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 In this paper, the synchronization problem of T chaotic system and Lu 

chaotic system is studied. The parameter of the drive T chaotic system is 

considered unknown. An adaptive projective lag control method and also 

parameter estimation law are designed to achieve chaos synchronization 

problem between two chaotic systems. Then Lyapunov stability theorem is 

utilized to prove the validity of the proposed control method. After that, 

some numerical simulations are performed to assess the performance of the 

proposed method. The results show high accuracy of the proposed method in 

control and synchronization of chaotic systems. 
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1. INTRODUCTION  

Sensitivity to the initial values of the state variables is the main feature of any chaotic system, which 

causes exponentially different motion trajectories of the state variables with different initial conditions. The 

problem of chaos synchronization has received a lot of attention in the last three decades due to its potential 

applications in many different fields such as: physics, chemistry, electrical engineering, economics and 

secure communications. Until now, many kind of chaos control and synchronization schemes have developed 

by the researchers. Active method [1]-[3], adaptive method [4]-[6], phase method [7], backstepping method 

[8],[9], lag method [10], impulsive method [11],[12], linear feedback method [13],[14], nonlinear feedback 

control [15],[16], and  projective method [17]-[20] are some of the investigated method during the last recent 

years. Among these investigated methods, chaos synchronization related to the projective method has 

considerably noticed during the last few decades due to its proportional feature, which the response chaotic 

system can be synchronized up to a typical aligned scaling factors. So far many types of projective methods 

have been studied by the researchers. Modified projective synchronization (MPS) [21]-[24], function 

projective synchronization (FPS) [25],[26], modified function projective synchronization (MFPS) [27], 

generalized function projective synchronization [28]-[30] are some of the projective related method for 

control and synchronization between two identical/non-identical chaotic systems. But, projective lag hybrid 

synchronization is rarely investigated by the researchers. So, this paper is devoted to the synchronization 

problem between T chaotic system and Lorenz chaotic system by designing an appropriate adaptive hybrid 

projective lag synchronization method. 

The rest reminder of this paper is constructed as follows: In Section 2, the structure of the T chaotic 

system and Lorenz chaotic system are described. Then, in Section 3, the problem of chaos synchronization of 

T chaotic system and Lorenz chaotic system is given. An adaptive projective lag control method is designed 
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to achieve the chaos synchronization problem between two chaotic systems. Then, the validity of the 

proposed method is verified by means of Lyapunov stability theorem and adaptive control theory. In Section 

3, some numerical simulations are presented to show the effectiveness of the theorical discussions in the 

previous section. Finally, some numerical results are given in Section 5. 

 

 

2. PRELIMINARIES 

In this section, the structure of the T chaotic system and the Lorenz chaotic system are given. In 

addition, their chaotic behavior are studied. Recently, a new chaotic system, as T chaotic system is 

introduced in [31], which can be described by means of three dynamical equations with three state variables 

as follows: 

 
�̇�1 = 𝑎(𝑥2 − 𝑥1)                   

�̇�2 = (𝑏 − 𝑎)𝑥1 − 𝑎𝑥1𝑥3    
�̇�3 = 𝑥1𝑥2 − 𝑐𝑥3                   

                                                               (1) 

 

where 𝑥1, 𝑥2 and 𝑥3 are the state variables of the system and 𝑎, 𝑏 and 𝑐 are the three state variables of the T 

system. When 𝑎 = 2.1, 𝑏 = 30 and 𝑐 = 0.6, the behavior of the T system (1) is chaotic. The phase portraits 

of the T chaotic system with these system parameters and the initial state variables 𝑥1 = 4.3, 𝑥2 = 7.2 and 

𝑥3 = 5.8 is shown in Figure 1. In addition, Lorenz chaotic system can be given as follows: 

 
�̇�1 = −𝛼𝑦1 + 𝛼𝑦2          
�̇�2 = 𝛽𝑦1 − 𝑦2 − 𝑦1𝑦3  
�̇�3 = 𝑦1𝑦2 − 𝛾𝑦3           

                                                              (2) 

 

where 𝑥1, 𝑥2 and 𝑥3 are the state variables of the Lorenz chaotic systems. The chaotic behavior of the Lorenz 

system (2) is illustrated in Figure 2, with system parameters and initial state variables as: 𝑥1 = 11, 𝑥2 = 7 

and 𝑥3 =9. 

