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 This paper discusses a standard flow on how an automated test bench 

environment which is randomized with constraints can verify a SOC 

efficiently for its functionality and coverage. Today, in the time of 

multimillion gate ASICs, reusable intellectual property (IP), and system-on-

a-chip (SoC) designs, verification consumes about 70 % of the design effort. 

Automation means a machine completes a task autonomously, quicker and 

with predictable results. Automation requires standard processes with well-

defined inputs and outputs. By using this efficient methodology it is possible 

to provide a general purpose automation solution for verification, given 

today’s technology. Tools automating various portions of the verification 

process are being introduced. Here, we have Communication based SOC The 

content of the paper discusses about the methodology used to verify such a 

SOC-based environment. Cadence Efficient Verification Methodology 

libraries are explored for the solution of this problem. We can take this as a 

state of art approach in verifying SOC environments. The goal of this paper 

is to emphasize the unique testbench for different SOC using Efficient 

Verification Constructs implemented in system verilog for SOC verification. 
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1. INTRODUCTION 

This methodology is an open source SystemVerilog library allowing establishment of flexible, 

reusable verification components and assembling great test environments utilizing constrained random 

stimulus generation and functional coverage methodologies.. Its main promise is to progress testbench reuse, 

make verification code handier and create new market for universal, high-quality Verification IP (Intellectual 

Property). Major advantages of efficient Methodology: Other better aspects are end-of-test objection 

handling using phases, updated phase methods, command line processor, and config_db changes. 

a. Callbacks were updated with the following additional functionality:  

- a callback iterator class type wide callback support (instead of just instance specific) callback type 

registration for type checking. 

- added add and delete callback by name. 

- more callback tracing was added. 

b. Objections were restructured with the following additional functionality: 

- added a string description for raise/drop.  

- added ability to add external callbacks to objections. 

A report catcher callback was added to allow users to manage messages via an external callback. 

The catcher uses the standard callback mechanism on uvm_report_objects so that callbacks can be added 
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type wide or to a specific report object. Using these advantages constructed a reusable testbench for 

verification of various SoC’s [1]. Anyone looking at the code will be able to understand how reports are 

controlled and generated, and it will be the same from project to project. 

 

 

2. DEVELOPMENT OF TESTBENCH 

2.1. Verification Environment 

The normal process for developing a verification environment is bottom-up. Blocks are initially 

verified in block-level environments, and then the integration of the blocks into SoC is verified by chip-level 

testbench [2]. Refers to this methodology as IP-centric methodology because the blocks are considered IPs 

[3]. The focus of block-level verification is to verify the blocks systematically, while the chip-level 

verification is for checking the integration of the blocks and the correctness of application scenarios. A 

bottom-up verification approach has several benefits: 

 Localization of bugs: finding bugs without difficulty 

 Easier to analysis all the block modes at the block-level 

 Confidence in the block-level allowing them to be reused in a number of projects. 

In this section we depict the recommended ordering for development of verification environment 

elements. Such ordering must be in wits when developing executable verification plans. 

 Interfaces 

 Agents: Driver, Monitor, Sequencer, and sequences 

 Block level: configuration, Virtual sequencer, Virtual sequences, coverage model, constrained random 

sequences, scoreboard. 

 

 

 
 

Figure 1. A unique Test Bench for SoC 

 

 

2.2. Qualify VIP’s 

Qualify the VIP throughout development and before releasing them. First, several tools can conduct 

static checking on VIP components for conformance to coding styles and common errors. They can also give 

statistics about the size of code, cover groups and checks.  Secondly, typically a simulator can provide 

information about memory consumption and performance bottlenecks of VIP [4]. Third, VIPs are robust to 

user mistakes whether in connections or proper use. Developed sanity checks that can flag early a user error. 

Finally, peer review is still helpful to point-out issues that are missed in the other steps. 

 

2.3. Better Regression Management  

The usual scripts that compile and run testcases come short when running multifaceted UVM SoC 

verification environment. Typical desires on run management is to keep track of seeds, log files of different 

tests, flexibility of running different groups of tests, execution time, and running on local machine or grid. 

Once a regression is run we finish up with data that desires to be processed to come out for useful 

information such as which tests passed/failed, frequent failure messages, which tests were more efficient and 

which seeds produced improved coverage. 
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2.4. Environment Reuse 

Environments should be self-reliant having only familiarity about its components and universal 

elements and can communicate only through configuration mechanism, global events or TLM connections 

such as reset event. Following these rules, an environment at the block-level can be reused at the chip-level 

building the chip-level environment the integration of block-level environments [5]-[7]. 

 

2.5. Sequence Reuse 

It is important to write down sequences with study on reusing them. In this verification 

methodology, there are two types of sequences: sequence which sends transactions and sequences that starts 

sequences on sequencers. The latter is called a virtual sequence [8].  

