
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 5, October 2017, pp. 2635~2644

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i5.pp2635-2644  2635

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

LusRegTes: A Regression Testing Tool for Lustre Programs

Nguyen Thanh Binh
1
, Trinh Cong Duy

2
, Ioannis Parissis

3

1,2The University of Danang - University of Science and Technology, Vietnam
3University Grenoble Alpes, Grenoble INP-LCIS, France

Article Info ABSTRACT

Article history:

Received Mar 16, 2017

Revised May 16, 2017

Accepted Jul 11, 2017

 Lustre is a synchronous data-flow declarative language widely used for

safety-critical applications (avionics, energy, transport...). In such

applications, the testing activity for detecting errors of the system plays a

crucial role. During the development and maintenance processes, Lustre

programs are often evolving, so regression testing should be performed to

detect bugs. In this paper, we present a tool for automatic regression testing

of Lustre programs. We have defined an approach to generate test cases in

regression testing of Lustre programs. In this approach, a Lustre program is

represented by an operator network, then the set of paths is identified and the

path activation conditions are symbolically computed for each version.

Regression test cases are generated by comparing paths between versions.

The approach was implemented in a tool, called LusRegTes, in order to

automate the test process for Lustre programs.

Keywords:

Activation condition

Lustre programs

Operator network

Regression testing tool

Test data generation
Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Nguyen Thanh Binh,

Information Technology Faculty,

The University of Danang - University of Science and Technology,

54 Nguyen Luong Bang, Danang, 550000, Vietnam.

Email: ntbinh@dut.udn.vn

1. INTRODUCTION

Lustre is a declarative, data-flow language [1], devoted to the specification of synchronous and real-

time applications. It ensures efficient code generation and provides formal specification and verification

facilities. It is based on the synchronous approach, which demands the software to react to its inputs

instantaneously. In practice, this means that the software reaction is sufficiently fast so that every change in

the external environment is taken into account. These characteristics make it possible to efficiently design

and model synchronous systems. A graphical tool dedicated to the development of critical embedded systems

and often used by industries and professionals is SCADE (Safety Critical Application Development

Environment), which has been commercialized by Esterel Technologies. It is an environment based on the

Lustre language and it allows the hierarchical definition of the system components and the automatic code

generation.

The Lustre/SCADE environment is widely used for safety-critical applications (avionics, energy,

transport...). In such applications, software testing [2], [3] for ensuring the quality plays a vital role. The

objective of testing activity is to reveal errors in applications as soon as possible in development and

maintenance phases.

Software maintenance is an activity, which includes enhancements, error corrections, optimization

and deletion of existing features. These modifications may cause the system to work incorrectly. Therefore,

regression testing becomes necessary. Regression testing is a type of software testing that seeks to uncover

new software bugs, or regressions, in existing functional and non-functional areas of a system after changes,

such as enhancements, patches or configuration changes, have been made to them. The intent of regression

testing is to ensure that a change such as those mentioned above has not introduced new faults [4]. In

addition, one of the main objectives for regression testing is to determine whether a change in one part of the

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2635 – 2644

2636

software affects other parts of the software. Common methods of regression testing include rerunning

previously-completed tests and checking whether program behavior has changed and whether previously-

fixed faults have reemerged. Regression testing can be used to test a system efficiently by systematically

selecting the appropriate minimum set of tests needed to adequately cover a particular change.

Extensive studies have been carried out focusing on the automatic test data generation. Several tools

have been proposed, mainly concerning the formal specification processing to produce test input sequences.

Some tools for programs specified in Lustre are GATeL [5], Lurette [6] and Lutess [7], [8]. However, these

tools don't support regression test generation. Hence, our research work aims to develop the LusRegTes tool,

which allows an automatic generation of regression test data for Lustre programs. This approach was recently

introduced in [9]. Lustre programs are unordered sequences of equations, defining how their input flows are

transformed into output flows through a set of operators. Therefore, the most suitable representation for

Lustre programs is a directed graph, called operator network. We define then the correlation between path

activation conditions of operator networks and test cases. When there is a change in path activation

conditions, we identify the test cases to be removed, reused and created. Since, the minimum set of test cases

is designed to reduce operating costs for regression testing of the new version.

