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 Heart rate (HR) is one of vital biomedical signals for medical diagnosis. 

Previously, conventional camera is proven to be able to detect small changes 

in the skin due to the cardiac activity and can be used to measure the HR. 

However, most of the previous systems operate on near distance mode with a 

single face patch, thus the feasibility of the remote heart rate for various 

distances remains vague. This paper tackles this issue by analyzing an 

optimal framework that capable to works under the mentioned issues. 

Initially, plausible face landmarks are estimated by employing cascaded of 

regression mechanism. Next, the region of interest (ROI) was constructed 

from the landmarks in a face location where non rigid motion is minimal. 

From the ROI, temporal photoplethysmograph (PPG) signal is calculated 

based on the average green pixels intensity and environmental illumination is 

separated using Independent Component Analysis (ICA) filter. Eventually, 

the PPG signal is further processed using series of temporal filter to exclude 

frequencies outside the range of interest prior to estimate the HR. As a 

conclusion, the HR can be detected up to 5 meters range with 94% accuracy 

using lower part of face region. 
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1. INTRODUCTION 

 There is growing interest in measuring HR without contact, particularly for populations such as an 

elderly with fragile skin and premature infant. One of the prominent non-contact HR methods is by 

measuring the variation of reflected light intensity from the human skin that known as plethysmograph (PPG) 

signal. Basically PPG make use of a pulse oximeter to measure the light absorption rate as a result of light 

illuminates the skin. Since the amount of light absorption is proportional to the blood volume, the PPG signal 

can be used to measure the blood volume pulse. Some improvement of this concept has been done, however a 

special lighting condition is necessary such as from specific narrowband wavelength or from a special  

sensor [1].  

 Recent studies have shown a possibility to infer the PPG signal from a color-based method via 

commercial web cameras [2], [3]. For instance, works in [3] measure a HR from recorded face videos by 

detecting head location using Haar cascade method [8], computed the mean value of the three color channels 

inside the head region, run the Independent Component Analysis (ICA) to separate the PPG from the color 

channels, and eventually transform the signal to the frequency domain for finding maximum power strength 

with the range of 0.7Hz to 4Hz that indicate the HR frequency.  
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Instead relying on three channel of color traces, it has been reported in [4] that the green color 

channel provide strongest PPG signal since hemoglobin light absorption is most sensitive to oxygenation 

changes for green light compare to blue and red. However recent work in [3], claimed that single green trace, 

provide more accurate ICA outcome to separate between source and noise which in contrast with [5], which 

found that ICA slightly dropped the performance when using green trace alone. A head motion based method 

for pulse detection is proposed by [6] which show a promising outcome for translating a subtle motion into 

the HR estimator.  

    Most of the mentioned methods work well in controlled laboratory environment. However, their 

test subjects remain in static with near distance with the acquisition device. In real scenario it is common that 

the subject would move and also the distance would vary from the camera. The recent work in [7-10] 

addressing the motion issue by incorporating combination of facial landmark extractions, tracker and various 

illumination rectification. However, still they did not test the system various acquisition distances scenario in 

which the strength of remote HR reside since the task is daunting for the contact based HR system. In this 

paper, we investigate the capability of remote HR for acquiring data from various distances and provide an 

optimal framework that capable to satisfy the constraint. 

 

 

2. SYSTEM OVERVIEW 

Figure 1 shows overview of the proposed framework that consist of five main steps namely, facial 

tracker, signal extraction, Blind Source Separation (BSS) using ICA, filtering and lastly, histogram analysis. 

