
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 5, October 2017, pp. 2883~2894

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i5.pp2883-2894  2883

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Insights on Research Techniques towards Cost Estimation in

Software Design

Praveen Naik
1
, Shantaram Nayak

2

1VTU, Dept of Computer Science & Engineering, Faculty of Engg, Christ University, Bangalore, India
2Dept of Information Science & Engineering, RV College of Engineering Bangalore, India

Article Info ABSTRACT

Article history:

Received Feb 16, 2017

Revised May 15, 2017

Accepted Aug 11, 2017

 Software cost estimation is of the most challenging task in project

management in order to ensuring smoother development operation and target

achievement. There has been evolution of various standards tools and

techniques for cost estimation practiced in the industry at present times.

However, it was never investigated about the overall picturization of

effectiveness of such techniques till date. This paper initiates its contribution

by presenting taxonomies of conventional cost-estimation techniques and

then investigates the research trends towards frequently addressed problems

in it. The paper also reviews the existing techniques in well-structured

manner in order to highlight the problems addressed, techniques used,

advantages associated and limitation explored from literatures. Finally, we

also brief the explored open research issues as an added contribution to this

manuscript.

Keywords:

Effort estimation

Fault prediction

Software cost estimation

Software modelling

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Praveen Naik,

Research Scholar,

Dept of Computer Science & Engineering,

Faculty of Engg, Christ University, Bangalore, India.

Email: praveen.research.se@gmail.com

1. INTRODUCTION

Software development cycle plays a significant role in project management that directly impacts the

productivity [1]. Normally, the process of software development involves longer duration and it suffers from

certain paranoia of uncertainty [2-3]. The root cause of such uncertainty could be requirement volatility [4],

defective project guidelines [5], skill gap [6], and wrong project planning [7]. An inappropriate project

planning can lead to significant loss of resources with respect to time, money, and effort [8]. The prime

stepping stone of success in project planning is to estimate the cost involved in the software project

development. Therefore, we can define software cost estimation as the mechanism that performs forecasting

the original and cumulative cost required to complete the software project on a tentative time in presence of

all resources and constraints [9-10]. It is assumed to be highly complexities for many industries as cost

involvement differs for different project and there are numerous factors that affect it. In this process,

functional size matters the most as it is responsible for computing size of the software that is considered as

the core input for majority of the modeling. One of the examples of such standard method is Common

Software Measurement International Consortium (COSMIC) that is certified by ISO/IEX 19761:2011 [11].

Another essential indicator of the cost involvement is the development effort [12] that can be defined as

effective amount of time used for developing the software project in progressive order. Since last decade,

there has been evolution of various such mechanisms; however, none of the single mechanism can be said to

100% full proof for cost estimation [13]. Another indicator of the cost factor is line-of-code which is

universally considered as the best metric to estimate cost of software development [14]. After the software is

build, it is also required to be properly tested that could be done both by manual and by automated testing

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2884

[15]. There is also a cost involvement even in testing phase too and hence comprehensive testing mechanism

that consumes more time and more resources are now fading slowly from the industry. According to the

article presented by Smitte et al. [16], there are many reputed organization who has already initiated steps

towards saving cost of software development. Irrespective of the type of work (complex software projects,

test automation, remote support work, agile projects, etc), it is feasible for saving the cost provided an

effective and error free modeling of cost estimation in software projects do exists.

However, there is a difference between the hype and reality. At present, there are quite a few

standard techniques e.g. Constructive Cost Modeling (COCOMO) that is found exercised by various

researchers for cost estimation and effort estimation. One of the biggest impediments towards modeling cost

estimation techniques is to ensure accuracy in prediction rate. In order to perform prediction, the software

modeling will be highly required to possess certain heuristic information [11]. In such cases, the model will

be required to have access to higher number of heuristic organizational data and then its accuracy will be

highly dependent on the dimension of heuristics. In other way, it can provide cost estimation but at the cost

of organization resources. Hence, there are various experts who still believe that cost-estimation modeling is

actually in its nascent stage and it will be quite necessary to perform re-investigation taking prominent cases

of software development.

This paper discusses about the existing system, their effectiveness, limitation, in order to derive the

open issues in software cost estimation. Section 1.2 discusses about the standard classification of the software

cost estimation techniques in brief followed by discussion of research trends towards addressing research

problem in Section 1.3. Section 2 elaborates about the existing research techniques on multiple problems

highlights their advantages and limitation. Discussion of open research issues is carried out in Section 3

followed by conclusion in Section 4.

1.1. Background

Before, briefing the taxonomies of the existing software cost estimation techniques from research

viewpoint, it is essential to understand certain brief detailing of it. Majority of the existing models visualizes

the process of cost estimation as the function that is capable of performing computation from a evaluated cost

drivers for an effective analysis [17]. The existing research work considers software requirement as the

prominent cost driver. At present, there are various techniques of cost estimation techniques that can be seen

from Figure 1. Basically, there are two different classified approaches i.e. algorithmic approach and non-

algorithmic approach.

Algorithmic techniques are those that adopt mathematical approach where the frequently used inputs

for such approaches are function point, line of codes, etc. Basically, there are three forms of algorithmic

approach viz. i) Putnam’s Model, ii) Constructive Cost Model, and iii) Function Point Analysis. Putnam’s

model performs computation of size of software using environment factor, lines of code, dispatching time of

software, and build up factor of manpower. Unfortunately this model doesn’t consider various potential

factors of development lifecycle [18]. The second approach i.e. constructive cost model is frequently used by

various researchers and is again classified into further three forms i.e. i) fundamental model, ii) intermediate

model, and iii) detailed model. The prime reason for its higher adoption is its simple technique to estimate

cost and its wide adoption within the industry [19]. But it also suffers from various problems e.g. non-

applicability on smaller projects, estimation failures. The third algorithmic approach is Function Point

Analysis that is used to measure the number of functional points available in the software projects. The prime

factors in Function Point Analysis are interface file (external), logical file (internal), and varied enquiries.

