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 An efficient Viterbi decoder is introduced in this paper; it is called Viterbi 

decoder with window system. The simulation results, over Gaussian 

channels, are performed from rate 1/2, 1/3 and 2/3 joined to TCM encoder 

with memory in order of 2, 3. These results show that the proposed scheme 

outperforms the classical Viterbi by a gain of 1 dB. On the other hand, we 

propose a function called RSCPOLY2TRELLIS, for recursive systematic 

convolutional (RSC) encoder which creates the trellis structure of a recursive 

systematic convolutional encoder from the matrix “H”. Moreover, we present 

a comparison between the decoding algorithms of the TCM encoder like 

Viterbi soft and hard, and the variants of the MAP decoder known as BCJR 

or forward-backward algorithm which is very performant in decoding TCM, 

but depends on the size of the code, the memory, and the CPU requirements 

of the application. 
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1. INTRODUCTION 

The spectrum of frequencies is a very limited and in demand resource. Its distribution is severely 

regulated by the International Telecommunication Union. That is why one of the most important objective in 

the design of a digital communication system is the maximum exploitation of the available spectrum. 

Traditionally, coding and modulation have been considered as two separate entities [1]. In 1982, the work 

presented by Ungerboeck [2] showed that a joint optimization of the coding and the modulation was possible: 

the trellis coded modulation or TCM, which is based on the same principle as the block-coded modulation, 

but is of infinite dimension. The transmitted data forms semi-infinite or infinite sequences. The principle 

stated by Forney applies equally to modulations encoded in trellis and modulations coded in blocks. 

Nevertheless, trellis-coded modulations do not lead to elements of a network of points, since their dimensions 

are infinite. They are based on the partition of classical constellations (PSK or QAM) into subsets of higher 

minimum distance. Transitions from one subset to another are made in a convolutional code. The gain in 

terms of minimum distance must exceed the loss in terms of the number of useful bits per symbol so that the 

coded modulations are more efficient than the conventional ones. 

In the first part of this work, we present the basic theory of trellis coded modulation. In the second 

part, we present the algorithms of decoding TCM encoder by classical Viterbi, MAP and its variants Log-

MAP, max-log-Map decoder, and we present our proposed Viterbi which is improved by the window system. 

In addition, we also present a comparison between Viterbi soft and hard decoders shown over AWGN 

channel. To close this part we present the simulation which has been done using MATLAB program and the 
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results as seen in AWGN channel with 2, 3 memories. In the third part, we propose a function which is called 

RSCPOLY2TRELLIS for recursive systematic convolutional (RSC) encoder which creates the trellis 

structure of a recursive systematic convolutional encoder from the matrix “H” and we present a simulation of 

the comparison between RSC TCM, 8PSK with Viterbi soft, MAP, Log-Map, and Max-log-map. Finally, the 

last section presents the conclusion of this paper. 

 

 

2. RELATED WORKS 

In this section, we present some related works which had used the decoding algorithms: Viterbi, 

MAP, and Log-Map moreover the encoder TCM with Ungerboeck mapping and Gray code mapping (UGM). 

In [3], Manish Kumar and al had made a comparison in the latency performance of the RSC-RSC 

serial concatenated code using non-iterative concatenated Viterbi decoding to RS-RSC serial concatenated 

system codes using concatenation of Viterbi & Berklelamp-Massey decoding. The simulation results had 

shown that by increasing the code rate, the latency decreases & RSC-RSC is to be a better code rather than 

RS-RSC which has low latency. Hence RSC-RSC system is more suiTable for low latency applications. 

In [4], Ilesanmi Banjo Oluwafemi improve the performance of two hybrid concatenated Super-

Orthogonal Space-Time Trellis Codes « SOSTTC » topologies over flat fading channels. The encoding 

operation is based on the concatenation of convolutional codes, interleaving, and super-orthogonal space-

time trellis codes and the decoding of these two schemes were done by applying iterative decoding process 

were the symbol-by-symbol maximum a posteriori (MAP) decoder is used for the inner SOSTTC decoder 

and a bit-by-bit MAP decoder is used for the outer convolutional decoder. 