The paper is organized as follows. Section 2 presents an overview of the Lustre language, the

SCADE environment, and testing in Lustre/SCADE. The approach of test case generation in regression

testing for Lustre/SCADE programs is presented in Section 3. Section 4 introduces the implementation of the

LusRegTes tool and Section 5 presents the experimentation. Finally, the paper finishes by the conclusion and

future work.

2. BACKGROUND

2.1. Regression Testing

Testing can be used to build the confidence in the correctness of the software and to increase the

software reliability. The major difference between the regression testing and the development testing is that

during regression testing an established set of tests may be available for reuse. Regression testing is essential

when software product has been changed and it is often applied during maintenance phase. Regression testing

ensures that the modified program meets its specification and new errors are uncovered [4].

Regression testing, which is an expensive maintenance process, is responsible for revalidating the

modified software. Maintenance cost of the software is high as compared to its development cost. The

maintenance cost of the software may exceed to around 70% relevant to the development cost [4].

Maintenance has three types: perfective, adaptive and corrective. Corrective maintenance is performed to

correct error that has been uncovered in some part of the software. Adaptive maintenance is performed when

software is modified to ensure its compatibility with the new environment in which it will operate. Perfective

maintenance is performed to add new features to the software or to improve performance of the software.

Regression testing is done in all these types [4]. There are two types of regression testing: progressive

regression testing and corrective regression testing. Corrective regression testing is applied when

specification is not changed; probably some other changes have been made, i.e. correcting an error. In this

case, test data can be reused. Progressive regression testing is applied when specification has been changed

and new test data must be designed at least for the modified parts of the specification.

Regression testing uses two approaches to test the modified software: retesting all and selective

tests. Retesting all approach chooses all test cases from the unchanged software to test the changed software,

but the approach is time consuming as well as resource consuming. Selective retesting approach chooses a

subset of the tests from the old test suit to test the modified software. In regression testing, selecting a

suitable subset with an efficient algorithm is a major area of research. Traditionally, the process of regression

testing is conceptualized as follows. Given a program L1, a modified version L2, and a test suite T1, which is

used to test L1 together with the expected results. In order to reduce costs and to reuse T1 as effectively as

possible, selective retesting techniques first select a subset of T1, T’ based on the modifications in L2

compared with L1. Second, if necessary, a set of new tests T” is created, to test the new, modified and

untested portions of L2. Thus, the test suite T2 for L2 is defined as:

T2 = T’ ∪ T”

In regression testing, identifying test cases for executing is very important, since, we don't need to

re-run the old test cases for old requirements in the previous version (the requirements have not been

impacted by the evolution) [10]. In this work, we use the concept of lifecycle test cases in regression testing.

Each test case will be created until deleted (removed) in regression testing must meet the following

requirements: When there is a change in software versions, if a test case has been used in older versions, but

not affected by the upgrade process, then it will be removed; The test cases, which are affected by the

IJECE ISSN: 2088-8708 

LusRegTes: A Regression Testing Tool for Lustre Programs (Nguyen Thanh Binh)

2637

upgrade, will be updated to match the new version; The test cases for the new requirements in the new

version will be created.

2.2. Lustre/SCADE

2.2.1. The Lustre language

Lustre is a synchronous data-flow language dedicated to programming reactive systems such as

automatic control and monitoring systems in various fields like nuclear plants, civil aircraft and automotive

systems. Lustre is well suited for programming the critical parts of real-time systems especially thanks to its

well-formalized semantics and to the associated verification tools.

A Lustre program is structured into nodes [1]. A node is a set of equations, which define its outputs

as a function of its inputs. Each variable can be defined only once within a node and the order of equations is

of no matter. Specifically, when an expression E is assigned to a variable X, X = E, indicates that the

respective sequences of values are identical throughout the program execution; at any cycle, X and E have the

same value. Once a node is defined, it can be used inside other nodes like any other operator.

The operators supported by Lustre are the common arithmetic and logical operators (+, −, *, /, and,

or, not) as well as two specific temporal operators: the precedence (pre) and the initialization ().

