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ABSTRACT

Steady state analysis is fundamental to any electric and electronic circuit design. Buck
converter is one of most popular power electronics circuit and has been analyzed in various
situations. Although the behavior of buck converters can be understood approximately by
the well-known state space averaging method, little is known in the sense of detailed
behavior or exact solution to equations. In this paper a steady state analysis of buck
converter is proposed which allows the exact calculation of steady state response. Our
exact solution is expressed as a Fourier series. Our result is compared with numerical
calculation to be verified. Our method copes with more complicated problems such as
describing average power and root-mean-square power that are most critical issues in
power electronics circuit.
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1. INTRODUCTION
An analysis of steady-state response of a system is important key in circuit design and control, included

dc-dc converter. In convential method, the steady state of dc-dc converter is assumed as the constant value. Many
researches based on state space averaging method and high switching frequency assumption observe steady state
response [1, 2, 3, 4, 5]. The method gives simple way to analyze but some ripples are undescribed clearly. The power
electronic handbook approximate linear ripple to analyze dc-dc converter more accurately [6]. The approximation
may be correct if the switching frequency is high. Since there are some limitation in component, some high
frequency is not always reached.

The importance of accurate steady-state analysis has already noticed in many researches [7, 8, 9, 10, 11,
12]. A significant part of the design of circuits requires the simulation of the steady-state response. Parameters
such as the gain, harmonic distortion and the input and output impedances are studied in the steady-state mode of
operation [7]. Using conventional time-stepping simulations and waiting-time for possible steady state is often not
practical because in most cases the time constants of the modes are much larger than the switching period [8]. In
conventional method of dc-dc converter analysis, steady state ripple values are negligible, compared to the steady
state values themselves. Switching power converters are inherently nonlinear and consequently it is very difficult
to calculate the root-mean-square (RMS) values of the state variable ripple. These RMS values are important in
order to calculate the current stresses of the different power converter devices as well as to filter design in order
to meet the given specifications [9]. Though power electronic handbook [6] shows the RMS calculation using
approximation linear ripple, the result is not absolutely correct due to linear approximation. In order to achieve a
high performance, proper design and control, it is necessary to have an exact model of converter [10, 11]. High
accuracy is one of major features of a good modeling [11].

The dc-dc converter analysis can be classified into two categories, numeric and symbolic analysis. The
numeric analysis is found in [7, 8, 10, 12, 13, 14, 15]. The numeric analysis observes the system response by
inputting parameter values into model. The numeric analysis needs some computation-time to show the output
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response. Relation between each parameter is not describe in the equation. The relation between parameter and
output is always observed by comparison between parameter change to output change.

The [7] construct impedance or admittance matrix of dc-dc converter. The output response of the converter
is calculated by Newton-Raphson. The steady-state output is solved per fixed time-step (fixed sampling interval).
The accuracy of analysis is dependent on time-step. Fewer sampling point causes less accuracy. On the other side,
more sampling points need more calculation time. The [13] substitute original circuit with periodically switched
linear (PSL) circuit. The PSL can be observed by Fourier series. The paper use 110 as sequence number in Fourier
series summation. The [14] also use Fourier series to simulate steady-state response. Comparing with [13], the [14]
only uses 21 sequences. The [13] applies Fourier series of current switching part. The Fourier series of switching
part substitutes original part to be analyzed by Kirchhoff Voltage and Current Law. The paper uses 180 sequence
number to draw a steady state response of system. The [12] analyzes buck converter in frequency domain due to
high accuracy comparing with conventional time-domain. The paper simulate in three different sequences number
that 0, 10 and 100. The paper shows that 10th sequences order is enough to describe steady state response. In
Fourier series based method, greater number send the accurate steady-state model but it need more calculation.
High order sequence number doesnt bring significant accuracy. Determination of the proper sequence number is
another problem beside the main steady-state analysis problem.