In [5], the work of Sameer A Dawood and al had shown the effectiveness of turbo codes to develop 

a new approach for an OFDM system based on a Discrete Multiwavelet Critical-Sampling Transform 

(OFDM-DMWCST). They used of turbo coding in an OFDM-DMWCST system is useful in providing the 

desired performance at higher data rates. Two types of turbo codes were used in this work, i.e., Parallel 

Concatenated Convolutional Codes (PCCCs) and Serial Concatenated Convolutional Codes (SCCCs). In both 

types, the decoding is performed by the iterative decoding algorithm based on the log-MAP (Maximum A  

posteriori) algorithm. 

In [6], Bassou and Djebbari introduced a new type of mapping called the Ungerboeck gray trellis 

coded modulation (TCM-UGM) for spectral efficiency greater than or equal to 3 bits/s/Hz. This TCM-UGM 

code outperforms the performance of Ungerboeck TCM code by 0.26 dB over Gaussian channel and 2.59 dB 

over Rayleigh fading channel at BER = 10-5. This technique is combined with our approach to getting more 

efficiency. 

In [7], Trio and al had proposed a VLSI architecture to implement reversed-trellis TBCC (RT-

TBCC) algorithm. This algorithm is designed by modifying direct-terminating maximum-likelihood (ML) 

decoding process to achieve better correction rate which reduces the computational time and resources 

compared to the existing solution. 

 

 

3. TCM : TRELLIS CODED MODULATION 

According to Ungerboeck in 1982, whatever the spectral efficiency considered for the transmission 

and for a code as complex as it can be, the asymptotic gain of coding given by a TCM is almost maximal 

using a single binary element of redundancy per symbol transmitted. Thus, for a TCM constructed from a 

constellation with M = 2n+1 points, the spectral efficiency of the transmission is n bits / s / Hz and the 

performances of the TCM are compared with those of a modulation to 2n states; that is to say, having a 2-

point constellation. The constellation of a TCM, therefore, has twice as many points as that of the uncoded 

modulation having the same spectral efficiency.  

Suppose, therefore, that we want to transmit a block of n binary elements coming from the source of 

information. It is divided into two blocks of respective lengths, ñ and (n-ñ). The length of ñ block is then 

coded with a convolution encoder performance Rc = 
 

     
 to v memories (2V states); the second block is 

unchanged. The (ñ + 1) bits from the encoder are then used to select a sub-constellation 2n-ñ point while the 

(n-ñ) uncoded bits are used to select a particular item in this sub-constellation.  

Figure 1 shows the synoptic diagram of an encoder for Ungerboeck TCM. 
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Figure 1. Synoptic diagram of an encoder for Ungerboeck TCM 

 

 

3.1. Rules for Building the Trellis  

The implementation of the decoder requires the construction of a trellis of the TCM. To build such a 

trellis, some rules must be followed if one wishes to maximize the free distance. For this, Ungerboeck 

proposes the following three rules: 

The M =2n+1 signals of the initial (unpartitioned) constellation must be used with the same 

frequency. Figure 2 shows the set Partitioning method applied to the 8PSK [2] 

 

 

 
 

Figure 2. Set Partitioning method applied to the 8PSK [2] 

 

 

The 2n-ñ parallel branches, if they exist, must be associated with signals belonging to the same 2n-ñ 

sub-constellation. 

The 2n branches that leave a state or reach a state must be associated with signals belonging to the 

same 2n point sub-constellation. 

The first rule provides the trellis with a regular pattern. Rules 2 and 3 ensure that the free distance of 

the TCM is always greater than the minimum Euclidean distance of the uncoded modulation taken as 

reference for the coding gain calculation.  