The interesting point of Functional Point Analysis is that it is independent from tools, language, or any

specific implementation strategy. However, the pitfall of Functional Point Analysis is its manual operational

technique [20]. On the other hand, non-algorithmic approaches are basically classified into 6 types (based on

frequent research techniques) viz. i) top-down based, ii) Expert Judgment based, iii) Bottom-based, iv)

Analogy Based, v) Artificial Neural Network (ANN), and vi) Fuzzy Logic. In top-down based approach, the

global charecteristics are used for computing total cost and emphasizes more on integration. The limitation of

this approach is its non-consideration of low-level problems leading to cost increment [21]. In Expert

Judgment based approach, an expert’s opinion is considered that is good for cases with restricted access to

data. It can be used for predicting the influence on cost due to change of any underlying technologies [22]. In

bottom-up based approach, the overall cost is estimated only after deriving cost of each components involved

in software design. The stability of the technique is quite high but it ignores integration, documentation, etc

[21]. The analogy-based approach is used for determining the parameters of existing software project as well

as it also explores the equivalent old project whose parameters matches with the current project. The

significant advantage of using analogy-based approach is supportability of estimator experience for assisting

in enhanced cost estimation. Unfortunately, this approach is not applicable for all the software projects [23].

Both artificial neural networks as well as fuzzy logic are soft computing techniques where the former uses

IJECE ISSN: 2088-8708 

Insights on Research Techniques towards Cost Estimation in Software Design (Praveen Naik)

2885

historical data and latter uses membership function. Although ANN offers consistency in cost estimation

process buts it has maximum dependencies of training data to ensure accuracy [24]. Similarly, adoption of

fuzzy logic based approach has the advantage of zero dependencies over training as well as it also offer

comprehensive trustworthy cost estimation. However, even the fuzzy-logic based approach also suffers from

pitfalls i.e. it offers computational complexities in many cases and moreover the accuracy completely

depends on the type of the Ruleset being designed for this purpose of cost estimation [25].

Hence, it can be said that irrespective of the presence of various conventional software cost

estimation techniques, there is less effective cost estimation technique for a large scale and dynamic software

development process.

Cost-Estimation

Models

Non-Algorithmic

Approach

Analogy-

based

Expert

Judgement

Top-Down

Based

Bottom-Up

Based

ANN Fuzzy Logic

Algorithmic

Approach

Constructive

Cost Model

Putnam’s

Model

Function Point

Analysis

Figure 1. Taxonomies of existing software cost-estimation approaches

1.2. The Problem

This section highlights the statistics of varied number of research papers published in IEEE XPlore

during duration from 2010 to till date pertaining to the problems associated with software cost estimation

techniques. We reviewed the most commonly addresses problems in cost estimation techniques and

graphically highlighted the current progress in it. The number of recent journals towards software cost

estimation is found to be less than 50 (Figure 2), which is very less in number compared to other research

problems in software modeling or engineering. The availability of relevant papers is quite less. Similar

problem do existing in research towards effort estimation where only less than 25 journals are found till date

(Figure 3). The trend is much reduced for fault prediction in cost estimation (Figure 4) as there are only 9

journals associated with this problem.

Figure 2 Research trends towards software cost estimation

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2886

Figure 3 Research trends towards effort estimation

Figure 4 Research trends towards fault prediction

Apart from this, we also investigated about the trends towards other usage of other approaches of

cost estimation e.g. expert judgment, analogy-based, Putnam’s model, Functional Point Analysis, COCOMO,

etc. A closer look into the research trend in Figure 5 shows that Functional Point Analysis as well as

COCOMO model is the most adopted techniques by various researchers till date. The proportion of the

research papers using Functional Point Analysis is found to be comparatively higher than conventional

COCOMO model. However, the matter of illusion is that usage of Functional Point Analysis was not adopted

specifically for cost estimation problems in software and hence the relevancy rate of using Functional point

analysis is quite low. Similarly, we find that although many research papers doesn’t highlights COCOMO in

the preliminary section of their papers, but we find that majority (say 95%) of the researchers have adopted

COCOMO model in the implementation of their approaches. Hence, the present research trend can be said to

use COCOMO model with higher relevancy factor compared to usage and adoption of other conventional

techniques of cost estimation.

Figure 5 Research trends towards other problems

The next section elaborates about some of the frequently addressed problems and the introduced

techniques from recent and relevant literatures.

IJECE ISSN: 2088-8708 

Insights on Research Techniques towards Cost Estimation in Software Design (Praveen Naik)

2887

2. EXISTING RESEARCH TECHNIQUES
This section discusses about the existing research techniques towards cost estimation process in the

industry. As there is so much varied process of investigating the cost factor by various researchers, the

discussion is carried out for the frequently used computation techniques of cost factor in the software

development process. We discuss only the recent research manuscript published in the duration of 2010-till

date in this regards.