 The precedence operator (pre) has been introduced to allow breaking data-flow loops and then
defining a causally correct specification [11]. If E is an expression denoting the sequence (e0, e1,
... en-1, …), the expression pre(E) denotes the sequence (nil, e0, e1, ... en-1, …) where nil is an

undefined value. In other words, pre(E) returns the value of the expression at the moment t − 1 (if

t > 0, nil otherwise).

 The initialization operator ( or fby), called followed by, makes it possible to define the initial
value for an expression (i.e. at t = 0). If E and F are expressions denoting, respectively, the

sequences (e0, e1, … en, …) and (f0, f1, … fn, …), then E  F denotes the sequence (e0, f0, f1, … fn,
…).

Lustre does not support loops (operators such as for and while) nor recursive calls. Consequently,

the execution time of a Lustre program can be statically computed and the satisfaction of the hypothesis of

synchrony can be checked.

2.2.2. The SCADE environment

SCADE is a graphical environment commercialized by Esterel Technologies. It is based on the

synchronous language Lustre. So, we are often referred to as Lustre/SCADE. Lustre/SCADE is usually used

to build the applications of reactive systems. From the SCADE functional specifications, C code is

automatically generated, though this transformation (SCADE to C) is not standardized. This graphical

modeling environment is used mainly in the aerospace field (Airbus, DO-178B); however it is also used in

the domains of transportation, automotive and energy [1].

2.3. Model of Lustre programs

Lustre is a data-flow language: the input flows of a program are transformed into the output flows

through a set of dependent or independent operators. As in SCADE descriptions, the most usual

representation for Lustre programs is a directed graph, called operator network.

2.3.1. Operator network of Lustre program

Lustre programs are usually represented as operator networks. An operator network is a labeled

graph connecting operators by means of directed edges. An operator (logical or numerical) specifies data-

flow transfers from inputs to outputs. An edge specifies the data flow between two operators. An operator

network contains usual logical (and, or, not), arithmetical (+, −, /, *) and relational operators (LT (<),

LTE (<=), EQ (==), NEQ (< >), GT (>), GTE (>=)), the conditional operator (ITE) and the temporal operators

(pre, fby).

It is assumed that two functions are associated with any operator op: in(op) returns the set of the

operator input edges and out(op) returns the set of the operator output edges. There are three kinds of edges:

input, output and internal edges. Input (resp. output) edges are occurrences of input (resp. output) variables

of the Lustre program. Internal edges correspond to occurrences of local variables. Every edge has a single

source operator and a single destination operator. An edge e2 is a successor of an edge e1 if and only if there

is an operator of which e1 is an input and e2 is an output.

For sake of convenience, in addition to the previous operators, entry operators and exit operators are

introduced. Entry (resp. exit) operators have no inward (resp. outward) edges and are connected to the

network through input (resp. output) edges [11]. All operators are single output.

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2635 – 2644

2638

2.3.2. Paths in the model

The operator network defines paths within program [11]. A path p = (e1, e2, … en) is a finite

sequence of successive edges. The length of p is the number n (where n > 1) of edges in p (a path of length n

is called n-path). Particular cases of paths are:

 Unit paths (paths of length equal to 2);

 Cyclic paths, containing one or more pre operators.

In addition, the path (e1, e2, … en-1) is called a prefix of the path (e1, e2, … en-1, en) where n > 2.

2.3.3. Operator Predicate

Let (e, s) be a unit path and op an operator such that e ϵ in(op) and s ϵ out(op).

The operator predicate OC(e, s) associated with (e, s) is a boolean expression such that:

 OC(e, s) = true if op is the not operator or a relational operator.

 OC(e, s) = not(e) or e’ if op is an and operator and in(op) = {e, e’}.

 OC(e, s) = e or not(e’) if op is an or operator and in(op) {e, e’}.

 OC(c, s) = true, OC(e, s) = c and OC(e’, s) = not(c) if op is an ITE operator such that in(op) =
{c, e, e’}.

