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One of major drawbacks of orthogonal frequency division multiplexing (OFDM) systems is
the high peak-to-average power ratio (PAPR). A signal with high PAPR leads to nonlinear
distortion caused mainly by power amplifiers in wireless transmitters. Partial transmit se-
quence (PTS) is one of the most attractive methods to reduce the PAPR in OFDM systems.
It achieves considerable PAPR reduction without distortion, but it requires an exhaustive
search over all the combinations of the given phase factors, which results in a computational
complexity that increases exponentially with the number of partitions. For this optimiza-

tion problem, we propose in this paper a suboptimal PTS method based on the self-adaptive
multipopulation differential evolution algorithm (SAMDE). The self adaptation of control
parameters and structured population, is able to obtain high quality solutions with low com-
putational cost by evolving each sub-population of individuals over successive generations.
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1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is widely used for high speed transmission technolo-
gies such as WIMAX, LTE, WIFI, DAB-T and DVB-T. The OFDM concept is based on spreading the high speed data
to be transmitted over a large number of subcarriers. OFDM is useful and robust against multipath fading channels.
However, the generation of OFDM signals typically induces large envelope fluctuations, known as Peak-to-Average
Power Ratio (PAPR). The PAPR is defined as the ratio of the maximum instantaneous power and the average power of
the signal to analyze. An OFDM signal with high PAPR transmitted through a nonlinear device, such as a high-power
amplifier (HPA), leads to in-band or out-of-band signal distortion such as spectral regrowth, intermodulation, or con-
stellation tilting and scattering [1], [2]. The Partial Transmit Sequences (PTS) method is one of the most attractive
in reducing the PAPR for OFDM systems. It is a distortionless scheme for PAPR reduction in OFDM systems and
it works with an arbitrary number of subcarriers and any modulation scheme. The principle of the PTS method is to
partition the input data of N symbols into M disjoint subblocks [3]. The subcarriers in each subblock are weighted
by a phase factor selected from a set of W factors for that subblock. The phase factors are selected such that the
PAPR of the combined signal is minimized. The conventional partial transmit sequence technique (C-PTS) has expo-
nentially increased search complexity. Many methods have been proposed to reduce the number of candidate signals,
which means decreasing the number of searches in the PTS scheme but with a compromise in PAPR reduction effi-
ciency. Among them, there are iterative and simplified search methods such as, the flipping iterative method (IF-PTS)
proposed in [4] or a gradient descent search (GD-PTS) proposed in [5].

Evolutionary algorithms have been also considered by many researchers for reducing the number of candi-
date signals in PTS scheme. Genetic algorithms are used for searching rotation factors while reducing the PAPR in
PTS scheme (GA-PTS) [6]. The bee colony optimization algorithm (BCO-PTS) has been proposed in [7]. In this
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article, we propose a Self-Adaptive Multipopulation Differential Evolution (SAMDE) algorithm for searching the
optimal phase factors vector required in the PTS scheme. The population in SAMDE algorithm is partitioned into
small sub-populations known as islands. In this model, each sub-population is evolving independently from the oth-
ers. The sub-populations exchange information between them in a process called migration. The dynamic adaptation
of control parameters and the use of a structured population provide a way to increase the amount of potential search
moves. Simulation results demonstrate that the performances of the SAMDE-PTS method are better in terms of PAPR
reduction with lower numbers of candidate signals when compared to other optimization algorithms.

2. OFDM SIGNAL AND PAPR
In OFDM systems, the inverse fast Fourier transform (IFFT) is used to get the complex envelope in discrete
time-domain x,, which is given by:

- 2mkn

N—1

1
Ty = —— Xpe! N n=0,1,...,LN — 1, 1)
/w2 (

where N is the number of subcarriers, L is the oversampling factor and X = {X},k =0,..., N — 1} is a block of
N input symbols. Therefore, the PAPR of transmitted OFDM signal x,, defined as the ratio of the maximum power
to the average power, is expressed as

max |z, |2
0<n<LN-1

PAPR =
PCL’U

2

where P, = E [|:cn |2] is the average power and E [-] denotes the expectation operation. The oversampling is done
by inserting (L — 1) N zeros before IFFT module. The oversampling factor must be (L > 4) for a good approximation
of the PAPR of continuous-time OFDM signal [8].

