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 In this work, a Neuro-Fuzzy Controller network, called NFC that implements 

a Mamdani fuzzy inference system is proposed. This network includes 

neurons able to perform fundamental fuzzy operations. Connections between 

neurons are weighted through binary and real weights. Then a mixed binary-

real Non dominated Sorting Genetic Algorithm II (NSGA II) is used to 

perform both accuracy and interpretability of the NFC by minimizing two 

objective functions; one objective relates to the number of rules, for 

compactness, while the second is the mean square error, for accuracy. In 

order to preserve interpretability of fuzzy rules during the optimization 

process, some constraints are imposed. The  approach  is  tested  on  two  

control examples:  a single  input  single  output (SISO) system  and  a  

multivariable (MIMO) system. 
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1. INTRODUCTION  

The ubiquitous trade-off between system accuracy and complexity is particularly important in fuzzy 

systems [1]-[3]. Complexity, related to the interpretability of the fuzzy system, is determined by the 

compactness, considered through the number of rules in the rule base, the number of input variables involved 

in each rule and distinguishability of the fuzzy sets [1]. Numerous approaches have been suggested for 

dealing with this problem and to increase the interpretability of fuzzy systems. These approaches are mainly 

based on a suitable structure of the fuzzy system (e.g. a hybrid structure) [4]-[10] or on the use of specific 

training algorithm (e.g. methods in the field of multiobjective optimization or evolutionary optimization) 

[11]-[17].  

In this work, a Neuro-Fuzzy controller (NFC) is adopted for implementing a Mamdani fuzzy 

inference system (FIS), the aim of our method is not only to achieve appropriate accuracy of the controller, 

but also to ensure the possibility of interpretability of the knowledge within it. So, in order to guaranty 

completeness of fuzzy partitions, a special partitioning using triangular membership functions is adopted. 

Then, an improved multiobjective Pareto based genetic algorithm called Mixed Binary-Real Non dominated 

Sorting Genetic Algorithm II (NSGA II) is used for both parameter and structure optimization of the NFC. 

Two objectives are involved in the optimization process: extract a reduced number of rules in the rule base 

and reduce the mean square error. This paper is organized as follows. In section II, a NFC structure is 

introduced. The multiobjective algorithm solution procedure is presented in section III. Section IV presents 

the application to two examples: The control of the pole and cart system and control of a helicopter simulator 

model. Finally, section V gives the conclusion of this paper. 
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2. STRUCTURE OF THE NEURO FUZZY CONTROLLER 

This section presents a Neuro-Fuzzy Controller network, called NFC that implements a Mamdani 

FIS. A schematic diagram of the proposed NFC structure is shown in Figure 1. For the simplicity of 

presentation, NFC with any number of inputs but only one output is developed. The NFC system consists of 

five layers: an input layer, a membership (fuzzification) layer, AND layer, OR layer and a deffuzification 

layer. Next we shall indicate the signal propagation and operation functions of the nodes in each layer. 

 

 

  

Figure 1.  Structure of the proposed NFC Figure 2. Triangular symmetric partitioning of 

universe of discourse with three fuzzy subsets 

 

 

Layer1 (input layer): The nodes in this layer are input nodes with crisp input 𝑥𝑖 , 𝑖 = 1…𝑛, they are 

transmission nodes, they only transmit input values to the next layer. 

 

𝑣𝑖 = 𝑥𝑖                                                                                                         (1) 

 

 Layer2 (fuzzification layer): Nodes at this layer compute the value of the membership function of 

inputs vi. All nodes connected to the same input node have the same weight Li corresponding to the central 

part of the universe of discourse of input variables. In order to guaranty completeness and distinguishability 

of fuzzy partitions, a triangular symmetric partitioning is used as shown in Figure 2. The output of node (i,j) 

is given by: 

 

μAij(vi) =

{
 
 

 
 
vi(Ni − 1 Li⁄ ) + (Ni − 1 2⁄ ) − j + 2 ,

if aij−1 < vi < aij
−vi(Ni − 1 Li⁄ ) − (Ni − 1 2⁄ ) + j,

if aij < vi < aij+1
1    ,         vi < ai1  ou    vi > aiNi  

                                                                    (2) 