2.3.4. Activation Conditions

The condition upon which a data flow is transferred from the input edge to the output edge of an

operator is called activation condition [11]. An activation condition is associated with each path. When the

activation condition of a path is true, any change in the path entry value causes eventually the modification of

the path exit value. A path is activated if its activation condition has been true at least once during an

execution.

Let p = (e1, e2, … en-1, en) be a n-path, let p0 = (e1, e2, … en-1) be the prefix of p and let op be the last

operator of p, (i.e. en-1 ϵ in(op) and en ϵ out(op)).

The activation condition of p is a temporal boolean expression, AC(p), defined as follows [12]: If

n = 1 then AC(p) = true, then the activation condition of a single edge is always true.

For a given n-path p, the activation condition is recursively defined as a function of the operators in

it. According to the type of the operators, the following three cases may be distinguished:

 AC(p) = AC(p’) and OC(en-1, en) where op is a boolean, relational or conditional operator and
OC(en-1, en) is the predicate associated with operator op.

 AC(p) = false  pre(AC(p’)) where op is a pre operator. This means that the path is activated if

its prefix has been activated at the previous cycle. The fby () operator states that such a path
cannot be activated at t = 0.

 If op is the operator fby(init; nonInit), and if pinit, pnonInit are respectively the prefixes of init and
nonInit then the corresponding activation conditions are defined by the following two equations.
The first equation (1) states that the path is activated if its prefix is activated at the initial cycle;
while in the second (2), the path is always activated but for the initial cycle.

AC(p) = AC(p0)  false (1)

AC(p) = false  AC(p0) (2)

3. REGRESSION TESTING APPROACH FOR LUSTRE/SCADE PROGRAMS

3.1. Problem statement
Lustre/SCADE applications usually require very high quality and rigorous testing activities before

deploying. During the development process, the Lustre program is often updated, so regression test should be

performed to detect bugs. As for any regression testing activity, optimizing the number of executed test cases

is an important issue.

Suppose that we have a Lustre program L1 and L2 is a new version of program L1. Comparing to

version L1, version L2 may:

 Remove some functions;

 Add some new functions;

 Change some functions;

IJECE ISSN: 2088-8708 

LusRegTes: A Regression Testing Tool for Lustre Programs (Nguyen Thanh Binh)

2639

 Leave functions unchanged.

The objective is to perform regression testing of version L2 with a minimum number of test cases.

The approach will be presented in next section.

3.2. The approach

The idea is to compare two versions L1 and L2 in order to determine the differences between them:

 The new parts that are added into L2;

 The parts of L1 that are changed in L2;

 The parts of L1 that are not affected in L2;

 The parts of L1 that are removed from L2.

Instead of considering directly the two versions, we compare their two sets of paths and identify the

differences between them. Then, we generate test cases that cover such differences.

Figure 1. The overall approach of regression testing

for Lustre programs

Figure 1 illustrates the approach, which consists of two following phases.

Phase 1: Generating test data for version L1

We first determine the operator network, path table and activation condition table for version L1.

Then, we generate test cases (test sequences) covering the paths based on the activation condition table. The

result of this phase is a set of test sequences T1 and the relationship between path table P1 and T1.

Phase 2: Selecting and generating test data for version L2

In this phase, we reuse the subset of test cases generated in phase 1 for testing version L2 and we

also create some new test cases covering the new paths in L2. This phase consists of three steps as follows.

2.1) Determining path table P2 from the operator network of version L2.

2.2) Comparing two tables P1 and P2, then classifying paths. As a result, we obtain three subsets PA¸

PB and PC:

 PA: The paths removed in P2 (this subset exists in P1 but does not in P2);

 PB = P1 ⋂ P2: The subset of paths that are the same in P1 and P2;

 PC: New paths in P2.

2.3) Building the set of test cases for version L2 based on PA, PB and PC as follows:

 PA: the subset of test cases covering PA will not be reused in T2;

 PB: the subset of test cases, called T’, covering PB will be reused in T2;

 PC: a new subset of test cases, called T’’, will be created to cover PC.

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2635 – 2644

2640

Figure 2. Generating and selecting test cases for version L2

Figure 2 shows the steps of phase 2. As a result, T2 = T’’ is the set of test cases for regression

testing, and T2all=T’ U T’’ is the set of test cases to test version L2.