2.1. General Cost Estimation Techniques

From industry viewpoint, every sector has its own kind of criterion of measuring the total number of

resources involved in the process of software development. In this regards, the adoption of Functional Point

Analysis can be considered as highly standard and practical one as its adoption was found in many existing

corporates and firms [26]. Basically, it is one of the mechanisms to perform quantification of the active

functions that are used for designing the software and it retains higher significance. But although the usage of

Functional Point Analysis started back in 1979 in IBM, it suffers certain pitfalls too that are investigated by

the research community. Some of the significant pitfalls are i) inconsistent outcomes, ii) mismatched points

during analysis, etc. A discussion about techniques for enhancing Functional Point Analysis was presented by

Junior et al. [27]. It was seen that there are various forms of enhancement being carried out towards

improving the accuracy of Functional Point Analysis e.g. Fuzzy logic, Artificial Neural Network, Statistical

Regression, Genetic Algorithm, interpolation technique, etc. However, according to the analysis carried out

by author majority of the existing techniques do still possess certain pitfalls e.g. no clear cut solution to

countermeasure existing problems, higher complexity, dependencies on current version, etc. Another

standard investigation towards software cost estimation was carried out by Mittas and Angelis [28]. A

statistical modeling approach has been used for investigating different forms of existing models of cost

estimation. Further, a clustering mechanism was applied for unique groups. The authors have performed the

experiments using datasets for measuring accuracy followed by a ranking process to understand the most

elite outcome. The authors have carried out Scott-Knott test over 11 standard models to find better predictive

accuracy. The cost factor of the software projects also depends on the functional size of the code. It becomes

quite a significant task when it comes to embedded system design as various units of embedded system e.g.

memory is significantly affected by the control unit. Study in such direction was carried out by Lind and

Heldal et al. [29] by presenting a standard mechanism for estimating embedded code size called as COSMIC

approach. In order to extract the precise outcomes of the study, both functional sizes as well as size of

software code were subjected to correlational analysis to find that they are higher correlated. Statistical

analysis was applied for this purpose. The study outcome states that there are certain prominent factors that

potentially affect the estimation process e.g. consistency of the contents, clear visualization of functional

domain, superior requirement quality, and precise historical data. Not only in embedded system and design,

similar problems do exists in fourth generation language. The degree of complexity towards fourth

generation language is quite higher and this problem is investigated by Zia et al. [30]. The technique has used

empirical data on the basis of the standard specification of COCOMO II model. The study outcome has been

tested using multiple tools e.g. Visual Basic, VB.Net, VC# in order to compute both actual and forecasted

effort to find higher accuracy. The significant studies towards general cost estimation is quite less in terms of

number of journals. Although, few significant conference manuscripts have equally contributed to share

certain novel ideas towards enhancing cost estimation techniques in software design. Most recently, Hihn et

al. [31] have presented a technique that can estimate cost for National Aeronautics and Space Administration

(NASA) based repository data. The technique also emphasizes on potential software metric e.g. logical lines

of code with varied system parameters. Using multiple mission types of space objects (earth orbiter,

observatory, deep space, etc), statistical measures were applied on the basis of standard COCOMO-II

specification. The technique uses analogy-based approach with various inputs of levels of inheritance, size of

software, types of elements, types of mission, etc and then spectral clustering is applied for computing effort.

Similar form of celestial case study was also seen in the work carried out by Cannon and Burlet [32]. The

study mainly develops a prototype of flight software using C language and observation was made for time

variability, composition, and density over the moon surface. The author computed cost of this software model

using extrapolation approach, COCOMO using agile methodologies using source line of code. These

approaches have used the standard data from the space centers and can be considered as best initiative

towards cost computing models using space related data. Another unique optimization-based technique of

using bio-inspired approach was seen in the work of Garg and Gupta [33]. The authors addressed the problem

of accuracy pertaining to usage of agile methodologies. The problems of attribute dimensions have been

minimized using Principle Component Analysis followed by identification of prominent factor with higher

correlation on software design cost. The study outcome is completely independent of historical data or any

form of other information. The study has evaluated coefficient value of various test components e.g. size of

team, complexity involved in projects, type of application, total functional points, platform used in

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2888

development, etc. The practice of applying optimization technique was also seen in the work of

Gharehchopogh et al. [34]. The author has applies Tabu search algorithm as well as genetic algorithm for this

purpose. The technique uses NASA-related dataset along with COCOMO model to find reduced error in

outcomes. Similar author has also applied Artificial Bee Colony along with genetic algorithm [35]. Adoption

of Fuzzy Logic was seen in the work of Idri and Zahi [36] considering the dataset of web software. Liu et al.

[37] have also used Particle Swarm Optimization in order to increase the accuracy of cost estimation for

analogy based approach. Uniquely, the author considers a factor called as Non-Orthogonal Space Distance

for estimating the similarity measures of the project. Sarno et al. [38] have used neural network for similar

cause. Enhancement of analogy-based approach was seen in the study of Phannachitta et al. [39] using

probability-based computation of distance function for cost computation.

Table 1. Summary of the Existing Techniques of Cost Estimation
Authors Problems Techniques Advantages Limitation

Junior [27]

Accuracy problem

of Functional Point
Analysis

Qualitative Study
Highlighted techniques to

improve

-no clear cut solution
-higher complexity

-dependencies on current

version

Mittas [28] Predictive Accuracy
Statistical Measures

(ANOVA)
-Extensive Assessment

-

-doesn’t consider dynamic or

uncertainty factor in

modeling

Lind [29]

Estimating code

size in embedded

system

-COSMIC
-Statistical Measures

-Simple & Practical
Framework design

-Doesn’t discuss the

applicability

-No benchmarking

Zia [30]
Fourth Generation

language
-cross-validation

-Empirical Approach
-Simple modeling

approach

-doesn’t consider dynamic or

uncertainty factor in

modeling

Hihn [31] NASA Data
-Statistical (f-test, t-test)