Thus the asymptotic coding gain is: 

 

Ga = 10 log10 (
     

 

    
 )        (1) 

 

 

4. ALGORITHMS OF DECODING TCM ENCODER 

The most common decoding is based on the Viterbi algorithm [8]. It consists in finding in the tree 

the path which corresponds to the most probable sequence, that is to say, that which is at the minimum 

distance of received sequence or the most probable sequence. The following section illustrates the Viterbi 

and MAP algorithms. 
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4.1. Algorithm of Viterbi 

The aim of the maximum likelihood decoding is to look in the trellis code “C” the nearest road 

(most likely) of the received sequence (i.e. observation). The distance employed in the algorithm is either the 

Euclidean distance, in the case of soft-input, or the hamming distance, in the case of farms inputs. 

Thus the decoding problem is: given (  
    

    
   per trellis interval, where   

 
      determine the 

most likely transmitted path through the trellis. If we assume that the uses of the BSC (the binary symmetric 

channel) are independent (i.e., we have random errors), the problem reduces to minimizing the Hamming 

distance between the  {  } and our estimate of the{  }, denoted as {  ̂} : 
 

e ( ̂) = ∑ ∑  ̂ 
   

   
    

   
 
           (2) 

 

 

 
 

Figure 3. Transition diagram for Viterbi algorithm 

 

 

A list of all the transition per state and their values for ( ̂ 
   

  ̂ 
   

  ̂ 
   

) are given in Figure 3. For 

each trellis transition we do the following. Let      ,    =         be the accumulated state metric, that is, 

the sum in (1) up to trellis interval i; the input for the discrete time transition         is (    
      

      
 ) 

for each state,       : 

a) Compute 

 

              ̂   
   ̂   

   ̂   
  [       ∑     

 
   ̂   

   
  

   ]    (3) 

 

b) Call the best   ̂   
   ̂   

   ̂   
   the winning transition and store it as well as M (  ), the state 

metric for the winning transition. 

When these steps are implemented, we are left with one single transition path per state, per trellis 

interval. The collections of these winning transition paths over time are called survivor paths. The decoding 

path is then the minimum of       overall survivor paths. In reality, one should wait until survivor paths 

merge, that is, when their initial segments coincide. In practice, one stores the result for    trellis intervals 

and then makes the choice of the best survivor path; that is the path with the smallest m (.). 

The Viterbi algorithm, therefore, requires the computation of 2kl metrics at each step t, hence a 

complexity of W ˟   , linear in W. However, the complexity remains exponential in k and L, which limits the 

use of the codes of small size (k L of 7 to 10 maximum). The width W of the decoding window is taken in 

practice to about 5L. This guarantees (empirically) that the survivors converge to a single path inside the 

decoding window. The Viterbi algorithm, therefore, requires the storage of         cumulative metrics and 

        survivors of length 5kL bits [9]. 

 

4.2. Algorithm of MAP 

This algorithm is based on the calculation of the probability of occurrence of a bit (1 or 0) in a 

certain position. We have at our disposal a string of length T, which comes from the coding of an information 

word of size 
 

 
. The method consists in calculating iteratively the a posteriori probability of each bit, first as a 

function of the values of the probabilities for the bits preceding it, and then as a function of the posterior bits. 

For this reason, the algorithm is called "forward-backward algorithm". We place equal importance on the 

"before" bits and the "after" bits. 

Here, Y is the string of bits received and t is the position of the bit in the string. Similarly, we have  

denoted       , the set of transitions from state         to state     , as soon as we have had the bit „i‟ at  

the input. Let M be the number of possible states. 

We try to calculate the log-likelihood ratio logarithm value (λ (u (t)) (log-likelihood ratio) : 

 

  (u(t)) = ln [
            

        
 

  
 
]        (4) 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Improving The Performance Of Viterbi Decoder using Window System (Rekkal Kahina) 

615 

where u (t) denotes the output of the encoder. 