The distribution of PAPR can be expressed in terms of complementary cumulative distribution function

(CCDF), which is also used to evaluate the performance of PAPR reduction in OFDM systems. It represents the
probability ¢ that the PAPR of an OFDM symbol exceeds a given threshold PAPR, which is denoted as

¢ = CCDF(z = PAPRy) = Prob{PAPR > z,} 3)

A relatively accurate approximation of the CCDF is proposed in [9], by employing the extreme value theory :

CCDF(z) 2 1 — exp { — Ne =™, /glnN} @)

Thus, for a given probability ¢ and from (4) the threshold 2, could be formulated as

%:_m(‘ﬁgiiw> )

The Solid State Power Amplifier (SSPA) is an often used model of the nonlinear HPA. The SSPA produces no phase
distortion and the AM/AM conversion function is given by

v]z(t)]

A(‘l‘(t”) = [1 + (V‘x(t”/Ao)Qp}l/Qp

(6)

where v is the amplification gain, Ag = vAg.;, Asqe denotes the amplifier input saturation and p determines the
smoothness of the transition from the linear region to saturation region. The operating point of the SSPA in relation-
ship with the nonlinearity of the HPA on a signal, depends on a quantity called the input back-off (IBO), defined as
IBO = 10log,, (A2,,/E [|z(t)[*]) in dB. An OFDM signal with high PAPR, leads to nonlinear distortions which
increase the BER. An HPA with high IBO has a large linear amplifier region with low distortion, but this leads to a
poor power efficiency. An HPA with low back-off values increases nonlinear distortions as inter-modulation, in-band
distortion and out-of-band radiation. These distortions result also in BER degradation. To prevent the occurrence of
such problems, a suboptimal version of PTS technique reducing the PAPR of the transmitted signal, can be envisaged.
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3. CONVENTIONAL PTS AND OPTIMIZATION PROBLEM
In the conventional PTS (C-PTS) scheme, the input data block X is evenly divided into M disjoint subblocks,

which are X,;, = [Xm.0, X1, - - - » X, N—1]T, such that
M
X=> Xn (7)
m=1
with m = 1,2,..., M. The IFFT output of each subblock (i.e., T, = [Tym.0, Tm.1,---sTm.LN—1]" is multiplied

by a rotation factor (b,,) selected from a W-element set, with b,, = €/, m = 1,2,..., M, and ¢,,, € [0 27).
For W = 2, the allowed phase factors b,, belong to the set {£1}, while for W = 4 they belong to the {£1,+j}
set. Figure 1 shows the block diagram of a OFDM system using the conventional PTS technique. The PTS OFDM
symbol is formed by adding the M partitions as follows :

M
En(b) =D b Tmm, n=0,1,...,NL—1 (8)
m=1
where #(b) = [£0(b),Z1(b),...,Znr—1(b)]T. Assuming that W is the number of allowed phase factors, the deter-
mination of optimal vector with the phase rotation factors b°P* = [by, bs, . .., bas]7 minimizing the PAPR of the PTS

OFDM signal, requires an exhaustive search over C' = W ~! combinations.

. 2
¢ ognngﬁ\fq [ ()]
bopt = argmin ©)
c=1 Pa'u

The optimal set of phase factors is sent to the receiver as a side information for correct decoding of the signal. It is
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Figure 1. OFDM signal generation using the PTS technique.

possible to reduce the number of samples required for PAPR calculation by using a reduced complexity PTS scheme
(RC-PTS) as proposed by [10]. Calculating the power of #(b) in (8) and applying the Cauchy-Schwartz inequality