- spectral clustering

-Capable of considering

complex data
-No benchmarking

Cannon [32]
Cost estimation for

lunar data

COCOMO,

Extrapolation, Source

Lines of Code, Agile

-Effective Analysis

technique

-Offer good estimates

-No benchmarking or

validation

Garg [33] Accuracy of Agile
Principle Component

Analysis
-No dependency over

historical data
-No benchmarking or

validation

Gharehchopogh

[34]
Cost estimation

Genetic Algorithm, Tabu

Search, COCOMO

-Reduced error in

outcomes

-Doesn’t discuss

computational complexity

Soleimanian [35] Cost estimation

Genetic Algorithm,

Artificial Bee Colony,

COCOMO

-Reduced error in
outcomes

-Doesn’t discuss
computational complexity

Idri [36]
Comparing analogy-

based approach
Fuzzy Logic

-Applicable for web
applications

-No benchmarking

-Doesn’t discuss

computational complexity

Liu [37]
Accuracy in cost

estimation

Particle Swarm

Optimization

-Fits to real-world projects

-Reduced Error

-Doesn’t discuss

computational complexity

Sarno [38]
Accuracy in cost

estimation

-Feed-forward neural
network

-back propagation

-COCOMO

-Reduced error

-Simple implementation

-No benchmarking

-Convergence performance

not discussed

Phannachitta [39]

Error reduction in

analogy-based
approach

Probabilistic Approach

-Faster implementation

-tested over multiple
dataset

-No benchmarking

-Convergence performance
not discussed

2.2. Effort Estimation Technique

Effort estimation is the direct functional task to be carried out towards majority of the cost-

estimation model till date. Although, there are various tools and technique to compute effort factor within an

industry, but still there are certain open challenges towards implementing it e.g. inferior knowledge

management, non-adaptability on standard estimation techniques, tool-related problems, negligence of

project performance parameters [40]. Various challenges pertaining to the techniques of effort estimation at

present are found to be human resources, governance, tools, and processes. At present, there is no such model

or framework that overall addresses such problems jointly. Most recently, there is investigation towards

effort estimation in software design in early stages for better consideration of probable cost involved within

this. One such technique has been presented by Satapathy et al. [41], where the authors have applied

frequently used machine learning approach known as random forest. The technique uses random forest for

optimizing the accuracy in the predictive outcome. The study also considers various forms of the complexity

factors e.g. portability, changeability, concurrency, efficiency of end user, code reusability, security features

etc. The authors have also performs analysis over the error, proximities, complexities, and outliers. The study

IJECE ISSN: 2088-8708 

Insights on Research Techniques towards Cost Estimation in Software Design (Praveen Naik)

2889

outcome was assessed using standard performance parameters e.g. mean squared errors, prediction accuracy,

mean magnitude of relative error. Study towards development efforts and its estimation techniques have been

also presented by Bardsiri et al. [42] towards the aim of enhancing the accuracy level. The authors have

applied jointly multiple techniques e.g. analogy-based techniques, fuzzy logic, and neural network. The study

outcome shows impressive percentage of prediction accuracy. It was observed that much of the emphasis was

laid on knowledge discovery process using mining techniques in effort estimation techniques. Applying

mining approach can incorporate further predictive feature in software modeling. Dejaeger et al. [43] have

carried out a discussion where the importance of mining approaches have been made. A statistical approach

is applied for performing comparative analysis on various techniques. Grbac et al. [44] have carried out a

study towards effort estimation during inspection. The special consideration is about the early stage of the

development process. The outcome of the study suggests that an effective decision factor significantly assists

in enhancing the product reliability. Another bigger challenge in the area of software engineering the

dispersion of the falsified information that leads to declination of the product quality as well as error-prone

effort estimates. Study towards such problem was discussed by Jorgensen and Grimstad [45] where the

authors have performed an experiment considering various organizational data. The prime purpose of the

presented study is to perform cost computation of the effort being used for estimating unnecessary task. This

technique plays much important role for any organization to find original effort towards productivity and not

towards unnecessary trials of work. The authors have used quantitative-based methodology using statistics in

order to carry out the objectives. A significant problem with effort estimation is less involvement of more

number of effective quality parameters. Study towards this problem was addressed by Azath and

Wahidabanu [46] using standard COCOMO model along with usage of ISO 9126 standards and its compliant

quality factors. The authors have also used functional points and its outcome is assessed using total degree of

influence, usability, reliability, maintainability, and efficiency. Similarly, the factors involved in effort

estimation will need a precise combination of different approach to make a suitable balance between

simplicity and sophistication. Therefore, study emphasizing on contents and parameters required for effort

estimation was carried out by Kocaguneli et al. [47]. The author uses spatial-based approach between the

instances and features that further assists in effort estimation. A CART-based approach as well as COCOMO

is also utilized for active learning in order to perform predictive modeling. The same authors [48] have also

performed investigation towards 10 different datasets using analogy-based approach for effort estimation.

Kocaguneli et al. [49] have also discussed that it is not necessary to select the best estimation method out of

many method but to use the methods intermittently. The author concludes that selection of one method

should be discouraged and inspite a combination of different method can best suit the purpose of effort

estimation.

Table 2 Summary of the existing Techniques of Effort Estimation
Authors Problems Techniques Advantages Limitation

Satapathy et al.

[41]
Prediction Accuracy

-Random Forest

-Use Case Points

-Higher prediction

accuracy

-computational complexity not

analyzed.

Bardsiri et al.

[42]
Increasing accuracy

-Analogy-based

Techniques

-Fuzzy Logic
-Artificial neural

network

-Higher prediction

accuracy

-Applicable on large

dataset

-Lack of uncertainty factor

-Stability factor not found

Dejaeger et al.
[43]

-Comparative Study
-different mining

approach
-regression and

COCOMO are best suited
-Highly dependent on expert’s

judgment

Grbac et al. [44]
-value quantification

during inspection

-expert judgment

-Statistical Measures

-increased in quality of

product
-No effective benchmarking

Jorgensen and

Grimstad [45]

-falsified effort

estimation
-Statistical Measures -Simplified modeling

-overall outcome cannot be

generalized to other scenario

Azath and

Wahidabanu [46]
-effort estimation

-Functional point
-COCOMO

-ISO 9126

-very simple

implementation approach

-Doesn’t address the

uncertainty/dynamic problems

Kocaguneli et al.

[47]
-effort estimation

-COCOMO
-CART

-Euclidean distance

-offer better suggestion
for choice of estimation

techniques

-No benchmarking
-Doesn’t discuss about

computational complexity.

