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 This paper proposes an adaptive continuous wavelet transform (ACWT) 

based Rake receiver to mitigate interference for high speed ultra wideband 

(UWB) transmission. The major parts of the receiver are least mean square 

(LMS) adaptive equalizer and N-selective maximum ratio combiner (MRC). 

The main advantage of using continuous wavelet rake receiver is that it 

utilizes the maximum bandwidth (7.5GHz) of the UWB transmitted signal, as 

announced by the Federal Communication Commission (FCC). In the 

proposed ACWT Rake receiver, the weights and the finger positions are 

updated depending upon the convergence error over a period in which 

training data is transmitted. Line of sight (LOS) channel model (CM1 from 0 

to 4 meters) and the Non line of sight (NLOS) channel models (CM, CM3 

and CM4) are the indoor channel models selected for investigating in this 

research . The performance of the proposed adaptive system   is evaluated by 

comparing with conventional rake and continuous wavelet transform (CWT) 

based rake. It showed an improved performance in all the different UWB 

channels (CM1 to CM4) for rake fingers of 2, 4 and 8. Simulations showed 

that for 8 rake fingers, the proposed adaptive CWT rake receiver has shown 

an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT 

rake receiver in different UWB channels CM1, CM2, CM3 and CM4.  
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1. INTRODUCTION  

In recent years, ultra wideband (UWB) technologies have drawn great interest in the wireless 

community [1], [2].Among various applications, one of the most promising is in wireless sensor networks 

(WSNs) [3], [4] .UWB systems have potentially low complexity and low cost, with noise-like signal 

properties that create little interference to other systems, are resistant to severe multipath and jamming, and 

have very good time domain resolution allowing for precise location and tracking.  

UWB system transmits very short pulses with relatively huge bandwidth [5]. UWB transmitted 

pulses have lower power of -10dB and bandwidth of order of several gigahertz‟s [6]. The use of this huge 

bandwidth accounts both advantages and disadvantages. The major advantage of this huge bandwidth is 

found when it is used in conjunction with the spreading techniques [7]-[13] provides robustness to jamming, 

as well as a low probability of detection. The major disadvantage of the UWB system due to its huge 

bandwidth is it always co-exists with the narrow band system or wide band system which already had 

dedicated frequency allocation in that band which results in high multiple signal interference [14].  

Due to this dense multipath environment received signal contains many delayed and scaled replicas 

of the transmitted pulses. As most of the energy is distributed in these multipath components which can be 
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captured and thus enhance the performance by using rake receiver that introduces the multipath diversity. In 

order to capture most of the energy distributed over these multipath components large numbers of rake 

fingers are to be used. Rake figures compose of weights, correlators with delayed versions of the transmitted 

pulse and template waveforms. These weights, delays will be the additions channel parameters that need to 

be estimated [15], [16]. 

A large number of research papers were presented on the Rake receiver [17] which also includes the 

study of the performance of the partial, chip, or symbol delays spacing Rake with channel estimator [18]. Its 

execution was additionally studied with two combining strategies the MRC and SLC (Square Law Combiner) 

in [19]. Likewise a Selective Rake (SRake) receiver which tracks the strongest L multipath components is 

proposed in [20] with its execution exhibited. In [21] the performance for UWB communication systems 

using different optimal model techniques in a RAKE receiver is investigated. 

The wavelet transform (WT) technique is a modern area of mathematics that is applied for 

compressing signals and images and removing noise from their coefficients [ 22]. The signal-to noise ratio 

(SNR) can be improved by using a WT approach that decomposes the signal into different scales and 

different levels of resolution. Wavelet video compression was evaluated and achieved in [`23], [24] for 

wideband, multi-carrier, code- division, multiple access (MC-CDMA) and a rake receiver over additive, 

white Gaussian noise (AWGN) and the Rayleigh fading channel. A novel wavelet rake receiver (WR) based 

on continuous wavelet transform (CWT) was presented in [25], and it showed enhancement in performance 

with a less complex receiver. 

