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 This paper presents architecture of backpropagation Artificial Neural 

Network (ANN) and Support Vector Regression (SVR) models in supervised 

learning process for cement demand dataset. This study aims to identify the 

effectiveness of each parameter of mean square error (MSE) indicators for 

time series dataset. The study varies different random sample in each demand 

parameter in the network of ANN and support vector function as well. The 

variations of percent datasets from activation function, learning rate of 

sigmoid and purelin, hidden layer, neurons, and training function should be 

applied for ANN. Furthermore, SVR is varied in kernel function, lost 

function and insensitivity to obtain the best result from its simulation. The 

best results of this study for ANN activation function is Sigmoid. The 

amount of data input is 100% or 96 of data, 150 learning rates, one hidden 

layer, trinlm training function, 15 neurons and 3 total layers. The best results 

for SVR are six variables that run in optimal condition, kernel function is 

linear, loss function is ౬ -insensitive, and insensitivity was 1. The better 

results for both methods are six variables. The contribution of this study is to 

obtain the optimal parameters for specific variables of ANN and SVR. 
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1. INTRODUCTION  

Artificial Neural Network (ANN) is a structure of learning systems where it is inspired by living 

organisms, especially to a human system. It consists of a very complex network that is equipped with some 

neurons which are interconnected each other, these neurons work to remember, to calculate, to generalize, to 

adapt, to get low dynamism and has high flexibility. SVR is a method to contribute the solution by small 

subset from the training points where produce the enormous computational advantages. The e-insensitive loss 

function pretends the existence of the global minimum solution and the optimization bound [1]. 

Support Vector Regression (SVR) can improve various interesting features and produce a better 

performance [2]. The calculation is constructed on the conception of minimization in structural risk. The 

concept of performance is better than the traditional Empirical Risk Minimization (ERM) where it was 

worked in conventional neural networks [3]. Actually, SVM has the purpose to solve the classification 

condition, but lately it can be used in the regression domain. Originally, it was designed for solving pattern 

recognition. Determination of hyperplane is separating the positive and negative environment value of them. 

This method is very command used in fundamental risk minimization and numerical learning theory [4]. The 

learning and training error rate were used for testing in the limited data error. ANN and SVR are the methods 

that could be run data to find the best model with their data’s characteristic [5]. The model will represent the 
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condition of data accuracy [6]. The model was treated the best accuracy if the combination of the hidden 

layer, the neuron, the activation function and the kind of training function contribute the smaller Mean 

Square Error (MSE) belong to the kinds of data that forecasted where it was compared to the original data. 

The combination of parameters that run is called architecture [7].  

 This paper is mainly propose an ANN  and SVR approach to choose the best fit of parameters 

before it could be used to the specific steps of the network. ANN’s parameters are a variety in percent of 

data, the hidden layer, the neuron, the transfer function, and training function. Some parameters of SVR are: 

kernel function, lost function and insensitivity. The architecture will influence the result of measurement of a 

network. 

 

 

2. METHODOLOGY 

The methodology will brief the view step of architecture, each parameter that representing both 

methods between ANN and SVR. In this research will focus in a backpropagation network and eisensitive to 

SVR[8]. The process of methodology is illustrated at Figure 1. 

 

 

 
 

Figure 1. Methodology of study 

 

 

3. RESULTS AND ANALYSIS 

3.1. Data experiment 

The variables determinatof demand are GDP growth (D1); Population (D2), A potential customer 

(D3),; Price (D4); Sales (D5); Advertising (D6); Quality (D7); Expectation future price (D8); Preference 

price,(Trend seasonal) (D9) [9]. The fluctuations of data show the characteristic of time series data set in 

monthly basis or in 8 years cement demand [10].  

 

3.2. Design of ANN parameters 

3.2.1. Test of input variable 

The difference variable has been calculated above with selected data correlation to demand and the 

total dataset. This experiment shows the influence of the amount of input variables with sigmoid as a transfer 

function Table 1. Table 1 the variables from 2 variables were varied to 6 variables. When the amount of 

variables increase, the MSE tends to decreased. The smallest was 6 variables, with the MSE 3.78e-
6
 (Post 

processing value but it was not reple back to the initial scale, it is eligible to compared each other). The 

purpose model of ANN is shown in Figure 2(a) and Figure 2(b). 
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Table 1. Test Run the Amount of Variables 
 

Amount of variables MSE 

2 (D3, D4) 4.20e-6 

4 ( D3, D4, D5, D6) 6.22e-6 

6 (D3, D4, D5, D6, D7,D9) 3.78e-6 

 

 

 
 

Figure 2. The purpose concept of backpropagation neural network 

 

 

3.2.2. Test of entrance dataset 

Six variable input data was varied from 40% to 100% then measured the MSE, the resulted can be 

seen in Table 2. Table 2 when percent of data increase the MSE decrease. The minimum MSE results 100% 

of data.  