Contrary with numerical analysis, symbolic analysis describes relation between parameter and output in
the equation. The relation between parameter and output can be observed roughly by the equation. The symbolic
analysis is found in [9] and [11]. Symbolic analysis is complicated to be done although it show relation between
parameter and output in equation. The [9] perform steady state symbolic analysis to calculate rms value. The
paper show solution in a matrix form that is more complicated than ordinary equation. The average and rms
calculation include term which is obtained from zero derivative state assumption. Since the ripple is exist and
cannot be neglected, this assumption is contrast with early definition. The [11] solve steady-state equation by
Laplace transform and revert back into time-domain by inverse of Laplace transform. The solution need the known
initial value. The Z-transform is applied due to similarity between initial value and last value in one period. Though
the paper show symbolic analysis, the proses is long enough due to calculation of three transformations (Laplace
transform, Z-transform and inverse of Laplace transform).

In this paper, an alternative method is proposed that accurately predict and analyze the steady state of
switching power converter. The proposed method based on Fourier series since many references show the accuracy
[12, 13, 14]. The recovery function is also proposed to generate analysis without dependent in number of sequences
orders. The paper is subdivided in several sections to present clearly explanation. Section 2 shows the basic idea
of proposed method. Section 3 discusses about implementation of proposed method in buck converter and the
recovery function. Complete steady state output function of dc-dc converter is shown in this section. Section 4
verify proposed steady state function by circuit simulation. Finally, the conclusion of this paper is declared in
Section 5

2. PROPOSED FOURIER SERIES METHOD
Many phenomena studied in electric circuit are periodic in nature when time goes to infinity. These

periodic functions in time t can be expressed as Fourier series as in the following equation [16].

f(t) = γ0 +
∑
n6=0

γne
jnωt = ...+ γ2e

j2ωt + γ1e
jωt + γ0 + γ1e

jωt + γ2e
j2ωt + ... (1)

with Fourier coefficients

γ0(f) =
1

T

∫ T

0

f(t)dt, γn(f) =
1

T

∫ T

0

f(t)e−jnωtdt (2)

where T is the period and ω is the angular frequency defined by ω = 2π
T . In order to help understanding how

Fourier series works, let us give an input square-wave function as follows.

u(t) =

{
g (0 ≤ t < Td)

0 (Td ≤ t < T )
u(t) = u(t+ T ) (3)

Fourier coefficients of (3) are calculated as follows.

γ0(u) = gd, γn(u) =
g

jnωT

(
1 − ejn2πd

)
(4)
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Then the Fourier series of the equation (3) is written by equation (5).

u(t) = gd+
∑
n 6=0

g

jn2π

(
1 − e−jn2πd

)
ejnωt (5)

An electric system can be described in a simple block diagram as shown in Figure 1. It has been explained
that a periodic input has possibility to be analyzed with Fourier series. A periodic input for a transfer function
G(s) will generate a periodic output. By knowing its transfer function, the output also can be analyzed into Fourier
series. This paper analyzes steady state output in the equation (6). Buck converter can be modelled as a transfer
function. Then as we explained the above, buck converter can be expressed as the equation (6).

xss(t) = G(0)γ0(u) +
∑
n 6=0

G(jnω)γn(u)ejnωt (6)

Figure 1. Block diagram Figure 2. Buck converter circuit

3. BUCK CONVERTER ANALYSIS
Buck converter circuit is shown in Figure 2. Principally, buck converter is driven by two contrary switching

ON and OFF. In continuous conduction mode (CCM), buck converter has only two modes. Each mode can be
arranged as non-switching circuit by assuming switching part connected (ON) or disconnected (OFF). Figure 3
shows the two modes. Let us assume voltage at switching parts is equal to input function u(t) as shown in Figure
4. Input function u(t) can be described as in the equation (3).

(a) Mode-1 (b) Mode-2

Figure 3. Modes of Buck converter

Based on Figure 4, let G(s) be a transfer function from the input voltage u(t) to the output voltage x(t) as
in the following equation.