4. THE LUSREGTES TOOL

The LusRegTes tool is a test data generator, which consists of two main modules as follows

(Figure 3).

 Module 1: generating test data for the first version;

 Module 2: selecting and generating test data for regression testing for the second version.

Figure 3. The LusRegTes tool

Module 1 of LusRegTes requires the following inputs: the first version of Lustre program to be

analyzed, the length of path and the maximum number of loops in a path (that is, the number of times that a

pre operator will be repeated in a path). This module automates running the Lesar tool with activation

conditions.

As a result, it provides a set of test data for testing the first version. Module 1 is detailed in Figure 4.

IJECE ISSN: 2088-8708 

LusRegTes: A Regression Testing Tool for Lustre Programs (Nguyen Thanh Binh)

2641

Figure 4. Module 1

Module 2 uses the results of module 1 and the new version of Lustre program as inputs. It selects

and generates test data for regression testing. The module consists of three steps:

 A set of paths is determined based on the Lustre note of the new version. This set of paths will
be compared with the set of paths of the previous version. The results of the comparison help
identifying the trigger conditions that will be used in the next step.

 Model checker Lesar is used to generate the counter-examples.

 The counter-examples are analyzed and then test data are generated for the regression testing
activity.

The entire process of Module 2 is shown in Figure 5.

Figure 5. Module 2

The LusRegTes tool is developed in Java programming language, database MySQL and runs on the

Linux operating system. Figure 6 shows a screenshot of the LusRegTes tool.

Figure 6. Screenshot of the LusRegTes tool

In the next part of this section, we will present the functions of this tool with a case study.

5. CASE STUDY

We have applied the LusRegTes tool to the Heater Controller System, which is presented in

Figure 7. The Heater Controller System is a typical example of the reactive system was built by using

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2635 – 2644

2642

Lustre/SCADE. The controller's environment consists of three elements: a switch, a temperature sensor and a

blower. The sensor emits three Boolean signals: Tlow, Tok and Thigh meaning that the temperature is:

respectively, below, on or above the user-defined temperature. The controller uses the switch position (On)

and the sensor signals to emit four control signals (STOP, Deactivated, Hot and Cold) to the blower. STOP

means that the blower is stopped, Deactivated means that the blower is stand-by (no air is issued) while Hot

and Cold mean respectively that hot air or cold air is issued. Two following versions of the Lustre program

were developed for this system.

Version 1: Figure 7 presents the architecture of Heater Controller System.

Figure 7. The Heater Controller System architecture

Version 2: Version 1 was evolved by adding two output signals veryCold and veryHot. If curent

sensor is Cold, if Thight = true, signal is veryCold. If curent sensor is veryCold, if Thight = true, signal is

veryCold else if Tlow = true then signal is Cold (similar with veryHot).

When using the LusRegTes tool, the process is realized through two phases. First, module 1 will be

run to generate test data for version 1 of the program (Figure 8).

Figure 8. Using module 1 to generate test data for version 1

After the first phase, we obtain the set of test cases T1 for the Heater Controller System and the

relationship between activation conditions and test cases is illustrated in Figure 9.

Figure 9. Activation conditions and test cases for version 1

IJECE ISSN: 2088-8708 

LusRegTes: A Regression Testing Tool for Lustre Programs (Nguyen Thanh Binh)

2643

Next, the LusRegTes tool is applied to version 2 of the Lustre program. It analyzes the paths and

compares to version 1. The result of the comparison is shown in Figure 10.

 Path A: The paths are removed in version 2 (this subset exists in version 1 but does not in
version 2).

 Path B: The subset of paths is the same in version 1 and version 2.

 Path C: The paths are new in version 2.

Figure 10. The result of the comparison

The activation conditions are computed for the new paths PC. Next, the trap properties are created

by negating the activation conditions. Finally, the LusRegTes tool runs the Lesar tool to generate the counter

examples, which are transformed into the test cases for regression testing (Table 1).