 

 

Table 2. Varying Percent Input of Data 
 

Percent Data Feed Data  MSE 

40% 38 8.03e-7 
50% 48 7.79e-7 

60% 58 7.88e-7 

70% 68 7.77e-7 
80% 78 6.61e-7 

90% 88 5.68e-7 

100% 96 4.73e-7 

 

 

3.2.3. Test difference of activation function  

The test for this activation function threated 2 kinds of activation function. They were sigmoid and 

purelin. This activation aimed to pursue the activated of the data to process their range. Table 3 shows if the 

variable increased the MSE of sigmoid tend to the decreased weather has a peak at the 4 variables. Variable 6 

is smallest for sigmoid.  

 

 

Table 3. Run with different Activation Function 
 

No Variables MSE 

Sigmoid Purelin 

1 2 4.20e-6 5.30e-6 

2 4 6.22e-6 1.13e-6 

3 6 3.78e-6 4.26e-6 

 

 

3.2.4. Test of learning rate 

The learning rate tried some kinds of rate: 50,100,150 and 200. It can be seen in Table 4. Table 4 

shows that learning rate increased to contribute the impact of the MSE decreased at point 150. This point was 

contributed the smallest error with 0.000189. 
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Table 4. Run with a different Learning Rate 
 

Neuron MSE 

50 0.000201 

100 0.000225 
150 0.000189 

200 0.000210 

 

 

3.2.5. Test of a hidden layer 

Hidden layer set try with 1, 2 and 3, (from: Sigmoid, 96 data). The test with random blocking, see in 

Table 5. The Table 5 shows the group layers combine in three observations. It tends to decrease in their pool. 

Then from the layer 1 MSE is the smallest at 0.000248. The 1 layer will be used [11]. 

 

 

Table 5. Run the Hidden Layer 
Observation  (Group) 

Layer 
Result 
(MSE) 

1 1 0.000349 

2 1 0.000248 
3 1 0.000378 

4 2 0.000256 

5 2 0.000339 
6 2 0.000363 

7 3 0.000313 

8 3 0.00037 
9 3 0.000445 

 

 

3.2.6. Test the amounts of neuron in the Layer 

The test amount of neuron were tested with 3 different neurons, 6, 8 and 10. It shows in Table 6.  

Table 6 shows that the amount of neuron was increased will contribute the MSE was decreased and 10 

neurons were the best contributed to error. 

 

 

Table 6. Run with a different Amount of Neuron 
 

Amount of Neuron MSE 

6 0.00481 
8 0.00452 

10 0.00310 

 

 

3.2.7. Test of network training function 

The various network training functions are applied in this experiment to see the effectivity each 

network training function, it can be seen in Table 7. Table 7 shows the variety of network training functions 

and the best training function is Trainlm and the second is Traingdm. The study is tried with six variables and 

shows in the Table 1 that the amount of variables are increased the MSE decreased with minimum 3.78e-6. 

The variable will influence the result output of prediction, in this research six variables are better amount 

than the smaller dataset, this is very reasonable for neural network powerful to simulate nonlinear belong the 

number of different variables in horizon terms of time [12].  

Then at Table 2 shows the amount of data increase while the MSE decrease and the best percentage 

is 100% or 96 amounts of data with MSE 4.73e-7. This is reasonable for the bigger data should improve the 

better result of prediction from the output pattern of neural network for this characteristic of dataset. This is 

relevant to the theory of neural network that neural network is better working with big data then smaller, 

because the smaller data could not do the training process more accurately and the bias will be  

higher [13], [14].  