Kocaguneli et al.

[48]
-Effort estimation

-Analogy-based

estimation

-selection of nearest

neighbor

-Improved system

performance
-Reduced error rate

-No benchmarking

-Doesn’t discuss computational
problems

Kocaguneli et al.
[49]

-Effort estimation
Combination of multiple

methods
-Reduced error rate

-No benchmarking

-Doesn’t discuss computational

problems

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2890

2.3. Fault Estimation Techniques

When the software is designed with certain error prone planning, it is ought to possess certain level

of fault or defect. For this reason, the testing and quality assurance members are responsible for identifying a

bug and remove it. However, the concept of cost computation evolves in estimating faults residing in

software design. Although, majority of the existing mechanism of fault detection only works after the fault is

really incorporated within the software, by that time, it becomes too late to debug it. Sometime is even a very

high expensive matter to remove the faults. Hence, the concept of predictive principle in cost estimation is

equally helpful for fault detection which is definitely in the early stage. The advantage is to identify the

possible faults even before it could possibly inflict some serious problems in the software design. Study

addressing such problem can be found in the work carried out by Fagundes et al. [50] where a predictive

principle is introduced by the author. The technique jointly uses both parametric as well as non-parametric

frameworks for enhancing the accuracy of fault prediction. Considering the NASA dataset, the authors have

carried out experiments using machine learning language. The study outcome was found to have better

capability of identifying the non-faulty to faulty methods. Ucan et al. [51] introduced an estimation processes

to find the cost of “detecting defect” in the instrumented programs which may work traditionally or could be

supported with a collaborative platform. It is found that the collaborative associate platform given defect of

3.76 per hour as compare to the traditional process, where it is 4.07. This work may influence the thought of

web based enterprise application to consider the parameters that system having collaborative approach of

development or not by introducing some factor say α (where, the value of α will be higher if no collaborative

tool used for development). The parameter α reduced the cost of development. The adoption of collaborative

platform is coming mandatory as the software production process uses various models of out-sourcing, in-

sourcing, off-shore development etc, where people are located at different geographical region and not

possible to have front to front ad-hoc discussions. Sometimes hardware as well as software-based design and

their associated components could be responsible for software failures. Study in such direction was carried

out by Ozcelik and Yilmaz [52] where a predictive system is design that can estimate the amount of faults in

the software. The evaluation of the study was carried out using a standard transformation tool in presence of

multiple defects while study outcomes are evaluated using performance parameters of prediction accuracy.

Predictive study towards fault computation was also carried out by Liu et al. [53] where the emphasis is

mainly laid over the classification process. The technique makes use of both feature as well as reduction of

number of instances as a part of data preprocessing. An analysis of relevance is carried out during the

selection process of feature. It than performs controlling of redundancies using threshold-based clustering

approach. Similar line of work was also carried out by Dejaeger et al. [54] by introducing a Bayesian network

classifier. The authors have also investigated the feasibility of implementing Markov blanket principle with

respect to Bayesian network theory. Similar NASA dataset has been used for determining line of code

metrics, Halstead metrics, and McCabe metric. Monden et al. [55] have presented a technique for predicting

fault as well as assessing the cost estimates out of it. With an aid of software testing, the proposed system

evaluates the possible allocation techniques for effort estimation depending on the outcome of the faults.

Arcuri et al. [56] have presented a technique that uses random testing in order to detect the fault in the

software design. The reason behind adaption of random testing is its supportability of large number of

features. Bishnu and Bhattacherjee [57] have introduced a classification technique for performing fault

prediction. The authors have used K-means clustering algorithm in order to evaluate the cluster quality and

predicting the possible faults in the code. Jin et al. [58] have presented a technique using support vector

machine as well as neural network for assisting in selection of parameters that would positive affect the fault

prediction. Database from NASA is used with multiple metrics in order to perform cross-validation followed

by accuracy testing. The study outcome was found to possess a potential link between fault factors and

software metrics. Software testing has also significantly gained higher degree of attention among the

researchers. In accurate testing strategies will essentially lead to generation of faults and thereby it negatively

affects the economy of an organization. Study towards strengthening the software testing was also carried out

Ramos et al. [59]. The authors have introduced a model that significantly assists in ensuring lesser amount of

defects as well as faults in the software design. It also assists in overcoming the skill gap among the testers.

This competence model can be used by any organization.

IJECE ISSN: 2088-8708 

Insights on Research Techniques towards Cost Estimation in Software Design (Praveen Naik)

2891

Table 3 Summary of Existing Techniques of Fault Estimation
Authors Problems Techniques Advantages Limitation

Fagundes et al.
[51]

Fault prediction

-Joint usage of parametric

& non-parametric

techniques

-fitting model to set of data
points

-Computational complexity
not assessed.

Ucan et al. [59]
Efficiency in Defect

detection
-collaborative virtual

environment
-faster response

-No benchmarking

-Space complexity is not

addressed.
Ozcelik and

Yilmaz [53]

Runtime prediction

accuracy

CIL tool, Weka, PAPI

tool,
Reduced runtime overhead -No benchmarking

Liu et al. [54]
Classification

problems

Data preprocessing,

random under-sampling

-maintain better balance

between instances

-No benchmarking
-Doesn’t address the dynamic

problems

Dejaeger et al.

[55]
Fault prediction

Bayesian network

classifier

-balanced predictive and
comprehensibility

performance

-Complex relationship in both
dynamic and static features of

code not considered.

Monden et al.
[56]

-Forecasting fault
-Allocation of effort

-Empirical approach
-Simulation

-cost effective prediction
of fault

-higher dependencies on
internal resources.