Table 1. Set of test cases T’’ for regression testing
Counter examples Test cases

Transition 1: not On On=false {(0, 1, 1, 1)}

Transition 1: not On On=false {(0, 1, 1, 1)}

Transition 1: On or not Tlow On=true or Tlow=false {(1, 1, 1, 0)}
Transition 1: On or not Tlow On=true or Tlow=false {(1, 1, 1, 0)}

Transition 1: true Any Any

Transition 1: Tlow
Transition 2: On or not Tlow

Tlow=true
On=true or Tlow=false

{(0, 0, 0, 1),
(1, 1, 1, 0)}

Transition 1: On or not Thigh On=true or THigh=false {(1, 0, 1, 1)}

Transition 1: On or not Tlow On=true or Tlow=false {(1, 0, 1, 0)}
Transition 1: true Any Any

Transition 1: Thigh

Transition 2: On or not Thigh

Thigh=true

On =true or Thigh=false

{(0, 1, 0, 0),

(1, 0, 1, 1)}

The test cases in Table 1 are used for regression testing of version 2. This allows testing only the

changed parts and new parts in version 2.

Figure 11. Chart of test cases status in regression test

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2635 – 2644

2644

Figure 11 shows the comparison of test cases in regression testing of the Heater Controller System.

We can state that:

 18,75% of test cases have been removed;

 18,75% of test cases have been reused;

 62,5% of test cases have been created.

6. CONCLUSION AND FUTURE WORK

In this paper, we present the LusRegTes tool for automatically generating test cases in regression

testing for Lustre/SCADE programs. Test cases are generated by analyzing paths in operator network of

Lustre programs. The tool helps identify only test cases needed for regression testing, so it can save costs and

time effort during developing and maintaining programs, especially reactive systems developed in the

Lustre/SCADE environment. The Heater Controller System that is a reactive system is used to illustrate the

applicability of the tool. We are realizing more experiments with some complex systems developed by

Lustre/SCADE.

REFERENCES
[1] N. Halbwachs, et al., "The synchronous data flow programming language Lustre," Proceedings of the IEEE, 1991.

[2] S. K. Mohapatra and S. Prasad, "Test Case Reduction Using Ant Colony Optimization for Object Oriented

Program," International Journal of Electrical and Computer Engineering, Vol. 5, No. 6, 2015.

[3] T. M. H. Le, et al., "Survey on Mutation-based Test Data Generation," International Journal of Electrical and

Computer Engineering, Vol. 5, No. 5, pp. 1164-1173, 2015.

[4] S. Yoo and M. Harman, "Regression Testing Minimisation, Selection and Prioritisation - A Survey," Software

Testing, Verificatio, and Reliability, 2007.

[5] B. Marre and A. Arnould, "Test Sequences Generation From Lustre Descriptions: GATeL," Fifteen IEEE

International Conference on Automated Software Engineering, IEEE Computer Society Press, pp. 229–237, 2000.

[6] E. Jahier, et al., "Case Studies with Lurette V2," International Journal on Software Tools for Technology Transfer,

Vol. 8, No. 6, 2006.

[7] L. du Bousquet, et al., "Lutess: A Specification-Driven Testing Environment for Synchronous Software,"

Proceedings of 21st International Conference on Software Engineering, ACM, 1999.
[8] B. Seljimi and I. Parissis, "Automatic generation of test data generators for synchronous programs: Lutess v2,"

Proceeding of Workshop on Domain specific approaches to software test automation, 2007.

[9] C. D. Trinh, et al., "A regression testing approach for Lustre/SCADE programs," The Sixth International

Symposium on Information and Communication Technology (SOICT 2015), 2015.

[10] Y. L. Nancy and J. Wahi, "An overview of regression testing," ACM SIGSOFT Software Engineering Notes, 1999.

[11] A. Lakehal and I. Parissis, "Lustructu: A tool for the automatic coverage assessment of Lustre programs,"

Proceedings of 16th IEEE International Symposium on Software Reliability Engineering, 2005.

[12] A. Lakehal and I. Parissis, "Structural Coverage Criteria for Lustre/SCADE Programs," Software Testing,

Verification and Reliability, John Wiley and Sons Ltd, Vol. 19, pp. 133–154, 2009.