Although goals are dissimilar between block and chip level testing, some virtual sequences from 

block-level can be reused at chip-level as integration tests. Interfaces that become internal at the chip-level 

can be regularly stimulated through some external interface. In order to construct the last type of virtual 

sequences reusable at chip-level, it is better to plan ahead to abstract the data from the protocol. Using this 

efficient verification test bench, the sequences can be reusable. Use functional abstraction by defining 

functions in the virtual sequence that can be overridden like: 

write(register_name, value); 

read(register_name, value); 

 

2.6. Scoreboard 

A critical component of self-checking testbenches is the scoreboard that is accountable for checking 

data integrity from input to output. A scoreboard is a TLM component [9], care should be taken not make 

active on a cycle by cycle basis but rather at the transaction level. In efficient verification methodology, the 

scoreboard is usually connected to at least 2 analysis ports one from the monitors on the input(s) side and the 

another on the output(s) Figure 2 depicts these connections. A Scoreboard operation can be summarized in 

the following equations: 

Expected = TF(Input Transaction);  

Compare(Actual , Expected); 

TF : Transfer function representing the DUT functionality from inputs to outputs. 

 

 

 
 

Figure 2. Diagram of Scoreboard 

 

 

Sometimes the operation is described as comparator-predictor. Where the comparator checks the 

actual versus predicted (compare function) and the predictor computes the next output (transfer function). 

Usually the transfer function is not static but can modify depending on the configuration of the devices. 

 

 

3. A BASIC COMMUNICATION SOC 

3.1. Blocks description 
In the below figure The I2C-bus is a Two-wire, half-duplex data link invented and specified by 

Philips (now NXP). The two lines of the I2C-bus, SCL and SDA, are bi-directional and open-drain, pulled up 
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by resistors. SDA is a Serial Data line and SCL is a Serial Clock line. Devices on the bus drag a line to 

ground to send a logical zero and release a line to send a logical one. 

Serial peripheral interfaces (SPI) are commonly used to provide economical board level interfaces 

between various devices such as Digital to Analog Converter’s, microcontrollers, Analog to Digital 

Converter’s and other. Many IC’s manufacturers manufacture components that are compatible with SPI. 

Serial communication is the process of transfer data one bit at a time, sequentially, over a link. A serial 

connection requires smaller amount of interconnecting cables (e.g., wires/fibers) and hence occupies less 

space. For high performance systems, FPGAs also uses SPI to interface as a output to a host, as a input to 

sensors. 

The Universal Serial Bus is a serial bus standard to interface devices. First designed to allow 

connections to the PC without expansion cards, the USB became a actual communication standard for 

approximately all electronic devices. The USB communication is for all time initiated by a Host and 

responded by a Device. Universal Serial hubs act as switches to expand the number of devices per Host. 

Special On the- Go devices can act as either Device or host and can change roles while connected to other 

OTG Devices   

The Master and Slave AMBA® AXI VIP (Advanced eXtensible Interface) is a extremely flexible 

and configurable verification IP that can be simply integrated into any SOC verification The I2S bus (Inter-

IC Sound bus) is a 3-wire, half-duplex serial link for linking digital audio devices in an electronic system. 

The bus handles audio data and clocks independently to minimize jitter that may cause data distortion in the 

digital analog system. I2S bus is widely used by equipment and IC manufacturers. This document describes 

the implementation of I2S Controller. The Universal Asynchronous Receiver/Transmitter is a highly flexible 

and configurable verification IP that can be simply integrated into any SOC verification environment [10]-

[13].  

 

 

 
 

Figure 3. Basic communication SOC 

 

 

4. RESULTS 

Figure 4 and 5 shows the comparison between a Testbench using Open Verification Methodology 

and a Unique Testbench using Efficient Verification Methodology from the figure Unique testbench takes the 

minimum time for simulation with comparison to the other one. Unique testbench using Efficient 

Verification Methodology is more competent to complete verification within a short time. Figure 6 shows the 

simulation waveform of SOC has been carried out using Efficient Verification Methodology. From this 

waveform, conclude transmission and reception of data through the design under verification (DUV). 
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Figure 4. Simulation Report using Normal Testbench 

 

 

 
 

Figure 5. Simulation Report using Unique Testbench 

 

 

 
 

Figure 6. Simulation Results 

 

 

5. CONCLUSION 

The specifications of System on Chip (SoC) are verified successfully using Efficient methodology 

on Cadence simulator. The verification methodology helped in performance improvement and simulation 

time reduction in SoC verification time from previous methodology (i.e 4.68 sec to 1.08sec). Verification is 

very crucial to find bugs which only appear with random stimulus. The constrained random approach is more 

time-efficient for reaching coverage goal compared to directed test method. 
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