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 In Round Robin Scheduling the time quantum is fixed and then processes are 

scheduled such that no process get CPU time more than one time quantum in 

one go. The performance of Round robin CPU scheduling algorithm is 

entirely dependent on the time quantum selected. If time quantum is too 

large, the response time of the processes is too much which may not be 

tolerated in interactive environment. If time quantum is too small, it causes 

unnecessarily frequent context switch leading to more overheads resulting in 

less throughput. In this paper a method using Manhattan distance has been 

proposed that decides a quantum value. The computation of the time 

quantum value is done by the distance or difference between the highest 

burst time and lowest burst time. The experimental analysis also shows that 

this algorithm performs better than RR algorithm and by reducing number of 

context switches, reducing average waiting time and also the average turna 

round time. 
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1. INTRODUCTION  

The Central Processing Unit (CPU) should be utilized efficiently as it is the core part of Computers. 

For this reason CPU scheduling is very necessary. CPU Scheduling is a important concept in Operating 

System. Sharing of computer resources between multiple processes is called scheduling. The Scheduling 

operation is done by the scheduler. In operating system we have three types of schedulers [1]. The types of 

the schedulers depend on the context switches of the process. They are 1. Longterm Scheduler 2. Short term 

Scheduler 3. Medium term scheduler. Here are several scheduling algorithms. Different scheduling 

algorithms have different properties and the choice of a particular algorithm may favor one class of processes 

over another. Many criteria have been suggested for comparing CPU scheduling algorithms and deciding 

which one is the best algorithm [1]. Some of the criteria include (i) Fairness (i) CPU utilization (iii) 

Throughput (iv)T urnaround time (v) Waiting time (vi) Response time. It is desirable to maximize CPU 

utilization and throughput, to minimize turnaround time, waiting time and response time and to avoid 

starvation of any process. [1, 2] Some of the scheduling algorithms are briefly described below: FCFS: In 

First come First serve scheduling algorithm the process that request first is scheduled for execution [1, 2, 3] 

SJF: In shortest Job first scheduling algorithm the process with the minimum burst time is scheduled for 

execution. [1, 2] SRTN: In shortest Remaining time next scheduling algorithm, the process with shortest 

remaining time is scheduled for execution. [3] Priority: in Priority Scheduling algorithm the process with 

highest priority is scheduled for execution. [1, 2, 3] Multilevel queue scheduling: In this the ready queue is 

partitioned into several separate queues. The processes are permanently assigned to one queue generally 

based on some property of the process such as memory size, process priority or process type. Each queue has 
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its own scheduling algorithm. There is scheduling among the queues, which is commonly implemented as 

fixed-priority preemptive scheduling. Each queue has absolute priority over low priority queues. [1] 

Multilevel feedback-queue scheduling: This is like Multilevel queue scheduling but allows a process to 

move between queues. [3] Round-robin: In this the CPU scheduler goes around the ready queue allocating 

the CPU to each process for a time interval of up to one time quantum. If time quantum is too large, the 

response time of the processes is too much which may not be tolerated in interactive environment. If time 

quantum is too small, it causes unnecessarily frequent context switch leading to more overheads resulting in 

less throughput. In this paper a method using Manhattan distance logic has been proposed that decides a 

value that is neither too large nor too small such that every process has got reasonable response time and the 

throughput of the system is not decreased due to unnecessarily context switches. 

The various scheduling parameters are:  

1. Context Switch: A context switch is basically storing and restoring context or state of a pre-empted 

process, so that at a later point of time , it can be started from same point once the execution is stopped. 

So the goal of CPU scheduling algorithms is to optimize only these switches.  

2. Throughput: Throughput is defined as number of processes completed in a period of time. Context 

switching and Throughput are inversely proportional to each other.  

3. CPU Utilization: This is the fraction of time when CPU is in use. Usually, to maximize the CPU 

utilization is the goal of the CPU scheduling  

4. Turnaround Time: This is the total time which is required to spend to complete the whole process and 

amount of time it takes to execute that process.  

5. Waiting Time: Waiting time is defined as the total amount of time a process that waits in ready queue.  

6. Response Time: For responding to a particular system the amount of time used by the system. 

The characteristic of good scheduling algorithm are:  

Minimum context switches, Maximum CPU utilization, Maximum throughput, Minimum turnaround time, 

Minimum waiting time 

  

 

2. BACKGROUND WORK 

There is a host of work and researches going on for increasing the efficiency of round robin 

algorithm. Rami J. Matarneh [4] proposed a method that calculates median of burst time of all processes in 

ready queue. Now if this median is less than 25 than time quantum would be 25 otherwise time quantum is 

set to the calculated value. Ahad [5] proposed to modify the time quantum of a process based on some 

threshold value which is calculated by taking average of left out time of all processes in its last turn. 

Hiranwal et al. [6] introduced a concept of smart time slice which is calculated by taking the average of burst 

time of all processes in the ready queue if number of processes are even otherwise time slice is set to mid 

process burst time. Dawood [7] proposed an algorithm that first sorts all processes in ready queue and then 

calculate the time quantum by multiplying sum of maximum and minimum burst by 80. Noon et al [8] 

proposed to calculate the time quantum by taking average of the burst time of all the processes in ready 

queue. Banerjee et al [9] proposed an algorithm which first sorts all the processes according to the burst time 

and then finds the time quantum by taking average of burst time of all process from mid to last. Nayak et al. 

[10] calculated the optimal time quantum by taking the average of highest burst and median of burst. 

Yaashuwanth et al [11] introduced a term intelligent time slice which is calculated using the formula (range 

of burst * total number of processes)/ (priority range * Total number of priority). Matthias et al. [12] 

proposed a solution for Linux SCHED_RR, to assign equal share of CPU to different users instead of 

process. Racu et al. [13] presents an approach to compute best case and worst case response time of round 

robin scheduling. In Merywns et al [14] used Euclidian distance for calculating Quantum value. In [15] in 

this section, a non-linear mathematical model for optimizing the time quantum value in RR scheduling 

algorithm is proposed. 