2

M
[En (D) =| D b T
m=1

M M
S Z |bm‘2 X Z |$m,n|2 = MQn
m=1 m=1

(10)

where Q,, = Zﬁf:l |Zm.n|? is the sum of power of the samples at time n in the M subblocks. Suppose that ®y is the
minimum possible peak power among the different time-domain symbols in an OFDM system with /N subcarriers,
then we can write

> { 2>
MQ, > oo max |, (D) > PN (11)
and thus
Qn > 2 (12)
n = 7, —«&
M
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Based on the above inequality and if @ is known, it is possible to consider only the samples with Q,, > o = ®n/M
for PAPR calculation during the exhaustive search of optimal set of phase factors in PTS scheme. In practice it is not
possible to get the true values of ®x and a, but an estimation of this threshold for selecting samples can be determined
by using the CCDF function of the peak power similar to (4).

— a 2
¢ = Prob {0§71H§1%)1(\/—1 |, ()] > 20 X Pav} (13)

where ( is the probability that the peak power exceeds a given threshold <I><N; this threshold is obtained by using (5)
as

q)ﬁzzoxpav:_Palen(ln(l_C)) (14)

The probability of event ), > « is expressed as [10],

—aM

o(5) -]

where T'(+) is the gamma function. In RC-PTS scheme, the average number of samples used for PAPR calculation
is then given by p, x L x N for each candidate signal, and therefore the computational complexity is reduced. The
complexity reduction is more significant for small values of M (i.e. M = 4).

15)

4. PROPOSED PTS SCHEME BASED ON DIFFERENTIAL EVOLUTION ALGORITHM

In this section, we describe the self-adaptive multipopulation differential evolution algorithm (SAMDE).
This algorithm, based on a multiple populations structure and self adaptation of control parameters, is used to search
the optimal phase rotation factors vector.

4.1. Differential evolution algorithm

The differential evolution algorithm (DE) is a population based search approach introduced by [11] and
considered as an improved version of the original genetic algorithm introduced by [12]. The DE involves several
control parameters such as mutation weighting factor F', crossover control parameter CR, population size NP and
fitness function to minimize f. A population P consists of NP parameter vectors ©; ¢, (i = 1,2,..., NP for each
generation () and each vector is called an individual. The initial population is chosen randomly and should cover the
entire parameter space, whereas the new individuals are generated by using the following operators:

1. Mutation is an important operator which consists in adding a perturbation on the population. Basically during
each generation GG, mutant individuals v; ¢ are produced by adding the weighted difference between two or
more population vectors, resulting in a third vector. There are several variant strategies of DE [13]:

DE/rand/2 : Vi.641 =0rn.¢+F(Or,.¢6 —Ory.6 + 01,6 — Or.6) (16)
DE/best /1 : Vi.G+1 = Oest.a + F(Or, ¢ — Ory ) (17)
DE/best/2 : Vi,G+1 = Obest,c + F(Or,,.6 — Ory .6 + Ory .6 — Ory.0) (18)
DE/rand — to — best/1 : V.41 = 056 + F(Opest.c — 0i.¢) + F(Or,.¢c — Or,.6) (19)
DE/rand — to — best/2 : Vi.6+1 = 056 + F(Opest,c — Oic) + (20)

F(®T1,G - ®T2,G + 6T3,G - ®T4,G)

where 11 # 1o # r3 # 14 # 15 # 1 (€ {1,2,..., NP}) are random indexes and Oy, ¢ is the best individual
in the population at current generation G. Parameter F' € [0, 1] controls the amplification of the difference
vector of the randomly chosen individuals.

2. Crossover is a genetic operator designed to increase the diversity of the population using the following scheme:

, _ [ vigy1 ifrpi <CR
Ui, G+1 = { @i,G ifT[O,l] > CR (21)
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where CR (CR € [0, 1]) is the crossover probability or crossover control parameter and r denotes a random
number. The new trial individuals u; g41 of the next generation are produced by exchanging individuals from
the previous generation population ©; ¢ with the mutated vectors v; gy 1.