 

With fuzzy subsets 𝐴𝑖𝑗  , 𝑖 = 1, . . . , 𝑛 ;  𝑗 = 1, . . . , 𝑁𝑖  , the number of fuzzy sets associated with 

variable i, and the summits of the fuzzy sets are given by:  

 

𝑎𝑖𝑗 = (− (1 2⁄ ) + ((𝑗 − 1) (𝑁𝑖 − 1)))𝐿𝑖⁄  ,   𝑤𝑖𝑡ℎ  𝑖 = 1,… , 𝑛 𝑒𝑡 𝑗 = 1,… , 𝑁𝑖                                  (3) 

 

Layer3 (AND layer): Each node of this layer represents a fuzzy rule. The following AND operation 

is applied to each rule node: 

 

𝑦𝑘
𝐴𝑛𝑑 = 𝜇𝐴1𝑗1(𝑣1). 𝜇𝐴2𝑗2(𝑣2) … 𝜇𝐴𝑛𝑗𝑛(𝑣𝑛), 𝑗𝑖 = 1… 𝑁𝑖 , 𝑖 = 1…𝑛, 𝑘 = 1 …∏ 𝑁𝑖

𝑛
𝑖=1                       (4) 

 

Layer4 (OR layer): In this layer, rules with the same consequence are integrated through the fuzzy 

OR operation which is implemented by: 

 

𝑦𝑙
𝑂𝑅 = 1 − ∏ (1 − 𝑦𝑘

𝐴𝑁𝐷𝑊𝑘𝑙), 𝑙 = 1,… , 𝑁𝑜
𝑁𝑎
𝑘=1                                                                  (5) 

 

Where 𝑊𝑘𝑙 are the binary weights associated with node k of the AND layer and node l of the OR 

layer, 𝑁𝑎 number of nodes in the AND layer and 𝑁𝑜 the number of fuzzy sets associated with the output 
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variable. Since one rule has only one consequence, Wkl must be binary: 

 

𝑊𝑘𝑙 ∈ {0,1} ∀ 𝑘, 𝑙                                                                                                (6) 

 

Layer5 (deffuzifacation layer): node at this layer realizes the deffuzification operation using the 

center of gravity rule 

 

𝑢 = ∑ 𝑚𝑖𝑦𝑖
𝑂𝑅𝑁𝑜

𝑖=1 ∑ 𝑦𝑖
𝑂𝑅𝑁𝑜

𝑖=1⁄                                                                                            (7) 

 

Where 𝑚𝑖 are real weights corresponding to the centers of the triangular fuzzy sets of the output 

variable and can be expressed by: 

 

𝑚𝑖 = (−
1

2
+

𝑖−1

𝑁𝑖−1
) 𝐿𝑜,     𝑖 = 1, … , 𝑁𝑜                                                                         (8) 

 

Where 𝐿𝑜 is the central part width of the output variable universe of discourse. 

 

 

3. SOLUTION USING MULTIOBJECTIVE ALGORITHM  

 

3.1.  Problem definition 

The previous section describes a structure of a NFC that implements a Mamdani fuzzy inference 

system. A multi input one output Mamdani system is composed of rules with fuzzy consequences. 

A1j1 , A2j2 , … , Anjn  and 𝐵𝑘 are respectively fuzzy sets associated with the fuzzy input variables and the fuzzy 

output variable. 𝑊𝑖𝑘 ∈  {0,1} are binary weights that model the consequence of a rule such that 𝑊𝑖𝑘 = 1  if 

rule i has consequence 𝐵𝑘 and 0 otherwise. 