 

For two given states, one defines a joint probability: 

 

   (l‟, l) = P (     =l‟,   = 
 

  
)= P (u(t)= i,   = 

 

  
)        (5) 

 

    is the bit that sends in the  l‟to  l (   is 0 when there is no transition from 1‟ to 1 ). 

We thus have the following relation: 

 

 P (u(t)=
 

 
)=∑     

                
      (6) 

 

To calculate σ, we must introduce the joint probability density: 

 

   (l)= P (u(t) = i,   = l, Y (1:n))     (7) 

 

where we have denoted y (1: n) the elements from “1” to “n” of the vector Y. Similarly, we define the 

conditional probability: 

 

  (l)= 
               

    
 = i,    = l)      (8) 

 

Using the Bayes rule, we obtain the relation: 

 

  (l‟, l) = 
                 

    
 =        

 (               )                           ⁄

    
            (9) 

 

But, following events, because time t does not depend on the sequence received up to this moment, 

the expression becomes: 

 

  (l‟, l)= 
 (               )                     ⁄

    
                (10) 

 

As we can put the term P (Y), we get: 

 

               (l‟, l)=   (l)*    (l)     For bit i.                 (11) 

 

Computing of   and   

We try to calculate  
 
recursively. For this, we write   : 

 

  (l)= P (U(t)= i, l, Y (1 : t-1), Y(t))                        (12) 

 

Then, summing for all the possible transitions from time t-1: 

 

   (l)= ∑ ∑                       {   }                         For bit i.   (13) 

 

Applying the Bayes rule, we find: 

 

  (l) =  ∑ ∑       {   }  (l‟) *  
 (l‟,l)                   (14) 

 

where: 

  

   
 (l‟, l)=P (U(t) = i, l, 

     

         
                  (15) 

 

therefore include: 

 

    (l‟, l)=     (l)*  (l)*∑       {   } (l‟)*  
 (l‟, l)                (16)  
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by similar calculations, we obtain: 

 

   (l)= ∑ ∑       {   }  (l‟)*    
 (l‟, l)                    (17) 

 

as   characterizes the noise, which is white Gaussian, one can write: 

 

  
 (l‟,l )= P (U (t) =i)* exp (

‖         ‖ 

     ) if (l‟, l)    (t) 0 if not    (18) 

 

Here x (t) is the value that should have been at the output of the encoder, as soon as the state is 

changed from state to state. 

 

4.3. Simplified versions of the MAP algorithm 

The BCJR algorithm, or MAP, suffers from one important disadvantage: it must carry out many 

multiplications. In order to reduce this computational complexity, several simplified versions were 

introduced as (SOVA) in 1989 [10], the max-log-MAP algorithm 1990-1994 [11], [12], and the log-MAP 

algorithm in 1995 [13]. The multiplication operations are replaced by the addition, and three new variables 

are defined as A, B and Γ, as following: 

 

Γk (s‟,s)=ln γk(s‟,s) = ln Ck +
       

 
 

  

 
∑       

 
    

                           
       

                       {
                  
               

 

                        
            

                       {
                  
              

 

 

where  

 

          {
           (    |     | )        

                    
    (19) 

 

For the convolutional encoder of rate 
 

   
, we use the symbol by symbol MAP Algorithm for non-

binary trellises. Roughly speaking, we can state that the complexity of the BCJR algorithm is about three 

times that of the Viterbi algorithm. 

 

 

5. THE PROPOSED APPROACH  

5.1. Viterbi Improved by Window System 

We saw in the previous sections how it was possible, using an algorithm, to correct an erroneous 

message. In this part, we talk about methods of encoding and decoding information that requires some 

computing power, which can cause some problems (for example in embedded systems where there is limited 

computing power and the calculation must be done in real time). Finally, only low error percentage messages 

(encoded without errors) can be corrected upon receipt. For this purpose, it is proposed in our approach to 

using the window system in the encoding and decoding phase of the information in order to minimize the 

error on a single window whose length equal to the number of memory plus 1. 