 

 

3. SYNCHRONIZATION 

Assume the T chaotic system presented in (1), as the drive system then response system can be 

given based on the Lorenz chaotic system (2) as follows: 

 

 

(a) (b) 
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(c) (d) 

 

Figure 1. Time portrait of the T chaotic system 

 

 

�̇�1 = −(𝑎 + ∆𝑎)𝑦1 + (𝑎 + ∆𝑎)𝑦2 + 𝑢1    

�̇�2 = (𝑏 + ∆𝑏)𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑢2           

�̇�3 = 𝑦1𝑦2 − (𝑐 + ∆𝑐)𝑦3 + 𝑢3                     

                                 (3) 

 

where 𝑎, 𝑏 and 𝑐 are the parameters of the drive T chaotic system (1), and ∆𝑎, ∆𝑏 and ∆𝑐 represent the 

disparity amount of system parameters. 𝑢1, 𝑢2 and 𝑢3 are the feedback controller, which have to be designed 

in such way that response state variables of Lorenz chaotic system (3) track the trajectories of the drive T 

chaotic system (1), asymptotically. 

Then the synchronization errors between the state variables of the T chaotic system (1) and the 

Lorenz chaotic system (3) can be obtain based on the projective lag synchronization errors as follows: 

 

𝑒1 = 𝑦1 − 𝛿1𝑥1(𝑡 − 𝜏)

𝑒2 = 𝑦2 − 𝛿2𝑥2(𝑡 − 𝜏)

𝑒3 = 𝑦3 − 𝛿3𝑥3(𝑡 − 𝜏)
                                                             (4) 

 

where 𝛿1, 𝛿2 and 𝛿3 are the three modified projective scaling error factor and 𝜏 states the time-delay of the 

system. The dynamical representation of system errors can be described based on the synchronization errors 

(4) as follows: 

 

�̇�1 = �̇�1 − 𝛿1�̇�1(𝑡 − 𝜏)

�̇�2 = �̇�2 − 𝛿2�̇�2(𝑡 − 𝜏)

�̇�3 = �̇�3 − 𝛿3�̇�3(𝑡 − 𝜏)
                                                          (5) 

 

In the following the concept of chaos synchronization between two chaotic systems is given with a definition. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2. Time portrait of the Lorenz chaotic system 

 

 

Definition 1. The trivial solution of the system error (4) is said to be stable if for any projective 

scaling factor 𝛿1, 𝛿2 and 𝛿3 and any time-delay 𝜏   with any initial state variables 𝑥1, 𝑥2 and 𝑥3 and 𝑦1, 𝑦2 and 

𝑦3 and for any 𝜖 > 0, there exist a 𝑁 > 0 such that for any time 𝑡 > 𝑁, we have |𝑒𝑖| < 𝜖. In other words, 

lim𝑡→∞|𝑒𝑖| = 0  for all  𝑖 = 1, 2, 3. In the following theorem, an appropriate feedback control law and a 

parameter estimation law are given to achieve drive-response synchronization and to force the trivial solution 

of the system error (4) to be stable. 

Theorem 1. The drive T chaotic system (1) and the response Lorenz chaotic system (3) would be 

synchronized and also synchronization errors defined in (4) would be stable, if the control law and parameter 

estimation law are taken as follows: 

 

𝑢1 = (𝑎 + ∆𝑎)(𝑦1 − 𝑦2)  + 𝛿1(𝑎 + ∆𝑎)(𝑥2(𝑡 − 𝜏) − 𝑥1(𝑡 − 𝜏)) − 𝑘1𝑒1    
 

𝑢2 = −(𝑏 + ∆𝑏)𝑦1 + 𝑦2 + 𝑦1𝑦3  + 𝛿2 [
((𝑏 + ∆𝑏) − (𝑎 + ∆𝑎))𝑥1(𝑡 − 𝜏)

−(𝑎 + ∆𝑎)𝑥1(𝑡 − 𝜏)𝑥3(𝑡 − 𝜏)
] − 𝑘2𝑒2 

 

𝑢3 = −𝑦1𝑦2 + (𝑐 + ∆𝑐)𝑦3 − 𝑘3𝑒3  + 𝛿3[𝑥1(𝑡 − 𝜏)𝑥2(𝑡 − 𝜏) − (𝑐 + ∆𝑐)𝑥3(𝑡 − 𝜏)]  (6) 

 

and, 

 

∆�̇� = 𝛿1(𝑥2 − 𝑥1) − 𝛿2𝑥1𝑒2 − 𝛿2𝑒2𝑥1(𝑡 − 𝜏)𝑥3(𝑡 − 𝜏)

∆�̇� = 𝛿2𝑥1(𝑡 − 𝜏)𝑒2                                                              

∆�̇� = −𝛿3𝑥3(𝑡 − 𝜏)𝑒3                                                         

          (7) 

 

Where 𝑘1, 𝑘2, 𝑘3, 𝜑1, 𝜑2 and  𝜑3 are the constant positive values.  