Arcuri et al. [57] Fault detection Random testing
-supportability of higher

features
-N/A-

Bishnu and

Bhattacherjee

[58]

Fault prediction k-means clustering
-better performance of

error rates
-no applicable on dynamic

programs

Jin et al. [59] Fault prediction
-Neural network

-Support vector Machine

-No extra cost towards

implementation

-no dependency towards
experts knowledge

-training complexities

associated is not discussed

Ramos et al.

[D10]
Minimizing faults -Competence model

-practically affect users to

minimize faults

-Outcome applicability is

narrow for large scale
applications

3 OPEN RESEARCH ISSUES

From the prior section, it was seen that there are various techniques towards ensuring that cost

estimation in the software design. It has been explored that the existing techniques of software cost

estimation have highly diversified strategies to implement but unfortunately, it is found with higher number

of challenges. All the techniques have their own advantages as well as limitations too. However, there are

certain set of problems that has been found not to be addressed by the existing research work.

 Less focus on Input: Basically 99% of all the existing research papers have adopted dataset e.g. NASA,

where the existing frameworks considers input to be i) functional point, ii) line of source code, iii)

instruction set, etc. Such technique doesn’t offer an accurate outcome when it is applied for estimating

cost for the software development. Such scenarios are highly static and uniform and thereby its outcome

cannot be said to be applicable for dynamic environment. Hence, there was a lesser emphasis towards

ensuring more precise inputs while estimating cost.

 No Studies towards Computational Efficiency: Existing techniques have mainly introduced cost

computation method on different dataset. There are also studies where large numbers of datasets are used

with more inclusion of recursive function. Such types of approaches significantly increases both time

and space complexity. Some of the studies have been claimed to offer reduced processing burden, but

exact validation of it is missing in the literature. Without ensuring cost effective computation, the

applicability of such cost computation techniques over low-powered devices are questionable.

 More Generalized and Less Specific: The existing techniques have not taken case studies of

applicability of cost estimation model on particular software. All the current investigations use the term

software as a very generic model with no discrete elaboration of the system. Because of this reason, it is

not sure whether the existing cost-computing models are really applicable in real-world application. At

present, there are more than lakhs of software with thousand numbers of technologies running over it. It

is well known that in present time’s usage of wireless-based products are in increasing trends.

Unfortunately, there is no such study on cost computation model that deals with wireless-based products.

 No Network Consideration: Majority of the existing system uses the term software and doesn’t

consider anything else. In reality, it is known that maximum software is now connected with the advent

of pervasive and ubiquitous computing. Hence, ignoring the network statistics and proceeding towards

cost computational model for software will be impartial work. It is necessary that all the connected

components of the software e.g. user, network, etc. should be considered while working over the cost

computation model.

 Few Studies towards Minimization: Cost is a variable in the area of software project management. An

effective project planning always calls for reduction of the cost involved in it. Unfortunately, the existing

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2892

techniques are more focus on cost estimation using different dataset and less towards cost minimization.

Study towards an effective optimization technique will always results in minimal cost involvement. This

theoretical viewpoint was not seen in many studies towards software modeling and cost estimation

techniques in present times.

 Few Standard Modeling towards Cost Estimation: A closer look into the outcomes of any of the

recent studies towards cost estimation will show very few benchmarked techniques. Usage of COCOMO

model is definitely not without flaws e.g. more prone to adopt backdated waterfall model, more

experimental and less calibrated, non-supportability of duration calculation in small scale software

projects. Hence, even after knowing such pitfalls, majority of the work has been using COCOMO

irrespective of taking a chance to introduce a new mathematical modeling or algorithmic approach.

3. CONCLUSION

This paper has discussed the research traits of the software cost estimation. There are various

conventional models for performing cost estimation explored in recent time e.g. algorithmic and non-

algorithmic approach. Although both the approaches has associated advantages as well as limitation, but still

they are in practice at large. We also discuss the existing research trends to find that there are very less

number of good research work being carried out towards software cost estimation, effort estimation, fault

prediction, etc. We find that COCOMO is the backbone of majority of the existing research techniques. Our

findings are i) there are very less benchmarked research methodology that can be recommended in present

day, ii) not a single cost-estimation technique can be referred as a robust one, however, a combination of

multiple techniques (hybridizing) can show better result, iii) none of the existing techniques are really found

to address computational complexity problems, iv) there are various open research issues pertaining to

existing literatures of cost-estimation approach, which will require serious consideration, etc. Hence, our

future direction of the research work will be towards bridging the gap of existing system.

We have noticed that almost all the existing research work has use the term software in generic

sense whereas in really there are diverse forms of it with manifold complexities. Hence, we will like to adopt

a specific case study of software and make it more discrete. It is because it is not sure if any of the existing

technique can be applicable in any specific software application. Hence, our first future work will be to

consider a software that assists in wireless communication and the compute a cost pertaining to development

of it. Our second level of future work will be to re-think on the term software and make it more applicable to

the present time application and present a cost-estimation model for it. We will like to investigate about the

usage of high frequency signal and their utilization over the software for civic benefits in order to see the cost

involvement in it. Our final level of future work will be to ensure that our cost involvement could be possibly

minimized while retaining higher product efficiency. In short, our future direction of the work will be to give

a practical shape to software using a case study of it so that it becomes easy for the research community to

understand the applicability of my framework.

