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 An optimized empirical modelling for a 0.25µm gate length of highly 

strained channel of an InP-based pseudomorphic high electron mobility 

transistor (pHEMT) using InGaAs–InAlAs material systems is presented. An 

accurate procedure for extraction is described and tested using the pHEMT 

measured dataset of I-V characteristics and related multi-bias s-parameters 

over 20GHz frequency range. The extraction of linear and nonlinear 

parameters from the small signal and large signal pHEMT equivalent model 

are performed in ADS. The optimized DC and S-parameter model for the 

pHEMT device provides a basis for active device selection in the MMIC low 

noise amplifier circuit designs. 
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1. INTRODUCTION  

While fabrication process is the key aspect of device production, device modelling becomes 

essential in understanding the semiconductor device physics, as well as device fabrication process and 

characterization. Device modelling is utmost importance in analyzing device output characteristics and 

adequate prediction of device performance. It is now becoming more significant as a cost-effective way to 

virtually fabricate "Beyond Moore" devices as emphasized in the International Technology Roadmap for 

Semiconductor (ITRS) 2016 [1]. Modelling allows the designer to understand the semiconductor and its 

properties by using computational systems so that it accurately reflects the device behaviour. For instance, 

the empirical device models (EDMs) simulate the external characteristics of devices with equivalent  

circuits [2]. In addition, accurate modelling is required to predict the linear and nonlinear behaviour of the 

device and microwave circuit design such as in low noise amplifiers (LNAs) as well as current for the 

broadband signals [3-6]. By cutting the iteration number of fabrication for device characterization, device 

modelling reduces the time and cost required for developing a specific device or circuit [7]. The empirical 

modelling for the pseudormorphic high mobility transistor (pHEMT) sample devices is developed in 

Agilent’s Advance Design System (ADS) software. Practically, it is obtained by optimizing the component 

values to closely match the measured DC and S-parameters for the device [8]. The extraction of linear and 

nonlinear parameters from the small and large signal pHEMT equivalent model are presented. Finally, the 
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pHEMT model is optimized to be used in the monolithic millimeter wave integrated circuit (MMIC) LNA 

circuit design. 

 

 

2. DEVICE EPITAXIAL LAYER   

The empirical device modelling presented in this paper is for a 250nm T-gate pHEMT structure 

which is fabricated by utilizing conventional 1μm i-Line lithography and a novel solvent reflow  

technique [9]. The XMBE131 pHEMT is a two finger device with 50µm gate width, 250nm gate length and 

3µm source-to-drain separation. The strained channel In0.7Ga0.3As/In0.52Al0.48As pHEMT device is fabricated 

with both Pd/Ti/Au gate metallization scheme with conventional thermal evaporation. The epitaxial layer for 

the XMBE131 pHEMT sample is shown in Figure 1. The structure is made of a thin channel layer and double 

doping layer to enhance the carrier confinement in the channel. The device pinch off voltage is -1.2 Volt and 

exhibits great enhancement in the unity current gain frequency, fT  of 90GHz and current drivability (IDS) of 

580mA/mm [9]. 

 

 

 
 

(a)                                                           (b)   

 

Figure 1. (a) Epitaxial layer structures of sample XMBE131 and (b) schematic of in-house fabricated 

pHEMT sample (Thickness not to scale) 

 

 

3. PHEMT MODELLING   

  The empirical modelling for the pHEMT device is achieved with the optimization of linear model 

(small signal model) and nonlinear model (large signal model).  

 

3.1. Linear Model Development 

  The linear model for HEMTs relates the measured S-parameters with the electrical processes 

occurring within the device. Figure 2(a) illustrates the conventional HEMT structure with its equivalent small 

signal model shown in Figure 2(b). The topology in Figure 2 is assumed for building an equivalent circuit 

model of the device, along with physical correlation to the device; provides an excellent match over a wide 

frequency range. 