Proof. Let the Lyapunov stability function as follows: 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 6, December 2017 :  3446 – 3453 

3450 

 

𝑉 =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2 + (∆𝑎)2 + (∆𝑏)2 + (∆𝑐)2)                                (8) 

 

It is clear that V is positive definite. Then, the derivative of V along the time domain would be: 

 

�̇� =
1

2
(𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 + (∆𝑎)(∆𝑎)′ + (∆𝑏)(∆𝑏)′ + (∆𝑐)(∆𝑐)′)      (9) 

 

With considering the dynamical errors in (5) and dynamical of  parameter estimation errors in (7), and 

subsequently, dynamical representation of drive system (1) and response system (2) and adaptive projective 

lag feedback controller proposed in (6), the derivative of Lyapunov function (9) can be simplified as follows: 

 

�̇� = −𝑘1𝑒1
2 − 𝑘2𝑒2

2 − 𝑘3𝑒3
2 − 𝜑1(∆𝑎)2 − 𝜑2(∆𝑏)2 − 𝜑3(∆𝑐)2               (10) 

 

Since the Lyapunov candidate function (8) is positive definite and its derivative is negative definite. 

Then, the stability of the proposed control law 6) and parameter estimation law (7) is proved. Thus, the 

anticipated synchronization between the state variables of the drive T chaotic system (1) and the response 

chaotic system (3) would be achieved. Furthermore, the synchronization errors defined in (4) are stabilized. 

 

 

4. NUMERICAL SIMULATIONS 

In this section, some numerical results related to the synchronization of the drive T chaotic system 

(1) and the response Lorenz chaotic system (3) are given. During this section, the unknown parameters of the 

drive T chaotic system (1) are considered as 𝑎 = 2, 𝑏 = 2.3  and 𝑐 = 1.5. Furthermore, the initial estimation 

of parameters are set as ∆𝑎 = 0.3, ∆𝑏 = 0.5  and ∆𝑐 = 0.2. The initial state variables of the drive T chaotic 

system (1) are selected as:𝑥1 = 12, 𝑥2 = 9 and 𝑥3 = 11 and also the response Lorenz chaotic system (3) are 

chosen as 𝑦1 = 2, 𝑦2 = 1.5 and 𝑦3 = 3. 

The effectiveness of the proposed control law  for synchronization of the drive T chaotic system (1) 

and the follower Lorenz chaotic system (3) with unknown drive system parameters a, b, and c is shown in 

Figure 3, 4 and 5 for different projective synchronization factors Λ = (𝜆1, 𝜆2, 𝜆3) as follows: 

 
Λ1 = 𝑑𝑖𝑎𝑔(1, 1, 1)                        

Λ2 = 𝑑𝑖𝑎𝑔(−1, −1, −1)              

Λ3 = 𝑑𝑖𝑎𝑔(1.02, 0.997, 1.012)
                                                                  (11) 

 

Figure 3a shows the projectvie lag synchronization between the state variabel of the drive T chaotic 

system and response Lorenz chaotic system with considering time-delay as: 𝜏 = 0. The estimation errors of 

system parameters for this projective scaling Λ1(complete synchronization) with 𝜏 = 0  is given in Figure 1b. 

In addition, projective lag synchronization and disparity amount of parameter estimation with scaling factor 

Λ1 and assuming the time-delays as 𝜏 = 0.5 are shown in Figure 3c and Figure 3d, respectively. 

Anti-synchronization problem is illustrated in Figure 4, with projective scaling 

Λ2 = 𝑑𝑖𝑎𝑔(−1, −1, −1). Figure  4a and 4b show the anti-synchronization problem without considerening 

any time-delays. While Figure 4c and 4d depict the anti-synchronization problem with considering time-

delay as as 𝜏 = 0.5. 