3. Selection is a DE operator applied to select the fittest individuals of the resulting offspring u; g+1 for the next
generation according to their fitness scores f as expressed by:

, _J uigyr if fuier1) < f(©iq)
Qi = { ©,c  otherwise (22)

The control parameters of the DE algorithm F, CR and NP are generally fixed during the whole optimization process.
But with fixed values, after a number of generations, the search is performed mainly in the neighborhood of the
promising solutions, this reduces the exploration of the whole search space and involves a stagnation effect.

4.2. Self-Adaptive Multipopulation DE algorithm

The main drawback of the classical DE algorithm after a number of generations is its limited capability
to produce new promising solutions by exploring correctly the decision space. Therefore, the optimization process
requires more search moves to find the optimal or the suboptimal solution, which is not suitable for our objectives.
To overcome the problem of stagnation and dynamically adjust the control parameters F' and CR, we adopt two
approaches. The first one, is to use a self-adaptive version of DE algorithm (SADE) developed by [14]; the control
parameters are determined in accordance with the evaluation of the uniform random numbers:

Frow + Fupp X rand;,  ifrand, < 7

Figyni = { Fiq otherwise @9
B rands if randy < m
CRig+1 = { CR; otherwise =

where 71, 7o denote the probabilities to adjust the control parameters F' and CR. The numbers rand; to rand, are
random values in the interval [0, 1]. For the values Fj,,, = 0.1 and Fupp = 0.9, the new parameters I' and CR are
randomly generated within intervals [0.1, 1] and [0, 1], respectively. The updates are obtained before the mutation
is performed. The objective is to reach the best solution with a minimum number of searches. The second one, to
increase the population diversity and to enhance the space search exploration, is to use a structured population or
multipopulation structure. The space problem is subdivided into separated optimized sub-spaces. Many variants of
the DE algorithm with a structured populations and different topologies have been proposed in literature [15], [16].

4.3. Suboptimal search of PTS phase factors based on the SAMDE Algorithm

In this section, a detailed description of the SAMDE algorithm used for searching the nearly optimal phase
factors vector for PAPR reduction with PTS scheme (SAMDE-PTY), is examined. The phase factors search can be
considered as a combinatorial optimization problem. The objective is to find out the best weighting factors vector b
that minimizes the PAPR function. The fitness function is directly related to the PAPR and is defined as:

max(|n (b)[%]

IO = @)

with0 <n < LN —1
. i\ M 21k
subject to b € {e/?}" where ¢y, € W\k:(),l,...,W—l (25)

To reduce the samples required for PAPR calculation at this step, R-PTS scheme is used. A given probability ¢ to
find the peak, and a threshold is deduced by using (14). This threshold is used to find the sample required for PAPR
calculation by using (12), only an average of p, LN samples are needed instead of LN samples. The first step of
SAMDE-PTS algorithm is to generate randomly an initial population PP of NP vectors or individuals ©; ¢ and each
vector contains M real phases randomly initialized with ¢;,,, € [0, 27). In this work, the population P is structured
in S sub-populations of n,, individuals. Each sub-population P; (j € {1,2,...,S}), evolves independently towards
a solution as per the self-adaptive DE algorithm. The population generated contains phases with real values, but the
phase factors b; ,,, required for fitness evaluation in (25) being in discrete form, we need to transform (or to map) each
new phase into the set of discrete allowed phases {¢,,} and determine the corresponding phase factors {b; ,,, }. We
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Algorithm 1 SAMDE-PTS algorithm

1: Set the OFDM-PTS scheme parameters : N, L, M and W.

2: Set the population size NP, the initial mutation weighting factor F; ;, upper bound F,,;, and lower bound Fj,,,,
the crossover control parameter CR; ; and the maximal number of generations G4, and set G = 1.

3: Randomly generate an initial population P with NP individuals of M real phases ©; ¢ and split it into S sub-
populations of n,, individuals

4. while the stopping criterion G, is not met do

5:  for Each sub-population P;, j = 1,2,...,5 do

6: for Each vector ©; ¢ = [¢i1,Pi2,-- -, Pim)si=1,2,...,n,do

7: Mutation: Generate 4 random indexes 71, r2, r3 and 74 € {1,2,--- , NP} and different from index 1.
Generate a mutant vector v; g+1 by using the scheme DE/rand-to-best /2 given by (20).