 

 

 
Figure 1. Overall system flow for the proposed framework 

 

 

 The input for this system is face video that was recorded by using a video camera and the output is 

the HR estimation reading that is measured by using beat per minute (bpm) unit. For the transformation 

process from input to the output, initially the facial tracker is applied to the image sequences. This facial 

tracker would track rigid and non-rigid facial landmark, and 49 points of important facial point would be 

displayed. The 49 points of human facial landmarks produced will be used for constructing region of interest 

(ROI). Next PPG signal is extracted from the constructed ROI based on temporal random trace information 

of green color channel. Since the signal acquired is usually contain noise generated from the environment, an 

ICA based BSS strategy is used to separate the primer PPG signal and the unwanted information. Following 

that, the primer PPG signal is undergo sequence of filtering step to obtain the optimal state of signal power 

spectral density (PSD) information and consequently the HR. However, relying on single sequence of HR 

reading is still subject to the measurement variation. To overcome this, a histogram analysis of repetitive HR 

reading is constructed based on the same ROI with different random traces. Eventually, the HR is estimated 

from the average of histogram with lowest variation reading. 

 

2.1. Facial Detection 

 Facial tracker is used in this system to detect the face and extract facial landmarks information. To 

satisfy the face detection requirement, a set of validated face regions is extracted using AdaBoost-based 

cascade with Haar like feature [11]. This classifier works by constructing a strong classifier (positive images) 

as linear combination weak classifiers (negative images). During detection, a series of classifiers are applied 

to every image sub-window with different scaling factor. Regions are considered valid if they pass through 

all the classifier stages.  

 From the detected face region, facial landmarks are detected by using cascaded of pose regression 

model [12]. The method works perform a raw initial guess of facial landmark positions and uses a cascade of 

regressors to infer the shape as whole and explicitly minimizes the alignment error over the training data. Let 
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S = (x1,x2…xp) denotes the coordinate of all p facial landmarks in a bounding box I and rt(.,.) be the regressor 

cascade, the current shape estimate of the facials location can be estimated by using following formulation : 

 

S
(t+1)

 = S
(t)

 + rt(I, S
(t)

)        (1) 

 

 The critical point of the cascade is that the regressor makes its predictions based on features, such as 

pixel intensity values and indexed relative to the current shape estimate. Each regressor in the cascade returns 

a vector which is used to update the current shape estimate in an additive manner. The method generally does 

not build any parametric model; instead merely study the correlations between image features to infer a facial 

shape. To train the regressor, each ground truth shape in the training set is transformed to the mean shape 

which is rescaled and centered at the origin. Sample of the detected 49 points facial landmarks is shown in 

Figure 2(a). 

 From the annotated facial landmarks location, a ROI of face region was constructed. In this paper, 

four ROIs were investigated to determine the most suitable patch that can be used in various distances 

requirement as shown in Figure 2(b). The first patch was on the right cheek of the face. Right cheek was 

chosen since less non-rigid motion is generated in this area compared to other regions. Next, the second patch 

was selected on the center of the face that includes eyes and nose region but excluding the forehead area 

since the forehead tends to be covered by hair. This area was chosen because previous study [13] reported 

that the center of face to be the most suitable ROI for video based HR. The third patch was the whole face 

since basically the larger the region, the possibility to extract the PPG information from a far distance is high.  

However, for the whole face region a reduction of 10% horizontal dimension and 20% of vertical 

dimension with respect to center location is performed to exclude plausible region that constitute to the 

background. Finally, the fourth patch was selected at the lower part of the face that includes nose and mouth 

but excluding eyes and chin area. This region was chosen because of there are less non-rigid motion in it and 

wider ROI dimension compared to the patch placed on the right cheek. From the selected ROI, random pair 

temporal green color channel values that indicate the PPG signal is extracted. 

 

 

 
 

Figure 2. Sample of facial tracker result, (a) 49 facial landmarks, (b) ROI for extracting the PPG signal 

 

 

2.2. PPG Signal Extraction and Noise Removal 

 In each of the constructed ROI the PPG signal is obtained randomly pickup two different locations 

inside the ROI, and consequently taps the reading of green color channel in the selected location over the 

predefined video sampling time. The Green channel was selected for PPG extraction because it provides the 

strongest PPG signal information compared to other color channel [4]. Sample of the extracted two traces of 

PPG is shown in Figure 3. It can be seen from the figure that the obtained signals contaminated with noise 

due to the effect from the environment and therefore need to undergo some filtering step prior to estimate the 

HR value. 