REFERENCES
[1] Sudhakar, “Software Development Teams: Performance,” productivity and innovation, phi learning pvt. ltd, 2015

[2] H. Mohanty, J. R. Mohanty, A.K. Balakrishnan, “Trends in Software Testing,” Springer-Computers, 2016

[3] J. McManus, “Risk Management in Software Development Projects,” Routledge, 2012

[4] A. P. Sage, W. B. Rouse, “Handbook of Systems Engineering and Management,” John Wiley & Sons, 2009

[5] S. Jha, “The Project Manager's Communication Toolkit”, CRC Press, 2010

[6] B. Tulgan, “Bridging the Soft Skills Gap: How to Teach the Missing Basics to Todays Young Talent,” John Wiley &

Sons, 2015

[7] P. Serrador, “Project Planning and Project Success: The 25% Solution,” CRC Press, 2014

[8] T. Melton, “Real Project Planning: Developing a Project Delivery Strategy,” Butterworth-Heinemann, 2011

[9] C. Artigues, S. Demassey, E. Neron, “Resource-Constrained Project Scheduling: Models, Algorithms, Extensions

and Applications,” John Wiley & Sons, 2013

[10] R. Klein, “Scheduling of Resource-Constrained Projects,” Springer Science & Business Media, 2012

[11] C. Ebert and H. Soubra, "Functional Size Estimation Technologies for Software Maintenance," in IEEE Software,

vol. 31, no. 6, pp. 24-29, Nov.-Dec. 2014.

[12] M. Jørgensen, "Relative Estimation of Software Development Effort: It Matters with What and How You Compare,"

in IEEE Software, vol. 30, no. 2, pp. 74-79, March-April 2013.

[13] M. Jørgensen, "What We Do and Don't Know about Software Development Effort Estimation," in IEEE Software,

vol. 31, no. 2, pp. 37-40, Mar.-Apr. 2014.

[14] E. Morozoff, "Using a Line of Code Metric to Understand Software Rework," in IEEE Software, vol. 27, no. 1, pp.

72-77, Jan.-Feb. 2010.

IJECE ISSN: 2088-8708 

Insights on Research Techniques towards Cost Estimation in Software Design (Praveen Naik)

2893

[15] M. Polo, P. Reales, M. Piattini and C. Ebert, "Test Automation," in IEEE Software, vol. 30, no. 1, pp. 84-89, Jan.-

Feb. 2013.

[16] D. Smite, F. Calefato and C. Wohlin, "Cost Savings in Global Software Engineering: Where's the Evidence?," in

IEEE Software, vol. 32, no. 4, pp. 26-32, July-Aug. 2015.

[17] R.V. Ray, J.K. Pinto, “Cost and Value Management in Projects,” John Wiley & Sons,2011

[18] R. Mall, “Fundamentals of Software Engineering,” PHI Learning Pvt. Ltd, 2014

[19] B. B. Agarwal, S. P. Tayal, M. Gupta, “Software Engineering and Testing,” Jones & Bartlett Learning, 2010

[20] J. Engelhart, P. Langbroek, “Function Point Analysis (FPA) for Software Enhancement,” Nesma, 2009

[21] S.L.Pfleeger, F. Wu, R. Lewis, “Software Cost Estimation and Sizing Methods: Issues, and Guidelines,” Rand

Corporation, 2005

[22] A. Oram, G. Wilson, “Making Software: What Really Works, and Why We Believe It,” O'Reilly Media, Inc, 2010

[23] G.K. Mislick, D. A. Nussbaum, “Cost Estimation: Methods and Tools”, John Wiley & Sons, 2015

[24] F. S. Gharehchopogh, “Neural Networks Application in Software Cost Estimation: A Case Study,” International

Symposium on Innovations in Intelligent Systems and Applications, Istanbul, pp. 69-73, 2011

[25] N. Kushwaha and Suryakant, "Software Cost Estimation Using the Improved Fuzzy Logic Framework," Conference

on IT in Business, Industry and Government (CSIBIG), Indore, pp. 1-5, 2014

[26] “Internal Year of Software Measurement”, http://www.ifpug.org/about-ifpug/about-function-point-analysis/,

Retrived on 12th May-2017

[27] M. de Freitas Junior, M. Fantinato and V. Sun, "Improvements to the Function Point Analysis Method: A Systematic

Literature Review," in IEEE Transactions on Engineering Management, vol. 62, no. 4, pp. 495-506, 2015.

[28] N. Mittas and L. Angelis, "Ranking and Clustering Software Cost Estimation Models through a Multiple

Comparisons Algorithm," in IEEE Transactions on Software Engineering, vol. 39, no. 4, pp. 537-551, 2013.

[29] K. Lind and R. Heldal, "A Practical Approach to Size Estimation of Embedded Software Components," in IEEE

Transactions on Software Engineering, vol. 38, no. 5, pp. 993-1007, 2012.

[30] Z. Zia, A. Rashid and K. U. Zaman, "Software Cost Estimation for Component Based Fourth-generation-language

Software Applications," in IET Software, vol. 5, no. 1, pp. 103-110, 2011.

[31] J. Hihn, L. Juster, J. Johnson, T. Menzies and G. Michael, "Improving and expanding NASA Software Cost

Estimation Methods," IEEE Aerospace Conference, Big Sky, MT, pp. 1-12, 2016

[32] H. Cannon and K. Gundy-Burlet, "Software Cost Estimation for the LADEE Mission," IEEE Aerospace Conference,

Big Sky, MT, pp. 1-8, 2015

[33] S. Garg and D. Gupta, "PCA Based Cost Estimation Model for Agile Software Development Projects," International

Conference on Industrial Engineering and Operations Management (IEOM), Dubai, pp. 1-7, 2015

[34] F. S. Gharehchopogh, R. Rezaii and B. Arasteh, "A New Approach By Using Tabu Search and Genetic Algorithms

in Software Cost Estimation," 2015 9th International Conference on Application of Information and Communication

Technologies (AICT), Rostov on Don, pp. 113-17, 2015

[35] F. S. Gharehchopogh, I. Maleki and A. Talebi, "Using Hybrid Model of Artificial Bee Colony and Genetic

Algorithms in Software Cost Estimation," 9th International Conference on Application of Information and

Communication Technologies (AICT), Rostov on Don, pp. 102-106, 2015

[36] A. Idri and A. Zahi, "Software Cost Estimation by Classical and Fuzzy Analogy for Web Hypermedia Applications:

A Replicated Study," IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Singapore, pp.