8: Crossover: Choose a random number r € [0, 1], and generate the new individuals u; ¢41 as per (21).

9: Evaluation: Calculate the fitness function f value for the new individuals by using the mapping given by
(26) and fitness calculation (25). Memorize the best individuals.

10 Selection: Perform a selection of individuals according the fitness function (22).

11: self adapting: Update the control parameters F' and CR using (23).

12: end for

13: if G =;, withy; € {7,27,...G s} then

14: (Perform the migration process) :

Send a copy of the p best individuals to the next sub-population P; ;. Replace the worst p individuals by
the p incoming ones from the previous sub-population P;_;.

15: end if

16:  end for

17:  Test: if G = Gpaz, then output the best results and stop. Otherwise increment G = G + 1 and return.

18: end while

consider the case where W = 4 and the allowed phases factors are {+1,+7, —1, —j}. This mapping operation is
performed only for evaluating the objective function, without overwriting the populations and expressed as:

if Tn/4<¢im<m/4

) §if /A< i < 374
e ) 1 if 3n/4 < ¢im < b7/4
—j if 57/4 < i < Tr/A

(26)

During one generation, for each vector of each sub-population, a self-adaptive DE is employed with mutation,
crossover and selection operations to produce an offspring and to select one of these vectors with the best fitness
value. Updating the sub-populations independently with a migration process ensures a better exploration of the de-
cision space. The mutation adopted for each sub-population is the DE/rand-to-best/2 scheme. Initially the
control parameters are randomly generated for each sub-population and updated in each generation using (23 and 24).
The multiple populations structure decreases the risk of stagnation which might occurs with the DE algorithm after
a number of generations. For each sub-population P;, a migration mechanism is performed every 7y generations, by
sending a copy of the p best individuals to the next sub-population, where v € N is called the migration interval and
p € N represents the migration rate defined as the number of individuals which migrate between sub-populations.
At the same time, each sub-population receives the p best individuals from the previous sub-population which will
replace the same number of the worst individuals, even if they are not better. This mechanism adds new search moves
and enhances the algorithm performance. The proposed SAMDE algorithm can be summarized in Algorithm 1 and a
flow chart is given by Figure 2 with 4 sub-populations and unidirectional topology ring.

4.4. Complexity analysis

The C-PTS method requires a high complexity search by trying C = W™ =1 candidate signals to find the
optimum set of phase factors. The computational complexity is (LNMC + LNC) complex multiplications and
(2LNC(M —1)+ LNC —1) real additions. The amount of PAPR reduction increases with the number of subblocks
M and the number of allowed phase factors W, but at the cost of high computational complexity. For R-PTS scheme
[10], the average number of samples required for PAPR calculation is reduced to p, LN, such that the complexity
is around (LNM + po(LNM + LN)C') complex multiplications and (3LNM + po(2LNM — LN)C — 2LN)
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individuals from individuals from
. sub-population

Output the best results b’

Figure 2. Flow chart of multipopulation DE algorithm with 4 sub-populations and unidirectional ring topology.

real additions. For all suboptimal PTS methods trying to reduce the candidate signals, the computational complexity
is proportional to the number of phase factors searches. For heuristic methods, such as the gradient descent search
(GD-PTS) algorithm used in [5], the number of searches is given by CZ"MA)WT x I, where r is the radius of the

neighborhood, I is the number of iterations and C¥ is the binomial coefficient. With the iterative flipping algorithm
for PTS (IF-PTS) [4], the search complexity is proportional to (M — 1) x W. For stochastic methods based on
population search as the proposed method (SAMDE-PTS), the artificial bee colony algorithm (ABC-PTS) [7], the
differential evolution algorithm (DE-PTS) considered in [17],[18] and the genetic algorithm (GA-PTS) [6], a PAPR
calculation is needed at each iteration for each candidate, so the number of searches is given by the population size
times the number of iterations (cycles C' or generations G) NP x I. The computational complexity of the proposed
scheme is also evaluated by using the CCRR (computational complexity reduction ratio) defined as follows:

complexity of proposed PTS

CCRR = (1 — ) x 100% 27)

complexity of C-PTS

5. SIMULATION RESULTS

Extensive simulations have been conducted to verify the performance of the SAMDE-PTS scheme for
searching the optimal combination of phase factors. An OFDM system with 16-QAM modulation and N = 1024
subcarriers with an oversampling rate of L = 4 is simulated. To generate the CCDF of PAPR, 10* random OFDM
symbols are used. For PAPR reduction technique with PTS scheme, the allowed rotation phase factors are described
in section 3.

10

—4— Original OFDM
—%— IF-PTS. »
—>— GD-PTS,1=1, I=3
—m— . GD-PTS,1=2, I=2
GA-PTS
—*— DE-PTS
—w¥— BCO-PTS
- - SAMDE-PTS
—&— C-PTS
—e— R-PTS 7=0.99, p}= 0.68801]

F.
ou
T

\ 3

1600 ; 2
14 searches

searches

Prob(PAPR > PAPR )

H
O‘
T

Prob(PAPR > PAPRO)

—— Original OFDM
== SAMDE-PTS
C-PTS

10 I I I

8.2 8.4 8.6 8.8 9 9.2 9.4 9.6
PAF’RO

Figure 3. CCDF’s of original OFDM, conventional PTS Figure 4. CCDF’s comparison of PAPR reduction with
and the proposed SAMDE-PTS method conventional PTS, SAMDE-PTS and some other heuristic
and meta-heuristic methods

Figure 3 shows the CCDF curves of the original OFDM signal (without any PAPR reduction method), the
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Table 1. Search cost of the different methods and the PAPR values when CCDF = 1073,

Method Number of searches CCRR % | PAPR dB
C-PTS C=wWM-T=16384 0 8.00
R-PTS (¢ = 0.99, pg = 0.68) [10] C =16384 31.1 8.0
R-PTS (¢ = 0.4, p§, = 0.3735) [10] C =16384 62.64 8.0
SAMDE-PTS (¢ = 0.99, p¢, = 0.68) S xnp x G =1600 93.27 8.137
SAMDE-PTS ({ = 0.4, p§ = 0.3735) S x n, x G =1600 96.34 8.156
SAMDE-PTS S x ny x G =1600 90.23 8.12
BCO-PTS [7] NP x C = 1600 90.23 8.17
DE-PTS [17, 18] NP x G = 1600 90.23 8.20
GA-PTS [6] NP x G = 1600 90.23 8.27
GD-PTS(r = 2,1 = 2) [5] C2W? x 2 =672 95.89 8.41
GD-PTS(r = 1,1 = 3) [5] CIWTx3=84 99.48 8.84
IF-PTS [4] (M—1)x W =28 99.82 9.35
OFDM only 0 - 11.7

PAPR reduction is achieved by using the conventional PTS (C-PTS) and the proposed SAMDE-PTS method. The C-
PTS method requires C' = W™ ~1 candidate signals. This corresponds to 64, 16384 and 32768 searches for (W, M)
given by (4,4), (4,8) and (2,16), respectively. The PAPR reduction is enhanced by increasing M, but at the expense
of an exponential increase in the search computational complexity. For the proposed SAMDE-PTS method and for
(M =8or16,S =4,n, = 10, NP = 40, p = 1, v = 10), different values of F' and CR are initially assigned
to each subpopulation after a few generations, self adaptation is performed with a search cost of 1600. Whereas, for
(M =4,5 =2,np =4, G = 4) the total search cost is 32. For almost the same PAPR reduction performance, the
computational complexity has been considerably reduced with CCRR’s= 95.11%, 90.24% and 50% for M = 16, 8
and 2 respectively.