Table 3 shows the test of activation functions are varied with Sigmoid and Purelin, the best 

activation function is sigmoid on six variables compare to each other on the same amount of variables so it 

would be used for the parameters to keep smoothly running to execute data on the range of 0 to 1. Table 4 

shows the different learning rate from 50 to 200 and the best one was at 150. This learning rate will help the 

data to process in the overlap of the real data before testing the data to prediction. In this section, the rule 

defines the network weight on trial and error by an epoch. The error is updated to supervised learning until 

found the smaller network error [15].  
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Table 5 shows the varieties of layer and the observation of the best MSE with 0.000248 with layer 1, 

the layer to help the data running on the optimal to keep the over fitting process, because if too many layer 

will not take the long time process. It will also occure the over fitting with the data weather the layer should 

be obtain the better result but the overfitting will be stopped on the process of forecasting dataset. In this step, 

the number of weights do the iterate calculation to the hidden layers part. The numbers of weights are 

depending on the size of training set to the individual reflection of data and use for actual forecasting dataset. 

On the table shows, that more amount of hidden layers contributes unsatisfy result after it was run more 

amount of hidden layers.  Some recommendations from other researchers very common to use one of hidden 

layer is better than more in a process of it. 

Table 6 from this experiment show the ―differences‖ amount of determination neurons in hidden 

layer, the step was starting from the smallest number to higher number of neurons where the contribution of 

the neuron significantly to get the smaller MSE. The random number sample are taken from 6 to 10 and this 

determination obtain the best MSE 0.00310 with 10 neurons [16]. Table 7 tells the variation of training 

function where the best result is Trainlm with MSE 0.000234 in algorithm of Levenberg Marquadt. In this 

case, Trainlm is better than sigmoid weather sigmoid is more common is used to train backpropagation 

algorithm [17]. 

 

 

Table 7. Different network training function 
Training Function MSE 

Trainlm 0.000234 

Traingdm 0.000428 

Trainingda 0.000817 
Traingdx 0.00110 

 

 

From the discussion part, it can conclude that the result will be given the best fit of data if use the 

selected variables, meaning that the result from each training function will be influenced significantly and 

reduce the overfitting process to obtain the optimal condition.  

 

3.3. Design of SVR’s parameters 

There are some parameters in SVR to construct the SVM for predicting. However, the two dominant 

relevant are e-insensitivity and kernel function because both parameters could be increased the e-mean and 

decreased the error and increasing the accuracy of the process of data. It can decrease the number of SVs 

leading to data compression. The parameters of SVR are kernel function, ε-insensitive loss function, 

insensitivity, an upper bond. The test is using the different amount of data. The data will be used 6 variables. 

Kernel Function: Linear, Polynomial, Radial Basis Function, Tangent Hyperbolic, and Loss function’s 

parameters are e-insensitive, Quadratic, Laplace and Huber. Insensitivity is 1. Kernel Function is the 

classification problems in optimal condition σ can be computed based on Fisher discrimination. It is also to 

regression the problems in the basic of scale, space theory, and it is demonstrated the existence of a certain 

range of σ, within the generalization performance is stable. A certain important in the range of σ can be 

reached via dynamic evaluation. In conclusion, the lower bound of an iterating step size of σ is given. Loss 

function is the relationship function between error and the penalty to that error. The differences of loss 

function will produce the differences of SVR. Loss function  ɛ-insensitive is the very common. The 

experiment starts from the 6 variables and measure the result of both parameters, such as: 

 

3.3.1. Test of kernel function and loss function. 

The kernel function and loss function were tested with linear, polynomial for Kernel, and e-

insensitive for loss function. It can be seen in Table 8. Table 8, the linear is better than polynomial in a 

Kernel Function. It was the best choice for MSE. The other side loss function is better for einsensitive. 

 

 

Table 8. Run different Kernel Function and Loss Function 
Gaussian Kernel Function Loss Function 

 

Statistic Linear Polynom 

Means 0.2007 0.2007 

MSE 0.0021 0.0257 

SD 0.0018 0.0018 

 

Statistic e-insensitive 

Means 0.2007 

MSE 0.0018 

SD 0.0021 
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3.3.2. Test the “upper bond” 

Choose e-isensitivity as a focus on a variety of variables, the test with UpB 2 and 3 from Table 9, as 

follow: Table 9 the upper bond 2 and 3 are no changed at al. It can be chosen number 2, means that the result 

of the einsensitive whether it was changed, it would be no impact to the einsensitive.  