Moreover if the granularity of the output fuzzy variable is M then if 𝑊𝑖𝑘 = 0 for   𝑘 = 1…𝑀, rule i 

have no consequence and is not included in the rule base. The maximum possible number of rules is given by 

all combinations of antecedent variables fuzzy sets and is:   

 

𝑁𝑅 = 𝑁1 × 𝑁2 × …× 𝑁𝑞 × …𝑁𝑛                                                                               (9)  

 

With 𝑁𝑞 , 𝑞 = 1…𝑛, the number of fuzzy sets associated with input variable 𝑥𝑞. Since rule i have at 

most one consequence, we have the constraints: 

 

∑ 𝑊𝑖𝑘 ≤ 1𝑀
𝑘=1                                                                                                 (10) 

 

The total number of rules is thus: 

 

𝐽 = ∑ ∑ 𝑤𝑖𝑘
𝑀
𝑘=1

𝑁𝑅
𝑖=1                                                                                             (11) 

 

The degrees of freedom of such a system are the number of fuzzy sets for each fuzzy variable 𝑁𝑞 , 

the binary variables 𝑊𝑖𝑘 defining the rules and the real parameters 𝐿𝑖 and 𝐿𝑜 of the triangular membership 

function of input and output variables respectively.   

The most general modelling problem can be expressed as finding all these parameters in order to 

achieve a certain degree of accuracy and a compact rule base. This is formulated as two objective 

optimization problems: 

Find 𝑁𝑞 , 𝑞 = 1…𝑛, 𝑀, 𝐿𝑖, 𝐿𝑜 and  𝑊𝑖𝑘  so that 

              𝑀𝑖𝑛 (( 𝐽1 =
1

𝑇
∑(𝑒(𝑡))

2
𝑇

𝑡=1

 ),   ( 𝐽2 =∑∑𝑊𝑖𝑘

𝑀

𝑘=1

𝑁𝑅

𝑖=1

 ))                                                                           (12) 

 

With 𝑒(𝑡) is the error at t, and T is the time horizon. 

 

 

Clearly it is possible to solve this monolithic problem as a whole. However this solution procedure 

may lack flexibility and may not be desirable at least for two reasons. First, it leads to a quite complicated 
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solution procedure in terms of dimensionality and data structure. Second and more importantly, it leaves no 

design alternatives for the decision maker. The problem is thus recast as finding the real parameters 𝐿𝑖, 𝐿𝑜 

and the binary weights 𝑊𝑖𝑗 . 

 

3.2.   A mixed binary-real NSGAII multiobjective algorithm 

Multiobjective algorithms are based on the concepts of Pareto optimality which is defined in terms 

of dominance. Given a minimization problem with vector-valued objective function:  

 

𝑀𝑖𝑛  𝑓(𝑥) =  (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥))                                                                  (13) 

 

𝑥1 is said to dominate 𝑥2 iff: 

 

{
𝑓𝑖  (𝑥1) ≤  𝑓𝑖(𝑥2),   ∀ 𝑖 ∈ 1, … ,𝑚

∃𝑗 ∈ 1,… ,𝑚 , 𝑓𝑗(𝑥1) < 𝑓𝑗(𝑥2)  
                                                         (14) 

 

The multiobjective problem is stated as a multiobjective optimization statement, in which, the 

optimization implies to find a set of non-dominated solutions to approximate the Pareto front, where all the 

solutions are Pareto-optimal. 

In this study, the NSGA-II algorithm with certain modifications is applied to settle the 

multiobjective problem set in the previous section. NSGA-II [18] algorithm is an improved version of no 

dominated sorting genetic algorithm (NSGA) which uses a fast non-dominated sorting procedure and an 

elitist preserving approach and has no niching operator parameters. 

At first, the population is initialized as usual, and then it is sorted based on a fast non-dominated 

sorting to rank the population fronts. In this procedure, two entities are calculated for each individual (𝑝); the 

domination count (𝑛𝑝) which indicates the number of individuals that dominate the individual (𝑝) and the 

set of individuals (𝑆𝑝) that the individual (𝑝) dominates. 

Once the non-dominated sort is complete, a parameter called crowding distance is calculated for 

each individual, and then tournament selection with crowed comparison operator is made between two 

individuals randomly selected from parent population. The individual with lower front number is selected if 

the two individuals come from different fronts. The individual with higher crowding distance is selected if 

the two individuals are from the same front.  

Then, a new offspring population is generated using the modified genetic operators: mixed binary-

real crossover and mutation. Finally, the combined population formed by the offspring population and the 

parent population is sorted according to non-domination .Here, elitism is ensured because all previous and 

current individuals are included in the new population and only the best individuals are selected as the new 

parent population. 