In [26], [27], wiener filters were used to estimate the channel. This approach of channel estimation 

is known as minimum mean square error (MMSE) solution, which provides more reliable estimation in fast 

fading channel. However to calculate the optimal wiener filter coefficients, require matrix inversion 

calculation which is highly complex. In [28] a linear prediction filter was introduces which is completely 

based on decision- feedback mode. This method overcomes the computational complexity introduced by the 

wiener filter approach. 

In this paper, an adaptive continuous wavelet transforms (ACWT) based rake receiver is proposed 

and implemented where the finger gains and the delays are updated over the training period. LMS algorithm 

is used for the updating delays and gains of the finger. 

 

 

2. SYSTEM MODEL 

Two popular modulation types being considered for UWB are pulse-position modulation (PPM) and 

pulse amplitude modulation (PAM). Here, we consider systems of the PAM type, and a model for single-user 

PAM UWB transmission over channels with ISI. We have assumed a baseband transmission system, and 

hence all signals are assumed to be real-valued. The zero-mean independent and identically distributed(i.i.d) 

data symbols {sn} are passed through a unit energy pulse shaping filter p(t) which includes the effects of the 

transmit antenna. Note that we require the pulse shape to be unchanging from symbol period to symbol 

period, but our model is general enough to include either time hopping (TH) or direct sequence (DS) block 

spreading if, for example, p(t) is the sum of several delayed Gaussian monocycles.  

Pulse waveform generation is a key technology in UWB system. There are some good candidates, 

such as Hermite polynomial pulse, Gaussian pulse, narrow pulse based on a sinusoidal signal, etc. Gaussian 

pulse has some unique features, which are good for UWB system. So in this paper, second order derivative of 

Gaussian pulse is employed as the pulse signal of UWB. The expression of Gaussian pulse is: 
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Where A is the signal amplitude and is the pulse shaping factor. The expression of second order 

derivative of Gaussian pulse is: 
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Second order derivative of Gaussian pulse is known as monocycle. 

After pulse shaping, the signal undergoes the effects of a channel with M paths whose response 

given by: 
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Where α(m) and τ(m) are the  gain and delay introduced by the m
th

 path of the channel. 

 

 ( )  ∑   
 
    ∑  ( ) (   ( )    )   ( )   

       (4)  

   

Where T is the symbol rate and w(t) is additive noise. The noise is assumed to be a zero-mean wide 

sense stationary process that is uncorrelated with the data, and it may be colored due to narrowband 

interferers. 

In the case of no ISI and when the noise is AWGN, the optimal receiver is a filter matched to the 

received waveform (i.e. the combined response of the channel and transmit pulse shapes). Typically, this is 

implemented in a RAKE receiver structure with L fingers, which can be represented as a filter with response: 
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Where our model places no restrictions on the spacing of the RAKE delays θl and βl is the weight of 

the m
th

 finger, the sampled output of the RAKE receiver is then: 
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From above we get: 
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 is the time-autocorrelation of the pulse shape  
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 is the filtered noise. It is well known that the optimal 

combiner for the AWGN multipath channel is MRC, where L=M fingers. When the received signals on each 

finger are orthogonal (as is the case when there is no ISI), MRC attains the matched filter bound [7]. 

However, when the ISI becomes significant the orthogonality of the paths is violated unless care is taken in 

the design of the pulse shape (as in long-coded DS-CDMA systems where successive symbols are nearly 

orthogonal). For UWB-based high rate WPANs it is anticipated that spreading codes will be short, and 

therefore MRC is suboptimal even when the noise is AWGN. This motivates a smarter choice of combining 

weights βm, and finger delays θm, to combine the signal energy while compensating for the effects of ISI and 

narrowband interference. 

 

 

3. PROPOSED RAKE RECEIVER 

3.1. Continuous wavelet transform 

Wavelets are defined as small waveforms with different oscillatory structure that is non-zero for a 

limited period of time (or space). The wavelet transform is a multi-resolution analysis scheme where a signal 

is decomposed into different frequency components (i.e. at different scales). The wavelet transform basis 

functions are derived with various continuous scaling and shift parameters, a and b respectively, from the 

mother wavelet (MW) function ψ(t) as follows: 
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There are various MW like, Daubechies wavelets family, Morlet and Mexican Hat. The CWT of the 

signal s(t) is defined by the wavelet coefficients given by: 
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Where W(a, b) represents the similarity between the signal s(t) and the MR at the scale a and 

dilation b (i.e. like the correlation between s(t) and ψab(t)). The scale „a‟ is physically defined as an inverse 

proportional to the frequency. 
 