 

 

Table 9. Run with a different Upper Bond in e-isensitive 

 

UpB=2 einsensitive 

Means 0.2007 

MSE 0.0021 
SD 0.0018 

 

UpB=3 einsensitive 

Means 0.2007 

MSE 0.0021 
SD 0.0018 

 

 

3.3.3. Check the insensitive number 1 and 2 

This test was varied of the insensitive: 1 and 2. The tested can be seen at Table 10. Table 10 

insensitive 1 and 2 are tried with e-insensitive and both of them are the best. But usually better use the 1 

insensitive. This also shows no effect to the result whether it is changed.Table 8 shows the variation of 

Kernel function and loss function. The kernel function variation is linear on good result and shown better 

than polynomial with 0.0021. The loss function is small enough to be used with einsensitive with MSE 

0.0018. The kernel functions have function of constructing the nonlinear decision hyper-surface on the input 

space of SVR. Both of them must be selected correctly where the structure was defined on the dimensional 

feature space and order complex to end solution [18]. Other researcher uses the same Gaussian kernel 

function for predict the performance [19] but in this research try two kind of Gaussian kernel functions, they 

are linear and polynomial. Table 9 shows the upper bond try with 2 and 3 numbers, but it shows that no 

change whether it have been changed for both numbers, it can be seen in Table 9, this function to keep the 

accuracy in the hyperplane area where it was placed on the points of training dataset [20]. Generally, it uses 

one as the upper bonds for the experimental.  

 

 

Table 10. Run with different i-nsensitivity 1 and 2 

 

Ins=1 einsensitive 

Means 0.2007 

MSE 0.0021 

SD 0.0018 
 

Ins=2 einsensitive 

Means 0.2007 

MSE 0.0021 

SD 0.0018 

 

 

Table 10 shows the insensitivity with 1 and 2 with MSE 0.0021 and this matter also no changes the 

result of MSE from the different number, choose insensity 1, the insensitive have the function of to fit the 

training data  from Table 10.  As originally, the purpose use svm was for solving the pattern recognition 

cases, but lately has been extended to solve nonlinear regression estimation cases such as in academic and 

industrial platforms e-insensitive loss function [21]. For svr the result from each parameter will be influenced 

significantly by the result. Because the svr will transform the data to be linier separable in the feature space 

of hyperplane to be the best regression. This method has promised the good methods in the future. 

 

 

4. CONCLUSION  

Based on this study, this is the initial step to the next step for the future experiment and the varieties 

of parameters of demand could be influenced on the artificial neural network and support vector regression 

methods. It can be concluded as follow: ANN could be an effective run on the ―differences‖ parameters with 

six input variables, each condition has the optimal point itself. The result of this study was as follow: the 

activation function was Sigmoid. The amount of feed data was 100% or 96, 150 learning rate, 1 hidden 

Layer, 10 neurons, trinlm for training function, 3 layers for total layer, set up error 0.001 and work with a 

network of feed-forward backpropagation. Furthermore, the SVR as well as the amount of variables were 6. 

The general parameters were used with linear kernel function, e-insensitive loss function, and one 

insensitivity. Some variables are tried in this study for svr but not show the significant changes, means that 

the svr does not need to identify the initial parameter especially for upper bond and insensitive. 

If these initial condition of parameters are used to do the next step for other purpose the result of 

training and simulation should be quickly and easy to get the optimal condition of network process data due 

to the characteristic of neural network able to work in nonlinearity and produce the suitable task for other 
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purposes performance. Actually there is no specify way to get the best result of the network process data, 

mostly, it is do it with trial and error but at least with this study the way to define the optimal condition first 

before to do many trial and error methodology. This study finding the way how to get the starting initial 

condition to start neural network process.  

ANNs and SVR are very talented method to better performance of the network result for many 

purposes, such as for forecasting, robotic, automotive, medical equipment’s and many things else. Some 

researchers have many compared the performance of traditional methods which is study in statistical major to 

these methods, specially neural network methods but for SVR the study still limited and need to develop 

more knowledge finding many information about this methods.  

Both of these methods are very special case because they do not need the statistical testing method 

specifically. Linear and nonlinear can do with this methods, parametric and nonparametric as well. Even, 

these methods will be better working with the big dataset, because it can easy to train the dataset and give the 

better result. The Suggestion to the next study is a development of these optimization condition’s parameters 

for ANN and SVR to do the further study such as forecasting of determinant of demand with development of 

other method or hybrid method. 
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