 

3.2.1.   The population individual 

Each individual in the population is composed of two parts:  the first contains the real parameters of 

the membership function associated with the input and output fuzzy variables; the second contains the binary 

weights Wik that model the rule consequence:  

 

  

 

 

 

 

 
Where the sub-chain: / 𝑊𝑖1𝑊𝑖2𝑊𝑖3…𝑊𝑖𝑀

 

/,𝑊𝑖𝑘   ∈ {0, 1} defines the consequence of rule i and will 

be called a consequence sub-chain in the sequel. As mentioned above, constraint (10), only one binary weight 

in a given consequence sub-chain can be equal to one and if all binary weights are zero then the associated 

rule has no consequence and is not included in the rule base. The length of consequence sub-chain is equal to 

M, the granularity of the output variable and the total number of binary weights is given by 𝑁𝑟 ×𝑀, 𝑁𝑟 the 

number of possible rules defined above. Moreover, when using binary representation of the rules, there is no 

need to alter the basic definitions of the genetic operators. In this work, the membership functions are 

isosceles triangles uniformly distributed in the universe of discourse as shown in Figure 2. Thus, for each 

fuzzy variable we need only to determine the central part of the universe of discourse to deduce the uniform 

distribution of all fuzzy sets in the universe of discourse. This modelling will reduce considerably the length 

𝐿1 … 𝐿𝑛 𝐿𝑜 𝑊11𝑊12𝑊13…𝑊1𝑀  … 𝑊𝑁𝑟1𝑊𝑁𝑟2𝑊𝑁𝑟3…𝑊𝑁𝑟𝑀 

Consequence sub-chains 

The second Part 

Parameters of the 

membership functions 
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of the individual.  

 

3.2.2.   Mixed binary-real crossover 

A two point crossover is used: the first point falls within the first part of the individual (real 

crossover) and the second point within the second part (binary crossover).  

1. Real crossover: parameters of the first part of the individual are really coded and an extended 

intermediate crossover [19] is used, thus two offspring (𝑂1 𝑎𝑛𝑑 𝑂2) are built from two parents 𝑃1 and 𝑃2 as 

the following: 

 

𝑂1 = 𝑃1 + 𝛼1(𝑃2 − 𝑃1)                                                                               (15) 

 

𝑂2 = 𝑃2 + 𝛼2(𝑃1 − 𝑃2)                                                                           (16) 

 

Where 𝛼𝑖 is a randomly chosen value in the interval [−0.25, 1.25]. 
 

This crossover is performed for each parameter of the first part of the individual.  

2. Binary crossover: In order to handle constraints (10), crossover in the second part of the 

individual is altered as follows: 

 

 
 

 

Thus, an exchange of consequence sub-chains corresponding to the crossover point is performed. 

 

3.2.3.   Mixed binary-real mutation 

A non-uniform mutation operator [19] is applied on the first part of the individual. If mutation falls 

in the second part, as usual, a one is mutated to a zero and a zero is mutated to one. However in this latter 

case, constraint (10) may be violated and we may have two one’s in the same consequence sub-chain, the 

associated rule will have two consequences. In order to keep (10) satisfied, if there are two one’s in the same 

consequence sub-chain, the bit that was one before mutation is set to zero. 
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4. SIMULATION RESULTS 

Two application examples are presented:  a controller design for the pole and cart system and a 

multivariable decentralized controller for a helicopter simulator model.  

 

4.1. The control of the pole and cart system 

The control objective is to balance the pole by applying a force on the basis of the cart. Although 

simple in nature, it presents some nice features for controller benchmarking: it is highly nonlinear when far 

from the vertical equilibrium and is sensitive to parameters variation as initial conditions, pole length and 

mass. The dynamical nonlinear model is given by: 

 

                 �̈� =
𝑔𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃 (

−𝐹 − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃
𝑚𝑐 +𝑚

)

𝑙 (
4
3
−
𝑚𝑐𝑜𝑠2𝜃
𝑚𝑐 +𝑚

)
                                                                                                      (17) 

 