Finally, another projective synchronization is depicted in Figure 5, with a typical scaling factors 

Λ3 = 𝑑𝑖𝑎𝑔(1.02, 0.997, 1.012). Figure 5a and 5b show the projective lag synchronization problem and 

disparity of parmaeter estimation between the drive chaotic system (1) and response chaotic system (2)  with 

a typical projective scaling Λ3and without considering any time-delays (𝜏 = 0). In similar manner, the 

projecitve lag synchronization and disparitiy amount of parameter estimations are achived with projective 

scaling Λ3 and assuming the system time-delay as 𝜏 = 0.5 in Figures 5c and 5d, respecitvely. As it can be 

seen from these results, the anticipated synchronizations are achived. Furthermore, the disparity amount of 

system parameters estimations converge to zero, with all projective scaling factors  Λ1 , Λ2 and Λ3. 
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(a) synchronization error with (𝜏 = 0) 
 

(b) Parameter estimation error with (𝜏 = 0) 

 
(c) synchronization error with (𝜏 = 0.5) 

 
(d) Parameter estimation error with (𝜏 = 0.5) 

 

Figure 3. projective lag synchronization of T chaotic system (1) and Lorenz chaotic system (3) with 

projective scaling factor 𝛬 = (1, 1, 1) 

 

 

 
(a) synchronization error with (𝜏 = 0) 

 

 
(b) Parameter estimation error with (𝜏 = 0) 

 
(c) synchronization error with (𝜏 = 0.5) 

 
(d) Parameter estimation error with (𝜏 = 0.5) 

 

Figure 4. projective lag synchronization of T chaotic system (1) and Lorenz chaotic system (3) with 

projective scaling factor Λ = (−1, −1, −1) 
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(a) synchronization error with (𝜏 = 0) 

 
(b) Parameter estimation error with (𝜏 = 0) 

 
(c)synchronization error with (𝜏 = 0) 

 
(d)Parameter estimation error with (𝜏 = 0) 

 

Figure 5. projective lag synchronization of T chaotic system (1) and Lorenz chaotic system (3) with 

projective scaling factor Λ = (1.02, 0.997, 1.012) 

 

 

5. CONCLUSIONS 

In this study, a new adaptive projective lag control method for synchronization of T chaotic system 

as the drive system and the Lorenz chaotic system as the response system is achieved. The parameters of the 

drive chaotic system are considered unknown. Thus, adaptive control is utilized to achieve the 

synchronization. Projective control method is given based on a Lyapunov candidate function to force the 

state variables of the response Lorenz chaotic system to follow the motion trajectories of the drive T chaotic 

system. Furthermore, some numerical simulations are performed to validate the effectiveness of the proposed 

projective lag synchronization method. The results show that the anticipated drive- response synchronization 

is derived and also the disparity amount of parameter estimations converge to zero as time goes to the 

infinity. 

 
 

REFERENCES  
[1] H. N. Agiza and M. T. Yassen, “Synchronization of Rossler and Chen chaotic dynamical systems using active 

control,” Physics Letters A, vol/issue: 278(4), pp. 191-197, 2001.  

[2] M. T. Yassen, “Chaos synchronization between two different chaotic systems using active control,” Chaos, Solitons 

& Fractals, vol/issue: 23(1), pp. 131-140, 2005. 

[3] S. Bhalekar and V. D. Gejji, “Synchronization of different fractional order chaotic systems using active control,” 

Communications in Nonlinear Science and Numerical Simulation, vol/issue: 15(11), pp. 3536-3546, 2010. 

[4] S. Chen and J. Lü, “Synchronization of an uncertain unified chaotic system via adaptive control,” Chaos, Solitons 

& Fractals, vol/issue: 14(4), pp. 643-647, 2002. 

[5] T. L. Liao and S. H. Tsai, “Adaptive synchronization of chaotic systems and its application to secure 

communications,” Chaos, Solitons & Fractals, vol/issue: 11(9), pp. 1387-1396, 2000. 

[6] S. Vaidyanathan, et al., “Backstepping Control Design for the Adaptive Stabilization and Synchronization of the 

Pandey Jerk Chaotic System with Unknown Parameters,” International Journal of Control Theory and 

Applications, vol/issue: 9(1), pp. 299-319, 2016. 

[7] M. C. Ho, et al., “Phase and anti-phase synchronization of two chaotic systems by using active control,” Physics 

letters A, vol/issue: 296(1), pp. 43-48, 2002. 

[8] J. H. Park, “Synchronization of Genesio chaotic system via backstepping approach,” Chaos, Solitons & Fractals, 

vol/issue: 27(5), pp. 1369-1375, 2006. 



IJECE  ISSN: 2088-8708  

 

Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems (Hamed Tirandaz) 

3453 

[9] Y. Yu and S. Zhang, “Adaptive backstepping synchronization of uncertain chaotic system,” Chaos, Solitons & 

Fractals, vol/issue: 21(3), pp. 643-649, 2004. 