In this paper we approached the Round Robin Quantum value using the Manhattan Distance. 

Quantum value = Highest Burst time – Lowest Burst time. 

 

 

3. PROPOSED WORK 

A major disadvantage of round robin is that a process is pre-empted and context switch occurs, even 

if the running process requires time (in fractions) which is slightly more than assigned time quantum. 

Another problem with round robin is the time quantum selection. If time quantum is too large, the response 

time of the processes is too much, the algorithm degenerates to FCFS which may not be tolerated in an 

interactive environment. If time quantum is too small, it causes unnecessarily frequent context switches 

leading to more overheads resulting in lesser throughput 
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In this paper used the optimal Round Robin Scheduling using Manhattan distance for optimum Time 

Quantum value in Round Robin process in Scheduling algorithm. Here Calculate the Quantum value using 

the below Equation. 

 

                D  = ∑ |X𝑛
𝑖=0 i-Yi| 

 

X and Y values are the burst times of Process. 

X= highest burst time 

Y=lowest burst time 

            

By using the above formula we can get the Q value. It gives the minimum context switches, best cpu 

utilization and also it gives the minimum averaging time. 

 

3.1. Optimal Round Robin Scheduling using Manhattan Distance Algorithm  

The following data structures are needed:  

Process (Pi). Number of processes in ready queue for i=1, 2, 3,4,…...n  

Burst Time (Bi): Processing time required by each Pi  

1. Calculate the Manhattan Distance ‘MD’ of the cpu burst times of processes. 

2. Time quantum = highest burst time – lowest burst time. 

3. Schedule processes according to the calculated time quantum. 

 

 

4. EXPERIMENTAL ANALYSIS  

For the purpose of simplicity, a demonstration is done using group of five processes in three 

different cases that the ORRSM algorithm is more efficient than the classic Simple Round Robin (SRR). For 

SRR, a time quantum is assumed in all cases in order to compare the two algorithms fairly. 

Case 1: Assume five processes arrive at time 0 with following burst times: P1=24, P2=11, P3=31, 

P4=12, P5=20. 

             

                         
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P5 P3 

0       8        16        24      32      40     48       51       59       63      71      79      87        91       98  

 

Figure 1. Gantt Chat for SRR (case1) 

 

 

Quantum =Max_burst  T ime - Min_Burst  Time= 31-11=2 

 

 
 

P1 

 

P2 

 

P3 

 

P4 

 

P5 

 

P3 

 

P5 

0         20           31           51           63           83           87           98 

 

Figure 2. Gantt Chat for ORRSM (case1) 

 

 

Table 1. Computational table for case1 
Process Burst Time Waiting Time Turn Around Time 

P1 24 63 87 

P2 11 20 31 
P3 31 67 98 

P4 12 51 63 

P5 20 63 83 

Average Waiting Time = 264 /5 = 52.8 
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Table 2. Comparison between SRR and ORRSM 

Algorithm Time Quantum 
Average 

Waiting Time 

Average 
Turnaround 

time 

Context 

Switch 

SRR 8 56.7 76.4 14 
ORRSM 20 52.8 72.4 7 

 

 

Case 2: Assume five processes arrive at time 0 with following burst times: P1=7, P2=13, P3=24, 

P4=10, P5=18. 

 

 
P1 P2  P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P5 P3 

0       6         12        18       24       30       31      37        43      47       53       54        60      66         

 

Figure 3. Gantt Chat for SRR (case2) 

 

 

Quantum  = Max_Burst  T ime - Min_Burst  Time = 17 

 

 
         P1           P2           P3            

P4 

            

P5 

           

P3 

          P5 

0             7              20              37             47            64             71              72 

 

Figure 4. Gantt Chat for ORRSM (case 2) 

 

 

Table 3. Computational table for case 2 
Process Burst Time Waiting Time Turn Around Time 

P1 7 0 7 
P2 13 7 20 

P3 24 47 71 

P4 10 37 47 
P5 18 54 72 

 

 

Average Waiting Time = 145 /5=29 

Average Turn Around time = 43 

 

 

Table 4. Comparison between SRR and ORRSM 

Algorithm Time Quantum 
Average 

Waiting Time 

Average 

Turnaround 
time 

Context 

Switch 

SRR 6 39.4 54 14 

ORRSM 17 29 43 7 

 

 

From the above comparisons and as can be seen in Figure 7, Figure 8 and Figure 9, the ORRSM 

algorithm using Euclidean distance method for calculating time quantum is clearly more efficient than the 

SRR algorithm resulting in reduction of turnaround time, waiting time and context switches. Although three 

cases with each case having five processes are shown, the number of processes does not affect the working of 

ORRSM algorithm as it works well even with large number of processes. 

 

 

5. CONCLUSION 

The performance of round robin algorithm is entirely dependent on the time quantum selected. 

Many attempts have been made in the past to select an optimum time quantum. Some approaches required 

making use of other algorithms like shortest job first or priority scheduling, thereby carries forward the 

deficiencies of those algorithms into round robin scheduling. The Optimal Round Robin (ORRSM) 

determines the time quantum by taking account the similarity or differences of the burst times of all 
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processes present in the ready queue. The ORRSM does not require priorities to be assigned to the jobs nor 

does it require the jobs to be sorted according to their burst times. It results in better performance of round 

robin algorithm with reduction in context switches, turnaround times and waiting times. The time quantum 

determined through ORRSM is dynamic in the sense that no user intervention is required and the time 

quantum is related to the burst times of processes. 
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