207-213, 2013

[37] Q. Liu, X. Chu, J. Xiao and H. Zhu, "Optimizing Non-orthogonal Space Distance Using PSO in Software Cost

Estimation," IEEE 38th Annual Computer Software and Applications Conference, Vasteras, pp. 21-26, 2014

[38] R. Sarno, J. Sidabutar and Sarwosri, "Comparison of Different Neural Network Architectures for Software Cost

Estimation," International Conference on Computer, Control, Informatics and its Applications (IC3INA), Bandung,

pp. 68-73, 2015

[39] P. Phannachitta, J. Keung, A. Monden and K. i. Matsumoto, "Improving Analogy-Based Software Cost Estimation

through Probabilistic-Based Similarity Measures," 20th Asia-Pacific Software Engineering Conference (APSEC),

Bangkok, pp. 541-546, 2013

[40] D. Basten and T. Hoerstrup, "Organizational Effort Estimation," in Computer, vol. 47, no. 8, pp. 76-79, Aug. 2014

[41] S. M. Satapathy, B. P. Acharya and S. K. Rath, "Early Stage Software Effort Estimation Using Random Forest

Technique Based on Use Case Points," in IET Software, vol. 10, no. 1, pp. 10-17, 2 2016

[42] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim and E. Khatibi, "Increasing the Accuracy of Software

Development Effort Estimation Using Projects Clustering," in IET Software, vol. 6, no. 6, pp. 461-473, 2012

[43] K. Dejaeger, W. Verbeke, D. Martens and B. Baesens, "Data Mining Techniques for Software Effort Estimation: A

Comparative Study," in IEEE Transactions on Software Engineering, vol. 38, no. 2, pp. 375-397, 2012

[44] T. G. Grbac, Z. Car and D. Huljenic, "Quantifying Value of Adding Inspection Effort Early in the Development

Process: A Case Study," in IET Software, vol. 6, no. 3, pp. 249-259, 2012

[45] M. Jorgensen and S. Grimstad, "The Impact of Irrelevant and Misleading Information on Software Development

Effort Estimates: A Randomized Controlled Field Experiment," in IEEE Transactions on Software Engineering, vol.

37, no. 5, pp. 695-707, S, 2011.

[46] H. Azath and R. S. D. Wahidabanu, "Efficient Effort Estimation System Viz. Function Points and Quality Assurance

Coverage," in IET Software, vol. 6, no. 4, pp. 335-341, 2012

[47] E. Kocaguneli, T. Menzies, J. Keung, D. Cok and R. Madachy, "Active Learning and Effort Estimation: Finding the

Essential Content of Software Effort Estimation Data," in IEEE Transactions on Software Engineering, vol. 39, no.

8, pp. 1040-1053, 2013

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Ray+R.+Venkataraman%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Jeffrey+K.+Pinto%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22M.+Gupta%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Shari+Lawrence+Pfleeger%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Rosalind+Lewis%22

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2883 – 2894

2894

[48] E. Kocaguneli, T. Menzies, A. Bener and J. W. Keung, "Exploiting the Essential Assumptions of Analogy-Based

Effort Estimation," in IEEE Transactions on Software Engineering, vol. 38, no. 2, pp. 425-438, 2012

[49] E. Kocaguneli, T. Menzies and J. W. Keung, "On the Value of Ensemble Effort Estimation," in IEEE Transactions

on Software Engineering, vol. 38, no. 6, pp. 1403-1416, 2012.

[50] R. A. A. Fagundes, R. M. C. R. Souza and F. J. A. Cysneiros, "Zero-inflated Prediction Model in Software-fault

Data," in IET Software, vol. 10, no. 1, pp. 1-9, 2016.

[51] J. P. Ucan, O. S. Gomez and R. A. Aguilar, "Assessment of Software Defect Detection Efficiency and Cost Through

an Intelligent Collaborative Virtual Environment," in IEEE Latin America Transactions, vol. 14, no. 7, pp. 3364-

3369, 2016.

[52] B. Ozcelik and C. Yilmaz, "Seer: A Lightweight Online Failure Prediction Approach," in IEEE Transactions on

Software Engineering, vol. 42, no. 1, pp. 26-46, 2016.

[53] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen and D. Chen, "Empirical Studies of a Two-Stage Data Preprocessing

Approach for Software Fault Prediction," in IEEE Transactions on Reliability, vol. 65, no. 1, pp. 38-53, 2016.

[54] K. Dejaeger, T. Verbraken and B. Baesens, "Toward Comprehensible Software Fault Prediction Models Using

Bayesian Network Classifiers," in IEEE Transactions on Software Engineering, vol. 39, no. 2, pp. 237-257, 2013

[55] A. Monden et al., "Assessing the Cost Effectiveness of Fault Prediction in Acceptance Testing," in IEEE

Transactions on Software Engineering, vol. 39, no. 10, pp. 1345-1357, 2013.

[56] A. Arcuri and L. Briand, "Formal Analysis of the Probability of Interaction Fault Detection Using Random Testing,"

in IEEE Transactions on Software Engineering, vol. 38, no. 5, pp. 1088-1099, 2012.

[57] P. S. Bishnu and V. Bhattacherjee,” Software Fault Prediction Using Quad Tree-Based K-Means Clustering

Algorithm,” IEEE transactions on knowledge and data engineering, vol. 24, no. 6, 2012

[58] C. Jin S.-W., Jin J.-M. Ye1, “Artificial Neural Network-based Metric Selection for Software Fault-prone Prediction

Model,” IET Software, 2012

[59] J. Saldan-Ramos A. Sanz-Esteban J. Garcıa-Guzman A. Amescua, “Design of a Competence Model for Testing

Teams,” IET Software, 2011