In this section, we use the window in convolutional coding and decoding. To explain the difference 

between the window system and the classical approach, we choose to present the following example: 

Figure 4 shows the structure of the convolutional encoder with rate R=1/2. 

 

 

 
 

Figure 4. Diagram of a convolutional encoder of output 
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In Table 1 we see that "Y" is a function which depends on the input X and the values of states S0, S1 (X, S0, 

S1) [Yi = F (Xi, S0, S1)]. 

Initialization on values of S0 = 0; S1 = 0; 

Figure 5 shows the transmission chain of convolution encoder. 

 

 

 
 

Figure 5. Transmission chain of convolution encoder 

 

 

Table 1. Scenarios of coding  

Xi x0 x1 x2 x3 x4 x5 x6 x7 x8 

(F) 
Xi 

S0 

S1 

 
x0 

0 

0 

 
x1 

x0 

0 

 
x2 

x1 

x0 

 
x3 

x2 

x1 

 
x4 

x3 

x2 

 
x5 

x4 

x3 

 
x6 

x5 

x4 

 
x7 

x6 

x5 

 
x8 

x7 

x6 

Yi y0 y1 y2 y3 y4 y5 y6 y7 y8 

 

 

According to Table 1, we can distinguish that most of the “Xi” survive on many “Yi” by the size of 

the constraint of the code (in our case, the size of the constraint equals three (03)).  

That is to say that the code y0, for its encoding, depend on “X0, S0, S1”, y1 depending on “X1, X0, 

S1”, and the code y2 depends on “X2, X1, X0”. Hence, we see that X0 appears three times for the encoding 

of “Y0, Y1, and Y2”. 

The disadvantage of this phenomenon is the decoding by the VITERBI algorithm. If all the bits of 

"Yi" are erroneous, the algorithm decodes a "Xi" erroneous, and this error expands on the size of the 

constraint of the code and consequently, all that follows is wrong.  To overcome this phenomenon we 

propose the window on the size of the constraint of the code as indicated in Table 2. 

a. The size of the constraint is 3 (it is the number of memory +1). 

Initialization: S0 = 0; S1 = 0; 

b. If all the bits of a "Yi" are erroneous, the algorithm decodes a "Xi "wrong, but only on a window. 

 

 

Table 2. Convolutional encoding by the window system 

 
 

 

Figure 6 shows a transmission chain of a convolutional encoder under the constraint length. 
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Figure 6. A transmission chain of a convolutional encoder under the constraint length 

 

 

5.2. RSCpoly2trellis for Recursive Systematic Convolutional (RSC) Encoder 

The proposed function RSCpoly2trellis Syntax: Trellis = RSCpoly2trellis (H); 

Where RSCpoly2trellis function accepts a polynomial description of a recursive systematic 

convolutional (RSC) encoder and returns the corresponding trellis structure description. The output of 

RSCpoly2trellis is suiTable as an input to the convenc and vitdec functions and as a mask parameter for the 

Convolutional Encoder, Viterbi Decoder in the Communications Block. 

Figure 7 shows the recursive systematic convolutional encoder with rate 
  

 
 which is represented by 

the matrix H: 

 

  [
    
    
    

] 

 

 

 
 

Figure 7. Recursive systematic convolutional encoder with rate  
 

 
  

 

 

We describe the function which creates the trellis structure of a recursive systematic convolutional 

encoder from the matrix H. 