  The linear model of a HEMT consists of passive devices which can be categorized into intrinsic and 

extrinsic elements. The model provide advantages to the IC designer to accurately measure S-parameters of 

the device. The linear model presented in the paper is the most commonly used and followed technique 

developed by Dambrine et al. [11]. Using Agilent Integrated Circuit Characterization and Analysis Program 

(ICCAP) standard computer-aided design (CAD) tools, the intrinsic and extrinsic parameters were extracted 

from the measured S-parameter data. The intrinsic model parameters were obtained from hot (active) device 

bias point, while the extrinsic elements were extracted from the cold (pinched) device measurement [12]. The 

final element values for linear models were determined by optimization of the initial value to accurately fit 

the measured data.  

The extrinsic parasitic measurements are taken at zero drain bias, VDS=0V and gate voltage below 

the device pinch-off state, i.e. VGS < Vp. The generated initial linear model is optimized by fitting the 

modelled and measured S-parameter data which will consequently reduce the modelling error. The circuit 

setup for XMBE131 pHEMT extrinsic element extraction is shown in Figure 3. The two-port network circuit 

setup was terminated with 50Ω resistance at both input and output port. The measured dataset files from 

ICCAP is saved in the S2P components. The frequency range is set from 40MHz to 20GHz for the S-

parameter simulations.  
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(a)       (b) 

 

Figure 2. HEMT small signal equivalent circuit model [10-11] 

 

 

 
Figure 3. Circuit Setup for extrinsic element extraction (pinched) in ADS for XMBE131 

 

  

3.2. Nonlinear Model Setup 

  The nonlinear model consists of optimizing the modelling for the DC and RF characteristics of the 

device. The parasitic components were extracted from the S-parameter data set measured under different dc 

current. To develop the DC model, firstly the Rs, Rd and Rg resistances obtained from the linear model are 

substituted into the ADS EE-HEMT model. The EE-HEMT is an empirical analytic model based on fitting of 

the measured electrical characteristics of HEMTs. In addition to nonlinear capacitances, the nonlinear 

element of current functions at the drain-source, gate-source, and gate-drain are dependant on the 

instantaneous bias conditions (VGS and VDS). As the bias changes, the signal deviates from the static 

operating point which in turn changes the device’s performance characteristics. A relation of current-voltage 

for the bias conditions is then developed that approximates the measured data.  

  The EE-HEMT model equations were developed concurrently with parameter extraction techniques 

to ensure the model parameters was extractable from the measured data. The drain-source parameters and gm 

compression parameters are then extracted from the measured gm versus VGS.These parameters provide the 
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initial point for the nonlinear device model. The parameters are then tuned for optimum fit between the 

measured and modelled DC characteristics.  

 

 

4. RESULTS AND ANALYSIS  

4.1. Linear Model   

Table 1 tabulated the extrinsic elements of the sample device which are bias independent. These 

elements are the capacitance, resistance and inductance at the electrodes which results from metallization of 

the contact with the surface, resistance due to ohmic contact and variation of depletion charge with respect to 

the gate-source and gate-drain voltages. The gate inductance, Lg is usually large for short gate length devices. 

The gate resistance is a parasitic element that affects the maximum available gain of a FET, and is inversely 

proportional to the cross-sectional area of the metal along the gate finger.  

It can be observed in Table 1 that the capacitance values increase as the total device width is 

increased. Since the capacitance value is proportional to the contact area, the capacitance value increases as 

the contact pad areas become larger. The terminal resistances are also reduced as the device size is increased. 

For bigger gate width, the total gate area also increases; consequently the terminal resistances are reduced. 