The NFC has two inputs, the pole angle θ(t) and its variation ∆θ(t) and the output is the force F to 

be applied to the cart. Three symmetric triangular fuzzy membership functions (NEGATIVE (N), ZERO (Z) 

and POSITIVE (P)) are used for both inputs and output. So initially, there are six nodes in the fuzzification 

layer, nine nodes in the AND layer and three nodes in the OR layer (Figure 1). The goal of the mixed binary-

real NSGA II is to find optimal values of 𝐿𝑖 (𝐿1, 𝐿2), 𝐿𝑜 and 𝑊𝑖𝑗 such that: 

 

𝑀𝑖𝑛 ((𝐽1 =∑|𝜃(𝑘)|

500

𝑘=1

+ 10−2|𝐹(𝑘 − 1)| + |𝛥𝜃(𝑘)|) , (𝐽2 =∑∑𝑊𝑖𝑗   

3

𝑗=1

9

𝑖=1

))              (18) 

 

This problem is recast as a maximization problem: 

 

               𝑀𝑎𝑥 (𝑓1 =
105

1 + 20 𝐽1
, 𝑓2 =

10

1 + 𝐽2
)                                                                                                     (19) 

 

The cost 𝐽1 is obtained from a closed loop simulation with a nominal model having a pole with mass 

𝑚 = 0.1 𝐾𝑔 and a length 𝑙 = 1𝑚 and a cart with mass 𝑚𝑐 = 1 𝐾𝑔. The initial conditions are: 𝜃(0) =

20𝑜 𝑎𝑛𝑑 �̇�(0) = 0𝑜/𝑠. There are 30 parameters evolved in the optimization problem which uses the 

following values: maximum generation=100, population size=100, crossover probability=0.8 and mutation 

probability=0.03.  

Figure 4 shows the whole set of solutions obtained at the last generation. The extracted solutions on 

the Pareto front correspond to the best individual having the fitness values: 𝑓1 = 1,783 𝑎𝑛𝑑 𝑓2 = 1,667.The 

optimal values of the real parameters are: 𝐿1 = 23,0666 , 𝐿2 = 74,9882 , 𝐿𝑜 = 606,9333. 

And the optimal binary weights 𝑊 =  [000 100 000 100 010 000 010 001 000] Corresponding to 

a NFC with a reduced structure containing five nodes in the fuzzification layer, five nodes in the AND layer 

and three nodes in the OR layer as illustrated in Figure 3.  

 

Table 1. Fuzzy rules interpreted by the Neuro-fuzzy controller 

 

 

 

 

 

 

 

 

The knowledge accumulated within the structure of the obtained NFC is interpreted as Mamdani FIS 

with the five reduced fuzzy rules given in table 1.The Neuro-fuzzy controller was tested for robustness in 

situations different from the nominal one. The results are shown in Figures 5 and 6, the controller was 

particularly sensitive to the pole length with success for 0.25𝑚 ≤ 𝐿 ≤ 1.5𝑚 (Figures 9 and 10), to the pole 

mass with success for 0.05𝐾𝑔 ≤ 𝑚 ≤ 0.7𝐾𝑔 (Figures 11and 12) and to the initial conditions with success 

for 10° <  𝜃(0) < 60° (Figures 7 and 8). 

          θ(t) 

Δθ (t) 
N Z P 

N  N Z 

Z N Z P 
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 Figure 3. Structure of the optimized NFC Figure 4. Distribution of the population of the last 

generation 

  

Figure 5. Variation of the pole angle from The initial 

condition (200, 00/s) 

Figure 6. Variation of the angular velocity from 

the initial condition (200, 00/s) 

                                                                   

 

 
Figure 7. Variation of the pole angle for different 

initial conditions 

Figure 8. Variation of the angular velocity for 

different initial conditions 

 

 

 
Figure 9. Variation of the pole angle for different 

pole lengths 

Figure 10. Variation of the angular velocity for 

different pole lengths 
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Figure 11. Variation of the pole angle for 

different pole mass 

Figure 12. Variation of the angular velocity for different 

pole mass 

 

 

4.2. Control of a helicopter simulator model 

        The helicopter simulator to be controlled is the CE 150 laboratory helicopter made by Humusoft Ltd 

[20]. The laboratory helicopter set-up comprises a body carrying two DC motors which drive the propellers. 