We have those parameters: 

a. Number of input symbols : numInputSymbols) which equal to 2(The sum of the rows of the matrix 

H) -1  

b. Number of output symbols : (numOutputSymbols) which equal to 2(The sum of the rows of the 

matrix H) 

c. Number of states (numState) which equal to 2(The sum of the columns of the matrix H) -1 

d. Matrix of next states (nextState) which has a dimension of 2numStatesx2numInputSymbols  and 

next state equals to : 

 

{
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e. The matrix of output symbols (outputs) which has a dimension of 2numStatex2numInputSymbols  

and the outputs equal to : 

 

{

     

     

                                                  
      

  

 

6. RESULTS AND DISCUSSION 

Figure 8, Figure 9 and Figure 10 show a comparison between the classical Viterbi decoder and the 

Viterbi with window system decoder of TCM QPSK/8PSK and TCM joined by a new type of mapping called 

the Ungerboeck gray trellis coded modulation (TCM-UGM) described in section 2 “Related works” with 

rates of 1/2,1/3 and 2/3.   

a. We can observe, at high signal-to-noise ratios, that the simulation curve using Viterbi with 

window system outperforms the classical Viterbi by a gain equal to 1 dB at BER=     . 

b. In order to investigate more performance, the Ungerboeck gray mapping is considered with 

TCM encoder. The simulation result using TCM-UGM and the Viterbi decoder with window 

system outperforms TCM and the Viterbi decoder with window system by a gain equal to 2.7 dB 

(approx) and outperforms TCM with a classical Viterbi decoder by a gain of 3.8 dB (approx).  

 

 

  
 

Figure 8. Comparison between 4 states TCM QPSK, 

TCM-Win QPSK and TCM-UGM-Win QPSK over 

AWGN channel 

 

Figure 9. Comparison between 4 states TCM 8PSK, 

TCM-Win 8PSK and TCM-UGM-Win 8PSK over 

AWGN channel 

 

 

  
 

Figure 10. Comparison between 8 states TCM 8PSK, 

TCM-Win 8PSK and TCM-UGM-Win 8PSK over 

AWGN channel 

 

Figure 11. Comparison between 4 states TCM QPSK 

with Viterbi hard decoder and Viterbi soft decoder 

over AWGN channel. 
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The simulations illustrated in Figure 11 show that 4-States TCM-QPSK with Viterbi soft decoder 

outperforms 4-States TCM-QPSK with the Viterbi hard decoder, where a gain of 4 dB can be achieved by 

using Viterbi soft decoder at BER=     . 

Figure 12 shows, at high signal-to-noise ratios, that the curve of log-map is the same as max-log-

map decoders but both outperform the Viterbi soft and map algorithms and the gain can be easily obtained 

from the log-map or max-log-map which equal to 2 dB at BER      compared to the Viterbi soft. The 

BER performance is as follows: BER Log-Map = BER max-log-map < BER Vitrebi Soft < BER MAP. 

 

 

 
 

Figure 12. Comparison between RSC TCM 8PSK with a MAP, Log-Map, and Max-log-map and Viterbi soft 

decoders over AWGN channel. 

 

 

 

7. CONCLUSION 

In this paper, the simulation in MATLAB was used to evaluate the performance of Viterbi using 

window system compared to the classical Viterbi.  The simulation results over AWGN channel with rates 

1/2, 1/3 and 2/3, have shown that at a BER of 10-6, the Viterbi decoder with window system outperforms the 

classical Viterbi by 1 dB. Moreover, we propose the use of the Ungerbeock gray mapping to achieve more 

performance with TCM encoder where the gain of  2.7dB was achieved compared to the TCM with the 

Viterbi decoder by window system and the gain of 3.8dB is observed compared to the original TCM with the 

classical Viterbi decoder. 

From the above results, it can also be seen that with rate 2/3 the TCM with recursive systematic 

convolutional (RSC) encoder with log-map or max-log-map decoders gives better results than Viterbi soft 

with a gain of 2 dB at BER = 10-4 .  

It is also clearly shown that Viterbi soft outperforms the MAP algorithm which is known as being 

greedy in memory space and in the computing time which increases more if we increase the rate and the 

number of memory. Consequently, the decoding operation becomes long. For this reason, they have 

simplified MAP with others varying as log-MAP and max-log-MAP that are used on the new trend of 

encoders like turbo-code where the researchers are placed a lot of hopes in this last technique (turbo codes) 

because we approach the limit given by the second theorem of Shannon. 
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