3.2. Proposed rake receiver 

In this proposed adaptive continuous wavelet transform (ACWT) based rake receiver, the 

continuous wavelet transform of each multipath component of received signal is taken first and is correlated 

with the template signal or reference signal, which is a continuous wavelet transform of transmitted pulse 

over different scales. Maximum ratio combiner is used to combine all the fingers output. After the MRC 

combiner decision logic is applied and data is estimated. Based on the estimated data and the actual desired 

data, error data is generated and LMS equalizers are used on this error data. The LMS equalizer updates the 

channel coefficients. Based on these channel coefficients rake parameters such as delay and finger gains are 

recomputed and updated. 

 

3.3. Adaptive LMS equalizer 

An adaptive equalizer is an equalizer that automatically adapts to time-varying properties of the 

communication channel. The most well-known adaptive algorithms are the LMS and the recursive least 

squares algorithms. Each of them has its own unique properties and applications. In this paper, we use the 

LMS algorithm due to its simplicity, good stability, and robustness to signal statistics It is a stochastic 

gradient descent method that uses the gradient vector of the filter tap weights to converge on the optimal 

Weiner solution.  

From the method of steepest descent, the weight vector equation is given by: 
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Where μ is the step-size parameter and controls the convergence characteristics of the LMS 

algorithm, e
2
(n) is the mean square error between the output y(n) and the reference signal which is given by, 
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In order to achieve a fast initial convergence speed and to retain a fast tracking ability in the steady 

state, large value for step size is chosen. On the other hand, large step size will result in large steady 

maladjustment error. 

 

 

4. SIMULATION RESULTS AND ANALYSIS  

This section presents the simulation results and the performance analysis of the ACWT rake receiver 

over the conventional rake receiver and the CWT rake receiver. For simulation purpose we have chosen the 

transmitted pulse as Gaussian 2
nd

 order derivate pulse of pulse width 0.5 ns with a sampling period of 0.05ns. 

Frame time of 20ns seconds is selected with a constrain such that one pulse per frame. 

UWB channels CM1, CM2, CM3 and CM4 with a channel impulse response of 0.5 are used as the 

medium for transmission of data. Initial training data of 100 bits is given to system for the channel estimation 

purpose.  

Figure 1, Figure 2 and Figure 3 shows the performance of the adaptive CWT rake receiver with the 

conventional rake receiver and the CWT rake receiver for CM1 UWB channel with L=2, 4, 8 respectively. 

For UWB channel CM1, Figure 1 shows that when the number of rake fingers (L) equal to 2, in 

adaptive continuous wavelet rake receiver, BER of 10
-3

 is achieved at a very low SNR i.e. at 13 dB where as 

in continuous wavelet rake receiver we achieve the same BER at SNR of 16 dB and in convention we 

achieve at very high SNR compared to adaptive CWT and CWT rake receivers. As the number of rake 

fingers increases, there is an improvement in the performance of both CWT and adaptive CWT rake receiver 

as seen in the Figure 2 and Figure  3 .For L=4 and 8  performance of proposed rake receiver is 3 dB and 2dB 

superior to that of the CWT rake receiver. 

 

 

https://en.wikipedia.org/wiki/Equalizer_(communications)
https://en.wikipedia.org/wiki/Communication_channel
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Figure 1. BER performance analysis for selective 

rake receiver with CM1 and L=2 

 

Figure 2. BER performance analysis for selective 

rake receiver with CM1 and L=4 

 

 

 
 

Figure 3. BER performance analysis for selective rake receiver with CM1 and L=8 

 

 

Figure 4, Figure 5 and Figure 6 shows the performance of the adaptive CWT rake receiver with the 

conventional rake receiver and the CWT rake receiver for CM2 UWB channel with L=2, 4 and  

8 respectively. 