 

 

 
 

Figure 3. Sample of extracted two raw PPG signal from average of green trace in the face region 
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2.3. Noise Removal using ICA 

The raw PPG traces calculated from the green color channel of the tracked patch incorporated the 

illumination variation information and hence produced a noise traces. In this section, a mechanism on how to 

isolate the illumination effect that hinders an accurate PG signal extraction is described. Fundamentally, two 

factors that affect the reading of the raw PPG signal which are the blood volume variation cause by cardiac 

pulse and the illumination changes. The combination of both parameters can be represented by a linear 

correlation define by Equation (2) in which s is the green channel signal and y is the variation of illumination. 

Ideally if the y parameter can be estimated, then the pure cardiac pulse signal can be obtained. However, in 

practice the signal of y cannot be measured directly. 

 

PPGraw = s + y         (2) 

 

In this paper ICA is used separate the components of the green channel signal from the illumination 

variation effect. Basically ICA is one of the BSS techniques that capable to recover unobserved signal from a 

set of observed mixture in which the mixing process is unknown and assume to be linearly correlated. The 

raw PPG traces obtained previously is fed to the ICA by assuming the rectified PPG and the illumination 

components are independent. After solving for the components, the ICA will produce two separated signals 

as depicted in Figure 4. From the figure, it can be clearly seen that the fed two traces produce two 

components in which one of the ICA components signal pattern is quite similar with one of the raw traces. To 

explicitly determine the generated ICA signals belong to which group, i.e., PPG or illumination, nearest 

average Eulicdean distance measure is performed to find the similarity score between the two components 

and the traces, and the one with the lowest value will be labeled as the rectified PPG signal while the other 

one will be denoted as illumination variation . 

 

 

 
Figure 4. Sample of ICA implementation of BSS, original signal in the left side and two ICA components on 

the right side 

 

 

2.4. PPG Filtering 

Once the pure PPG signal is in hand, the final step is to determine corresponding heart rate value. 

However, the obtained signal still contains noise and some filtering step is necessary. In this paper, two 

temporal filter which are detrending [14] and moving average is implemented for reducing slow and non-

stationary trend of signal and polishing the random noise to make the signal smooth prior to frequency 

domain conversion. The filtered PPG signal is converted to frequency domain for determine the power 

spectrum density (PSD) using Welch method [15] with the constrained frequency spectrum within the range 

of 0.7Hz to 4Hz that represent the HR value range from 42bpm to 240bpm. Eventually, the HR is calculated 

by multiplying the maximal PSD response with 60. Illustration of the generated signal as a result of the 

elaborated process can be seen in Figure 5 which consist of detrending result in (a), moving average outcome 

in (b) and the corresponding PPG frequency that is converted using Welch method. 

 

 

 
 

Figure 5. Filtering step, (a) Detrending, (b) Moving Average, (c) Pwelch  with frequency range from 

0.7Hz – 4Hz 
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2.5. Histogram Analysis 

 The HR value obtained from a single sequence calculation is still subject to the variation and hence 

a histogram based analysis is performed to determine the consistent reading against repetition. In this paper 

10 repetition of HR reading from the same image sequence is performed. Any HR reading that is significant 

with the majority in the bin will be eliminated while the remaining will be used to determine an average of 

HR which shows consistency over the sampled time period. 

 

 

3. RESULTS AND ANALYSIS 

 To analyze the performance of HR reading over various distances and different face regions we 

conduct an experiment in an indoor environment under controlled light condition. In the experiment, a 

recorded video of 1440*1080 pixels resolution with 60 Fps is taken from participant with different distance 

setting of 1 meter, 2 meters and 5 meters respectively. During recording, the participant exhibit normal static 

motion along the process. Sample snapshots of experiment setting are shown in Figure 6 which indicates 

pictures taken with facial landmarks detected. 