Figure 4 shows the different CCDF simulated curves of the PAPR with a variety of heuristic and meta-
heuristic methods. Table 1 gives the PAPR at CCDF = 1073 and lists the search costs for (N = 1024, L = 4,
W =4, M = 16). The IF-PTS method with only 28 searches and CCCR=99.829%), presents the lower computational
complexity but with considerably the worst performance in PAPR reduction. The meta-heuristic methods give a better
performance in PAPR reduction with the same search complexity, which corresponds to CCRR= 90.24%. But, the
best performance is achieved by the proposed SAMDE-PTS method with a PAPR equal to 8.125 dB. It can be seen
that the proposed method outperforms all the other methods in PAPR reduction while keeping a low complexity of
1600.

: : : :
—=— SAMDE-PTS, 2=0.1, p’, = 0.205

—+— R-PTS {=0.1, pi:O.ZOSO
—5(z— SAMDE-PTS =04, pé:O.3735

—k— SAMDE-PTS 2=0.99, p=0.688|
-O- SAMDE-PTS

—A— R-PTS =04, p§=0.3735

—e— R-PTS 7=0.99, pé: 0.6880

Prob(PAPR > PAPR )

10°

Figure 5. Comparison of PAPR reduction performance for the C-PTS, R-PTS and the proposed method SAMDE-PTS
based on R-PTS scheme with W =4, M = 8.

Figure 5 shows the performance of the conventional PTS and R-PTS scheme with exhaustive search over
16384 candidate signals, and the proposed method SAMDE-PTS with 1600 searches. For the PAPR calculation
required for each generation in optimization process, the simulations are done by taking all LN samples, and also by
taking about p$ LN samples and with different values of (. The proposed PTS scheme with ({ > 0.40 ) can achieve
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almost the same PAPR reduction performance but with lower computational complexity reaching a CCRR of 96.34%.

Figure 6 depicts the BER versus Ej, /N, performance of OFDM signals over the AWGN channel when SSPA
has been considered with different parameters p = 2 and 3 and operating at IBO = 3 and 6 dB. The best performance
bound curve is obtained with no SSPA; the nonlinearity effects of SSPA are neglected. The SSPA with low input
back-off value (/BO = 3 dB) increases the BER of the system. The small IBO values (IBO = 0, 3, 6 dB) lead to
inband distortion that increases the BER of the system. Parameter p controls the AM/AM sharpness of the saturation
region and affects the BER performance. The proposed SAMDE-PTS scheme with ¢ = 0.4, p5, = 0.3735 offer an
improved BER performances over AWGN channel compared with the original OFDM system with SSPA, and almost
the same BER performance as that obtained with the C-PTS scheme.

o —%— No SSPA
—e— Original OFDM

1BO =3 dB )
S - = =SAMDE-PTS, ¢ = 0.4,p5 = 0.3735

10°F —— C-PTS

. . . . . . . . .
4 6 8 10 12 14 16 18 20 22 24
E,/N, (dB)

Figure 6. BER vs E}, /Ny performance of SAMDE-PTS and C-PTS methods with W = 4 M = 8, over an AWGN
channel and by using an SSPA (p = 2 and 3, IBO = 3 and 6 dB).

6. CONCLUSION

In this paper, we have proposed a new approach to reduce the PAPR in OFDM systems by using a Self-
Adaptive Multipopulation Differential Evolution Partial Transmit Sequence algorithm (SAMDE-PTS) for search-
ing the optimal combination of phase factors in PTS technique. Simulation results have shown that the proposed
method achieves almost the same PAPR reduction and the same BER performance as that of the conventional PTS
scheme while significantly reducing computational complexity by 10. Furthermore, simulation results have shown
that SAMDE-PTS method outperforms others heuristic and meta-heuristic methods. In fact, the performance of the
algorithm is enhanced by adopting a dynamic adaptation of control parameters and a multipopulation structure. This
approach accelerates convergence and avoids stagnation by adding a new search moves and maintaining the popula-
tion diversity.
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