The helicopter body has two degrees of freedom; the elevation angle φ, i.e. the angle between the vertical 

axis and the longitudinal axis of the helicopter body and the azimuth angle ψ, i.e. the angle in the horizontal 

plane between the longitudinal axis of the helicopter body and its zero position. 

The voltage driving the main motor u1 and the voltage driving the tail motor u2 affect both the 

elevation angle and the azimuth; therefore we can say that the mentioned interactions make the system 

multivariable. The helicopter model can be represented as a non-linear multi-variable (MIMO) system with 

inputs u1 and u2 and two outputs φ and ψ. 

 
 

Figure 13. Helicopter configuration 

 

The mathematical model of the helicopter simulator is given by the following differential equations: 

�̇�1 = 𝑥2      
 

              �̇�2 = −8,764𝑥2𝑠𝑖𝑛𝑥1 − 3,4325𝑥4𝑢1𝑐𝑜𝑠𝑥1 − 0,4211𝑥2 + 0,0035𝑥5
2 + 46,35𝑥6

2 +  0,8076𝑥5𝑥6 +  

                0,0259𝑥5 + 2,9749𝑥6 

 

�̇�3 = 𝑥4 

 

�̇�4 = −2,1401𝑥4 + 31,8841𝑥8
2 + 14,2029𝑥8 + 21,7150𝑥9 − 1,4010𝑢1 

 

�̇�5 = −6,6667𝑥5 − 2,7778𝑥6 + 2𝑢1 

 

�̇�6 = 4𝑥5 

 

�̇�7 = −8𝑥7 − 4𝑥8 + 2𝑢2 
 

�̇�8 = 4𝑥7 

 

�̇�9 = −1,3333𝑥9 + 0,0625𝑢1 
 

Where 𝑥1 = ψ, 𝑥2 = �̇�, 𝑥3 = 𝜑, 𝑥4 = �̇� 

 

 

  

 

 

u2 

u1 

Ψ 

Φ 
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The control objective is to stabilize the helicopter body around a set point reference(φr, ψr).  For 

this, a decentralized control technique is adopted by using two Neuro-fuzzy controllers; one for the elevation 

angle and the other for the azimuth.  

Each Neuro-fuzzy controller has two inputs error e(k) and change in error Δe(k) and one 

output 𝑢(𝑘). Three symmetric triangular fuzzy membership functions (Negative (N), Zero (Z) and Positive 

(P)) are used for both inputs and outputs.  The goal of the mixed binary-real NSGA II is to find optimal 

values of the real widths of the central part of the universe of discourse of the input variables and output 

variables for both controllers: 𝐿𝑒1, 𝐿𝛥𝑒1, 𝐿𝑢1, 𝐿𝑒2, 𝐿𝛥𝑒2, 𝐿𝑢2  and to extract an optimal structure corresponding 

to a reduced set of fuzzy rules for both controllers described by the binary weights 𝑤𝑖𝑗
1𝑎𝑛𝑑 𝑤𝑖𝑗

2 

respectively, so 60 parameters are evolved in the optimization problem which uses the following values:  

Population size=100, maximum generations=100, crossover Probability=0.8, mutation 

probability=0.01. 

The minimization problem is given by: 

 

                Min (J1 =∑|e1(k)|

N

k=1

+ |e2(k)|,    J2 =∑∑Wij
1   +  ∑∑Wij

2  

3

j=1

9

i=1

3

j=1

9

i=1

)                                           (20) 

 

 

Where: 

(k) = ψr(k) − ψ(k)   and   e2(k) = φr(k) − φ(k) 
 

This problem is recast as a maximization problem: 

 

Max(f1 =
106

1 + 20J1
,   f2 =

10

1 + J2
)                                                               (21)  

 

Test simulations were carried for the set point references 𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 1 with 30 seconds as 

time simulation. The population of the last generation is plotted in Figure 14 which shows clearly the 

obtained front after 100 generations. The extracted solutions in the front are as follows:   

The optimal real parameters are: 

 

    Le1 = 9.0989, LΔe1 = 2.1647, Lu1 = 5.9648, Le2 = 7.4927, LΔe2 = 1.1852, Lu2 = 3.3399 

 

And the optimal binary weights are: 

 

 𝑊1 = [001 100 001 010 010 010 001 100 010] 
 