[10] C. Li, et al., “Lag synchronization of hyperchaos with application to secure communications,” Chaos, Solitons & 

Fractals, vol/issue: 23(1), pp. 183-193, 2005. 

[11] B. Liu, et al., “Robust impulsive synchronization of uncertain dynamical networks,” IEEE Transactions on Circuits 

and Systems I: Regular Papers, vol/issue: 52(7), pp. 1431-1441, 2005. 

[12] H. Zhang, et al., “Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-

stage impulsive control,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol/issue: 

40(3), pp. 831-844, 2010. 

[13] M. Rafikov and J. M. Balthazar, “On control and synchronization in chaotic and hyperchaotic systems via linear 

feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol/issue: 13(7), pp. 1246-

1255, 2008. 

[14] J. Zhao and J. A. Lu, “Using sampled-data feedback control and linear feedback synchronization in a new 

hyperchaotic system,” Chaos, Solitons & Fractals, vol/issue: 35(2), pp. 376-382, 2008. 

[15] H. H. Chen, et al., “Chaos synchronization between two different chaotic systems via nonlinear feedback control,” 

Nonlinear Analysis: Theory, Methods & Applications, vol/issue: 70(12), pp. 4393-4401, 2009. 

[16] L. Ling, et al., “Synchronization between two different chaotic systems with nonlinear feedback control,” Chinese 

Physics, vol/issue: 16(6), pp. 1603, 2007. 

[17] R. Mainieri and J. Rehacek, “Projective synchronization in three-dimensional chaotic systems,” Physical Review 

Letters, vol/issue: 82(15), pp. 3042, 1999. 

[18] D. Xu, “Control of projective synchronization in chaotic systems,” Physical review E, vol/issue: 63(2), pp. 027201, 

2001. 

[19] G. H. Li, “Modified projective synchronization of chaotic system,” Chaos, Solitons & Fractals, vol/issue: 32(5), 

pp. 1786-1790, 2007. 

[20] D. Xu and Z. Li, “Controlled projective synchronization in nonpartially-linear chaotic systems,” International 

Journal of Bifurcation and Chaos, vol/issue: 12(06), pp. 1395-1402, 2002. 

[21] N. Cai, et al., “Modified projective synchronization of chaotic systems with disturbances via active sliding mode 

control,” Communications in Nonlinear Science and Numerical Simulation, vol/issue: 15(6), pp. 1613-1620, 2010. 

[22] X. Wang, et al., “Modified projective synchronization of fractional-order chaotic systems via active sliding mode 

control,” Nonlinear Dynamics, vol/issue: 69(1), pp. 511-517, 2012. 

[23] J. H. Park, “Adaptive modified projective synchronization of a unified chaotic system with an uncertain 

parameter,” Chaos, Solitons & Fractals, vol/issue: 34(5), pp. 1552-1559, 2007. 

[24] H. Du, et al., “Function projective synchronization in coupled chaotic systems,” Nonlinear Analysis: Real World 

Applications, vol/issue: 11(2), pp. 705-712, 2010. 

[25] Y. Chen and X. Li, “Function projective synchronization between two identical chaotic systems,” International 

Journal of Modern Physics C, vol/issue: 18(05), pp. 883-888, 2007. 

[26] P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear 

Analysis: Real World Applications, vol/issue: 12(2), pp. 811-816, 2011. 

[27] H. Du, et al., “Modified function projective synchronization of chaotic system,” Chaos, Solitons & Fractals, 

vol/issue: 42(4), pp. 2399-2404, 2009. 

[28] S. Vaidyanathan and S. Pakiriswamy, “Generalized projective synchronization of six-term Sundarapandian chaotic 

systems by adaptive control,” Int J Control Theory Appl, vol/issue: 6(2), pp. 153-163, 2013. 

[29] G. H. Li, “Generalized projective synchronization of two chaotic systems by using active control,” Chaos, Solitons 

& Fractals, vol/issue: 30(1), pp. 77-82, 2006. 

[30] P. Sarasu and V. Sundarapandian, “Generalized projective synchronization of two-scroll systems via adaptive 

control,” Int J Soft Comput, vol/issue: 7(4), pp. 146-156, 2012. 

[31] G. Tigan and D. Opriş, “Analysis of a 3D chaotic system,” Chaos, Solitons & Fractals, vol/issue: 36(5), pp. 1315-

1319, 2008. 