 

 

  
 

Figure 4. BER performance analysis for selective rake 

receiver with CM2 and L=2 

 

Figure 5. BER performance analysis for selective 

rake receiver with CM2 and L=4 
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Figure 6: BER performance analysis for selective rake receiver with CM2 and L=8 

 

 

For UWB channel CM2, Figure 4 shows that when the number of rake fingers (L) equal to 2, in 

adaptive continuous wavelet rake receiver BER equal to      is achieved at a very low SNR i.e. at 16 dB 

where as in continuous wavelet rake receiver (CWT) we achieve the same BER at SNR of 19 dB and in 

convention we achieve at very high SNR compared to adaptive CWT and CWT rake receivers. As the 

number of rake fingers increases, there is an improvement in the performance of both CWT and adaptive 

CWT rake receiver as seen in the Figure 5 and Figure 6. For L=4 and 8 performance of proposed rake 

receiver is 3 dB and 3dB superior to that of the CWT rake receiver. 

Figure 7, Figure 8 and Figure 9 shows the performance of the adaptive CWT rake receiver with the 

conventional rake receiver and the CWT rake receiver for CM3 UWB channel with L=2, 4 and  

8 respectively.  

For UWB channel CM3, Figure 7 shows that when the number of rake fingers (L) equal to 2, in 

adaptive continuous wavelet rake receiver, BER of      is achieved at a very low SNR i.e. at 18 dB where as 

in continuous wavelet rake receiver we achieve the same BER at SNR of 28 dB and in convention we 

achieve at very high SNR compared to adaptive CWT and CWT rake receivers. As the number of rake 

fingers increases, there is an improvement in the performance of both CWT and adaptive CWT rake receiver 

as seen in the Figure 8 and Figure 9. For L=4 and 8 performance of proposed rake receiver is 10dB and 10dB 

superior to that of the CWT rake receiver. 

Figure 10, Figure 11 and Figure 12 shows the performance of the adaptive CWT rake receiver with 

the conventional rake receiver and the CWT rake receiver for CM4 UWB channel with L=2, 4 and 8 

respectively. 

 

 

  
 

Figure 7. BER performance analysis for selective 

rake receiver with CM3 and L=2 

 

Figure 8. BER performance analysis for selective 

rake receiver with CM3 and L=4 
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Figure 9. BER performance analysis for selective rake receiver with CM3 and L=8 

. 

 

  
 

Figure 10. BER performance analysis for selective 

rake receiver with CM4 and L=2 

 

 

Figure 11. BER performance analysis for selective 

rake receiver with CM4 and L=4 

 

 

 
 

Figure 12. BER performance analysis for selective rake receiver with CM4 and L=8 

 

 

For UWB channel CM4, Figure 10 shows that when the number of rake fingers (L) equal to 2, in 

adaptive continuous wavelet rake receiver, BER of      is achieved at a very low SNR i.e. at 17 dB where as 
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in continuous wavelet rake receiver we achieve the same BER at SNR of 36 dB and in convention we 

achieve at very high SNR compared to adaptive CWT and CWT rake receivers. As the number of rake 

fingers increases, there is an improvement in the performance of both CWT and adaptive CWT rake receiver 

as seen in the figure 11 and 12 .For L=4 and 8 performance of proposed rake receiver is 3dB and 2dB 

superior to that of the CWT rake receiver. 

 

 

5. CONCLUSION  

The huge bandwidth occupancy of the UWB system led to the development of the CWT rake 

receivers. Based on this, a fully adaptive CWT rake receiver was designed and implemented in this paper. As 

the channel is considered to be blind, a training based channel estimation and a LMS equalizer for delay and 

weights adjustment is studied and implemented. On comparing, the adaptive CWT rake receiver, CWT rake 

receiver and conventional rake receiver with 2, 4 and 8 rake fingers of UWB channel models one to four 

(CM1 to CM4), we conclude that  adaptive CWT rake receiver  has shown better performance compared to 

remaining rake receivers. Simulations showed that for 8 rake fingers, the proposed adaptive CWT rake 

receiver has shown an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT rake receiver 

in different UWB channels CM1, CM2, CM3 and CM4.  
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