𝑎𝑛𝑑  𝑊2 = [000 000 010 100 010 000 100 001 001] 
 

The knowledge accumulated within the structure of the two obtained NFC is interpreted as 

Mamdani FIS with the following fuzzy rules (table 2 and 3): 

 

 

        Table 2.  Fuzzy rules interpreted by the                                Table 3. Fuzzy rules interpreted by the 

                       first Neuro-fuzzy controller                                                 second Neuro-fuzzy controller 

 

 

 

 

 

 

 

 

 

 

Figure 15 and Figure 16 show respectively the azimuth angle and the elevation angle, we notice that 

both outputs reach the references ( ψr = 1  and φr = 1 ) very smoothly and in less than 5 seconds while the 

       e1(t) 

Δe1(t) NE ZE PO 

NE PO ZE PO 

ZE NE ZE NE 

PO PO ZE ZE 

 

      e2(t) 

Δe2(t) NE ZE PO 

NE  NE NE 

ZE  ZE PO 

PO ZE  PO 
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elevation angle presents an overshoot of about 10%. Control signal outputs of the two NFC are illustrated in 

Figure 17 and Figure 18. These obtained NFCs were tested for a change in azimuth and elevation angle set 

point references. On the one hand, figures 19, 20, 21 and 22 show the simulation results when  ψr =
1  and φr = 0, it can be see that the variation of the azimuth is very smooth and the disturbance in the 

elevation angle is quickly eliminated. On the other hand, figures. 23, 24, 25 and 26 show the simulation 

results when  ψr = 0  and φr = 1 , we observe that the variation of the elevation angle does not disturb the 

azimuth angle. 

 

 

  
  

Figure 14. Distribution of the population                      

of the last generation 

Figure 15. Azimuth angle (set point 

references: 𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 1) 

 

 

  
  

Figure 16. Elevation angle (𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 1)                Figure 17. Control signal U1(𝜓𝑟 = 1 𝑎𝑛𝑑 𝜑𝑟 = 1) 
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Figure 18. Control signal U2(𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 1)                 Figure 19. Azimuth angle (𝜓𝑟 = 1 𝑎𝑛𝑑 𝜑𝑟 = 0) 

 

 

 

  
  

Figure 20. Elevation angle (𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 0)               Figure 21. Control signal U1 (𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 0) 

 

                         

  

  

Figure 22. Control signal U2  (𝜓𝑟 = 1  𝑎𝑛𝑑 𝜑𝑟 = 0)               Figure 23. Azimuth angle (𝜓𝑟 = 0  𝑎𝑛𝑑 𝜑𝑟 = 1) 
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Figure 24. Elevation angle (𝜓𝑟 = 0  𝑎𝑛𝑑 𝜑𝑟 = 1)               Figure 25. Control signal U1 (𝜓𝑟 = 0  𝑎𝑛𝑑 𝜑𝑟 = 1) 
 

 

 

 

 

Figure 26. Control signal U2  (𝜓𝑟 = 0  𝑎𝑛𝑑 𝜑𝑟 = 1)  

 

  

5. CONCLUSION  

In this work, we proposed a new method for designing Neuro-fuzzy controllers to obtain controllers 

working not only with good accuracy, but also ensuring high interpretability of the knowledge accumulated 

within it. This trade-off between interpretability and accuracy in fuzzy inference system design is cast as two 

objective optimization problems. To cope with this problem, a new multiobjective Pareto based genetic 

algorithm called mixed Binary-Real Non dominated Sorting Genetic Algorithm II is used to design optimally 

both membership functions of the input/output variables and fuzzy rule base modeled by the binary weights 

of the network on which constraints are imposed in order to preserve interpretability of fuzzy rules during the 

optimization process. Due to the complexity of this optimization problem the genetic operators are improved. 

The method provides a set of solutions from which interesting solutions, belonging to the Pareto front, are 

extracted. The performance of this approach is verified with two examples: a controller design for the pole 

and cart system and a multivariable decentralized controller design for a helicopter simulator model. For both 

problems, the optimization process produced compact Neuro-fuzzy controllers with high accuracy and 

robustness and very good interpretability. Hence, our simulation results allow to assume that our aims were 

achieved. 
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