 

 

Table 1. Extrinsic elements for XMBE131 pHEMT sample device (VDS=1V, IDSS = 20%)  
Device 

size (m) 

Cpg  

(fF) 

Cpd  

(fF) 

RS  

(Ω) 

Rg  

(Ω) 

Rd  

(Ω) 

LS  

(pH) 

Lg  

(pH) 

Ld  

(pH) 

2x50  7.73 6.62 0.69 0.83 0.32 18.70 27.20 23.84 

2x200  69.04 24.58 1.81 0.89 1.45 18.91 47.72 61.69 

 

 

Table 2. Intrinsic parameters for XMBE131 pHEMT sample device (VDS=1V, IDSS = 20%)  
Device 

size (m) 

gm  

(mS) 

T  

(psec) 

Ri  

(Ω) 

Rds  

(Ω) 

Cgs  

(pF) 

Cds 

 (pF) 

Cgd  

(pF) 

2x50 m 64.8 1.53 4.33 316.0 0.12 0.01 0.02 

2x200 m 321.8 2.98 2.82 65.6 0.08 0.03 0.03 

 

 

Intrinsic elements are bias dependant. In Table 2, the capacitance values increase as the total device 

width increased because the capacitance value is proportional to the contact area. Hence the capacitance 

increases as the contact pad areas become larger. The terminal resistances increase with increase in device 

size. As for a larger gate width, the total gate area is increased and consequently it will reduce the terminal 

resistances [13]. A significant reduction in the resistance between drain and source, Rds values is observed 

with the increasing of device width. There is a direct correlation between device width increases with the 

total area increased which consequently reduced the channel resistance.  

 

 

4.2. Nonlinear Model  

  The parasitic values implemented in the nonlinear modelling have been shown in the Table 2.  

Figure 4 shows the experimental (measured) and modelled DC characteristics fitted to each other. The I-V 

characteristics in Figure 4(a) shows excellent agreement between the two sets of data, except around the kink 

area. The kink effect is as expected for a short channel device as a result of impact ionization [14]. These 

show extremely well-behaved curves with a sharply defined pinch-off, a small output conductance and a very 

small amount of kink effect (indicating little carrier loss under low gate-bias). Nevertheless, for the bias 

conditions required, the low noise zone in this work (VDS = 1 V) is safely outside the kink region. Figure 4(b) 

depicts the threshold voltage which shows excellent fitting between measured and the DC empirical model. 

The curve fitting between the measured and modelled gm can be observed in Figure 4(c). The model 

demonstrated a very good agreement between the two data specifically at higher gate voltage, VGS. 

Nonetheless, there is a marginal divergence at lower VGS due to the limitations in the DC model [15] where 

kink anomalies are usually observed.  

The RF performance is extracted from the nonlinear model simulations. The parameters are tuned 

and optimized to give an excellent agreement between modelled and measured S-parameter curve. The 

optimization of parameters are important as to provide a realistic components value which will be considered 

for the LNA circuit design. Additionally the model is validated via modelling of the S-parameters over 

several bias points. Moreover, the drain-source currents (IDS) for every bias point are also monitored because 
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sometimes good matching of S-parameter data can be obtained, although a large difference between 

modelled and measured IDS values still exists.  

 

 

  
 

(a) 

 

 

(b) 

 

 
 

(c) 

 

 

Figure 4. Measured versus modelled XMBE131 pHEMT, (a) I-V characteristics (for VGS=0.1V to -0.8V,  

-0.1V steps), (b) Threshold voltage (for VDS=1V to 2V, 0.25V steps) and (c) Transconductance (gm) 

 

 

 
 

(a)       (b) 

 

Figure 5. Curve fitting for 2x50m XMBE131 (a) Forward and Reverse Gain and (b) Input and output 

reflection coefficient measured at 80% of maximum gm. 
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The biasing point is taken based on the percentage of maximum gm. In this work, the extracted S-

parameter for 80% gm and 90% gm bias point (~20% to 30% IDSS) is taken into consideration. The comparison 

of modelled and measured S-parameter for the nonlinear model of the XMBE131 device is depicted in  

Figure 5 the frequency range of 40MHz to 20GHz.  

The forward gain (S21), reverse gain (S12), input reflection coefficient (S11) and output reflection 

coefficient (S22) is obtained as illustrated in Figure 5. The gain curve (S21) is about 20dB in the range of  

1 ~ 3GHz.  The gain starts to decrease with the frequency and the input reflection coefficient (S11) is below -

10dB. The modelled data for the bias point show excellent agreement with the measured data with very small 

percentage errors. The excellent curve fitting in DC and RF characteristics is important in order to obtain an 

optimized active device. The optimized transistor model presented in Figure 6 is now completed and ready to 

be implemented in the MMIC LNA circuit design, i.e., in C-band and X-band application.  