G(s) =
1
LC

s2 + 1
RC s+ 1

LC

(7)

The transfer function (7) has two poles. Here we assume the poles are complex-conjugate pairs (s = ξω ± jηω),
that is, (

1

R2C2
− 4

LC

)
< 0. (8)

With s = jω, the frequency transfer function can be written as in the following equation.
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Figure 4. Equivalent circuit

G(jnω) =
1
LC

(jnω − ξω)2 + (ηω)2
(9)

Moreover, the transfer function at s = 0 is called a DC-gain as follows.

G(0) =
1
LC

02 + 1
RC 0 + 1

LC

= 1 (10)

In the previous section, Fourier series of square-wave function was explained by the equation (5). Then,
Fourier coefficients of the input function (3) were calculated in (4). By assuming that q = jn and substituting (2),
(9), and (10) into (6), the proposed equation of buck converter can be expressed as follows.

xss(t) = gd+
∑
n 6=0

(
1

ω2LC

(q − ξ)2 + η2

)(
g

2πq
(1 − e−2πqd)

)
eqωt

= gd+
∑
n6=0

(
g

2πω2LC

)(
1

(q − ξ)2 + η2

)(
1

q

)
(1 − e−2πqd)eqωt

(11)

3.1. Recovery function

The infinite series of equation (11) can be represented as follows.

fsaw(t) = π − ωt, (0 ≤ t < T ), fsaw(t) = fsaw(t+ T )

fc(t) =
ξ

ξ2 + η2
+ π

eξ(ωt−2π) cos(ηωt) − eξωt cos(η(ωt− 2π))

cosh(2πξ) − cos(2πη)
, (0 ≤ t < T ), fc(t) = fc(t+ T )

fs(t) = π
eξ(ωt−2π) sin(ηωt) − eξωt sin(η(ωt− 2π))

cosh(2πξ) − cos(2πη)
− ξ

ξ2 + η2
, (0 ≤ t < T ), fs(t) = fs(t+ T )

(12)
Fourier coefficients of recovery functions are calculated by (2). By assuming q = jn, Fourier series of proposed
recovery function is described as follows.

fsaw(t) =
∑
n 6=0

γn(fsaw)eqωt

fc(t) =
∑
n 6=0

γn(fc)e
qωt

fs(t) =
∑
n 6=0

γn(fs)e
qωt

(13)

where
γn(fsaw) =

1

q
, γ0(fsaw) = 0

γn(fc) =
q − ξ

(q − ξ)2 + η2
, γ0(fc) = 0

γn(fs) =
η

(q − ξ)2 + η2
, γ0(fs) = 0

(14)
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3.2. Time-delay function

Let time-delay function be described as in the following.

f̃(t) = f(t− Th) (15)

where T is periodic time and h is delay constant. Fourier coefficients of time-delay function are simply described
as

γn(f̃) = e−q2πhγn(f). (16)

3.3. Proposed steady-state function

We can recover function of time expressed by the exponential and trigonometric functions by using our
recovery functions (13). The proposed steady state buck converter equation can be also solved by the recovery
functions. The summation part of equation (11) can be partially decomposed as follows.(

1

(q − ξ)2 + η2

)(
1

q

)
=

1

(η2 + ξ2)

(
1

q
+

−q + 2ξ

(q − ξ)2 + η2

)
=

1

η2 + ξ2

(
1

q
− q − ξ

(q − ξ)2 + η2
+

(
ξ

η

)
η

(q − ξ)2 + η2

) (17)

In the next step, we substitute (17) into (11).

xss(t) = gd+

(
g

2πω2LC(η2 − ξ2)

)∑
n 6=0

[(
1

q
− q − ξ

(q − ξ)2 + η2
+

(
ξ

η

)
η

(q − ξ)2 + η2

)
(1−e−2πqd)eqωt

]
(18)

Let us assume that
m =

g

2πω2LC(η2 − ξ2)
, µ =

ξ

η
. (19)