 The analysis is conducted to determine an optimal cross correlation setting between distances and 

face ROI that yield highest accuracy of the estimated HR value. As mentioned previously, there were four 

ROI selected for this experiment which are right cheek, center face, whole face and lower face. All the patch 

will be utilize in each of the video taken at four different distances as explained above and the result is 

showcase in Table 1. From the table, for 1 meter reading (Figure 6 (top left)) the most accurate HR was 

found to be generated from right cheek region with 98.77% accuracy. Clearly this happen because of such 

region generate less non-rigid movement and hence would reduce the motion artifact in the obtained PPG 

signal, and consequently would results in more accurate HR reading.  

 

 

Table 1. Accuracy table for each patch corresponding to the distances 
                  Patch  

                  (ROI) 
 

Range (m) 

Right Cheek Center of Face Lower Part of Face Whole face 

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) 

( HR accuracy results for near distance ) 
1 98.77 77.78 87.65 87.65 

2 79.27 80.49 87.80 87.65 

( HR accuracy results for farther distance ) 
5 93.99 91.57 97.60 91.62 

Average 92.27 89.22 93.61 91.62 

 

 

 
Figure 6. Experiment setup to determine the HR value with detected facial landmarks from distance of  

1m (top left), 2m (top right) and 5m (bottom) 

 

 

Moving to a 2 meter case (Figure 6 (top right)), it is found that the most accurate HR was obtained 

from the lower part of the face area with 87.80% accuracy. Apparently, same as the right chick region, the 
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lower part yield less non-rigid movement and since the ROI dimension is bigger; it can generate an accurate 

HR reading even from a far distance. For a 5 meter case which consider as the farthest distance from the 

camera as indicate in Figure 6 bottom, the most accurate HR was also obtained from the lower part of the 

face area with 97.60% accuracy. Again, this was due to the less non-rigid movement in the area, so there was 

less motion artifact and bigger dimension as mentioned previously that make the obtained PPG to be more 

accurate. 

  Since the analyses were focusing on heart rate for various distances, the distance for both 

experiments ranges up until five meters. Quantitative assessment such as accuracy and percent of error are 

calculated using Equation below. 

 

                     (
                             

            
)         (3) 

 

         ( )                            (4) 

 

From the obtained data, for a single person HR reading over a 5 meters range, it can be deduce that 

the ROI that produce the most inaccurate reading was the patch that placed in the center of the face that with 

an average of 88.62% of accuracy while the optimal ROI is found to be from the lower part of the face with 

an average of 93.65% of accurate HR estimation. One of the reason that contribute to the inaccuracy of the 

HR reading is the eye movement is included in the selected ROI. However, generally the entire selected path 

is capable to produce around 80% of accurate HR estimation in each of the distance variation. 

 

  

4. CONCLUSION AND FUTURE WORKS 

This paper investigates effect of ROI variation over a different distance for non contact HR 

estimation framework. There were total of five steps in order to accomplish the framework which is video 

acquisition, facial detection, PPG signal extraction using, PPG signal filtering and histogram. From the 

experiments, we can conclude that the system capable to work properly with various distances variation 

ranging from 1 to 5 meters with an average accuracy of 92%. Among the evaluated ROI, we found that the 

lower part of face region capable to produce the highest average of accuracy over the distance variation with 

93.61%. 

 For future, the system is expected to be able to detect the HR reading from various ranging of skin 

tone and simultaneously extract the HR reading from a for multiple persons. We would also interested to 

study the effect of using different types of signal analysis method to obtain more accurate the HR reading. 

Apart from that, the system is also can be improved by reducing the processing time to make it applicable for 

real time data HR measurement scenario. 
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