 

 

 
Figure 6. A Complete transistor model for 2 x 50µm pHEMT sample XMBE131 

 

 

4.3. Noise Model 

The optimized pHEMT device model establish the prediction of the device behaviour, including the 

noise figure, the important figure of merit (FOM) for an LNA design. The Noise Figure (NF) is a measure of 

the level of noise generated from an active device when RF signal is applied. The device’s minimum noise 

figure (NFmin) is plotted against device width at a certain frequency to analyse the relationship and advantage 

of device scaling. For optimum device matching, NFmin can be viewed as the minimum Noise Figure (NF) 

that can be produced from the device. Thus, it is important to have optimum RF matching, as improper 

matching results in a larger noise figure compared to NFmin. Fukui’s [16] NFmin expression is used to find the 

NFmin parameter for the fabricated devices and is derived as in Equation (1) and Equation (2) with a constant,  

k1, of 3.5 [17].  

    

  







 gSm

T

RRg
f

f
kNF 1min 1log10     (1) 

 

where, fT  is the unity current gain cut-off frequency given by Equation (2). 

 

 gdgs

m
T

CC

g
F


      (2) 

 

Table 3 represents the minimum noise figure of XMBE131 pHEMT for various frequency of 

application. This includes calculation of NFmin at 2GHz for low frequency, 5.8GHz and 10GHz respectively, 

for C-band and X-band frequency. The NFmin for this sub-micrometer gate length pHEMT are very low as 

compared to other 1μm gate length devices. Based on Equations (1) – (2), this is due higher fT in submicron 

device (usually more than double of the 1μm device fT). However, the noise figure increases about 50% as 
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the cut-off frequency doubled. The estimated noise figures are significant for active device selection in the 

MMIC LNA circuit design [6].  

 

 

Table 3. Noise performance for fabricated pHEMT devices at VDS=1V, 20% IDSS 
Device gm  

(mS) 
NFmin@ 
2GHz 

(fT meas) 

NFmin  
@ 2GHz 

(fT mod) 

NFmin   
@ 5.8GHz    

(fT_meas) 

NFmin  
@ 5.8GHz 

(fT_mod)  

NFmin 

@ 10GHz    

(fT_meas) 

NFmin  
@ 10GHz 

(fT_mod) 

XMBE131 

2x50µm 
64.80 0.134 0.135 0.379 0.379 0.634 0.635 

 

 

The gm, Rs and Rg values are obtained from the optimized linear model. In general, a larger device 

will exhibit higher noise characteristics. This is anticipated due to the parameter gm, Rs and Rg in  

Equation (2). Based on the extrinsic and intrinsic parameter extraction discussed in earlier section, the 

device’s transconductance increases proportional with the increases in the device width. On the other hand, 

as the device’s total width increased, the total of Rs and Rg is reduced. However, the increases in gm outweigh 

the decrease in both parasitic values of Rs and Rg. Thus, NFmin follows the trend of the square root of gm, 

where larger values are obtained for larger devices. 

 

 

5. CONCLUSION  

The empirical models for an advanced highly strained In0.7Ga0.3As/In0.52Al0.48As pHEMTs with  

0.25µm gate length is developed in ADS using the EEHEMT model. The linear and nonlinear parameters of 

the small signal and large signal pHEMT equivalent model for the XMBE131 are presented and compared 

with the experimental results from ICCAP. The DC characteristics and S-parameter acquired from the 

models are closely matched with the experimental results. Based on the model, the noise figure of the device 

is calculated at C-band and   X-band frequencies to predict the minimum noise figure it might contribute 

when integrated into an LNA circuit. The optimized nonlinear pHEMT model obtained for XMBE131 

pHEMT sample will be used as an active device in the MMIC LNA circuit design. 
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