round Robin (ORRSM)

determines the time quantum by taking account the similarity or differences of the burst times of all

  ISSN:2088-8708

IJECE Vol. 7, No. 6, December 2017 : 3664–3668

3668

processes present in the ready queue. The ORRSM does not require priorities to be assigned to the jobs nor

does it require the jobs to be sorted according to their burst times. It results in better performance of round

robin algorithm with reduction in context switches, turnaround times and waiting times. The time quantum

determined through ORRSM is dynamic in the sense that no user intervention is required and the time

quantum is related to the burst times of processes.

REFERENCES
[1] Silberschatz, A., Peterson, J.L., and Galvin, P.B., Operating System Concepts, Addison Wesley, 7th Edition, 2006.

[2] Andrew S. Tanenbaum, and Albert S. Woodfhull, Operating Systems Design and Implementation, Second Edition,

2005.

[3] William Stallings, Operating Systems Internal and Design Principles, 5th Edition, 2006.

[4] Rami J Matarneh, “Self adjustment time quantum in round robin algorithm depending on burst time of the now

running process”, American Journal.

[5] Mohd Abdul Ahad, “Modifying round robin algorithm for process scheduling using dynamic quantum precision”,

International Journal of Computer applications(0975-8887) on Issues and Challenges in Networking, Intelligence

and Computing Technologies- ICNICT 2012.

[6] Saroj Hiranwal and Dr. K.C. Roy, “Adaptive round robin scheduling using shortest burst approach based on smart

time slice”, International Journal of Data Engineering, volume 2, Issue. 3, 2011.

[7] Ali Jbaeer Dawood, “Improving efficiency of round robin scheduling using ascending quantum and minimum-

maximum burst time”, Journal of University of anbar for pure science: Vol. 6: No 2, 2012.

[8] Abbas Noon, Ali Kalakech and Saifedine Kadry, “A new round robin based scheduling algorithm for operating

systems: dynamic quantum using the mean average”, IJCSI International Journal of Computer Science Issues, Vol.

8, Issue 3, No. 1, May 2011.

[9] Pallab Banerjee, Probal Banerjee and Shweta Sonali Dhal, “Comparative performance analysis of mid average

round robin scheduling (MARR) using dynamic time quantum with round robin scheduling algorithm having static

time quatum”, International Journal of Electronics and Computer Science Engineering, ISSN-2277-1956 2012.

[10] Debashree Nayak, Sanjeev Kumar Malla and Debashree Debadarshini, “Improved round robin scheduling using

dynamic time quantum”, International Journal of Computer Applications (0975-8887) Volume 38- No 5, January

2012.

[11] Yaashuwanth C. & R. Ramesh, “ Intelligent time slice for round robin in real time operating system, IJRRAS 2 (2),

February 2010.

[12] Braunhofer Matthias, Strum flohner Juri, “Fair round robin scheduling”, September 17, 2009.

[13] Razvan Racu, Li Li, Rafik Henia, Arne Harmann, Rolf Ernst, “Improved Response time analysis of task scheduled

under preemptive round robin, CODES+ISSS ’07”, Proc of 5th IEEE/ACM International conference on Harware/

Software codegign and system sunthesis.

[14] Merwyn D’Souza, Fiona Caiero, Suwarna Surlakar, “Optimal Round Robin CPU Scheduling Algorithm using

Euclidean Distance”, published in International Journal of Computer Applications. Volume 96, No. 18, June 2014.