By assuming q = jn, the equation (18) may be written as in the following.

xss(t) = gd+m
∑
n 6=0

1

q
(1 − e−2πqd)eqωt −m

∑
n6=0

q − ξ

(q − ξ)2 + η2
(1 − e−2πqd)eqωt

+mµ
∑
n 6=0

η

(q − ξ)2 + η2
(1 − e−2πqd)eqωt

= gd+m


∑
n 6=0

γn(fsaw)eqωt︸ ︷︷ ︸
fsaw(t)

−
∑
n 6=0

γn(fsaw)e−2πqdeqωt︸ ︷︷ ︸
fsaw(t−Td)



−m


∑
n 6=0

γn(fc)eqωt︸ ︷︷ ︸
fc(t)

−
∑
n 6=0

γnfce−2πqdeqωt︸ ︷︷ ︸
fc(t−Td)



+mµ


∑
n 6=0

γn(fs)eqωt︸ ︷︷ ︸
fs(t)

−
∑
n 6=0

γn(fs)e−2πqdeqωt︸ ︷︷ ︸
fs(t−Td)



(20)

The equation (20) is easy to be understood if we use the recovery functions as (21).

xss(t) = gd+m

(
fsaw(t) − fsaw(t− Td)

)
−m

(
fc(t) − fc(t− Td)

)
+mµ

(
fs(t) − fs(t− Td)

)
(21)
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The proposed equation (21) covers infinite series with the recovery functions. Furthermore, the calculation of the
average and RMS power are traceable by the recovery functions as follows accurately.

Pavg =
1

T

∫ T

0

(xss(t))
2

R
dt

Prms =

√
1

T

∫ T

0

(xss(t))4

R2
dt

(22)

(a) Complete response

(b) Steady state response

Figure 5. Comparison between SPICE and proposed analysis of parameter-1

4. SIMULATION RESULT
This section validates our proposed function (21) result by comparing with SPICE (Simulation Program

with Integrated Circuit Emphasis). Numerical parameter of dc-dc converter is determined as shown in Table 1.
Numerical parameter of resistance (R), inductance (L) and capacitance (C) give complex-conjugate poles.

Numerical calculation utilized mathematical software to plot the proposed steady state response. SPICE simulates
the actual circuit responses. Complete response of capacitor voltage by parameter-1 is shown in Figure 5a. Numer-
ical calculation of proposed method is plotted in solid-line while SPICE result in dashed-line. The magnification of
steady state response is shown in Figure 5b. Comparison between numerical calculation of proposed function and
steady state of SPICE result has similarity in shape and value.

The other complete response of circuit simulation using parameter-2 is shown in Figure 6a and steady
state of SPICE and proposed result is described Figure 6b. Figure 5b and 6b describe that numerical calculation
of proposed methods give consistent result with SPICE result. The proposed method has advantage in obtaining
steady state response without waiting transient time.

Accurate Symbolic Steady State Modeling of Buck Converter (Eko Setiawan)



2380 ISSN: 2088-8708

Table 1. Numerical parameter

Variable Parameter-1 Parameter-2
Resistance (R) 6.35 Ω 1.81 Ω
Inductance(L) 100 µH 285 µH
Capacitance (C) 62.7 µF 21.9 µF
Time-period (T) 50 µs 20 µs
Voltage source (g) 10 V 15 V
Duty-ratio (d) 0.5 0.5
Pole (s) -0.0101 ± j0.1 -0.0402 ± j0.0034

5. CONCLUSION
We have shown that the proposed method describes steady-state response directly without calculating

transient response. It gives exact calculation and symbolic complete solution of steady state output. Transition
between each mode is described clearly by proposed method. Recovery function gives an accurate solution of
Fourier series without depending on numerical calculation of summation. Proposed steady state analysis of buck
converter has been clarified by comparing with SPICE. Moreover, proposed method makes calculation of power
traceable.
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