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This paper solves an optimal reactive power scheduling problem in the 

deregulated power system using the evolutionary based Cuckoo Search 

Algorithm (CSA). Reactive power scheduling is a very important problem in 

the power system operation, which is a nonlinear and mixed integer 

programming problem. It optimizes a specific objective function while 

satisfying all the equality and inequality constraints. In this paper, CSA is 

used to determine the optimal settings of control variables such as generator 

voltages, transformer tap positions and the amount of reactive compensation 

required to optimize the certain objective functions. The CSA algorithm has 

been developed from the inspiration that the obligate brood parasitism of 

some Cuckoo species lay their eggs in nests of other host birds which are of 

other species. The performance of CSA for solving the proposed optimal 

reactive power scheduling problem is examined on standard Ward Hale 6 

bus, IEEE 30 bus, 57 bus, 118 bus and 300 bus test systems. The simulation 

results show that the proposed approach is more suitable, effective and 

efficient compared to other optimization techniques presented in the 

literature. 
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1. INTRODUCTION  

The demand for electricity is growing rapidly in recent years. Because of the limited transmission 

capabilities for handling these additional demands, the optimal reactive power scheduling and dispatch has 

become an important issue for the electrical power utility company. Any changes to the system load demand 

or system configuration may result in lower or higher voltage profiles to the system. To maintain the 

acceptable levels of voltages and reactive power flow under various system configurations and operating 

conditions, the system operators (SOs) may use a number of control tools like changing generator voltages, 

switching VAR sources, and/or adjusting the tap settings of transformer [1]. Hence, the reactive power 

scheduling problem can be stated as the determination of optimal settings of various controls, so that the total 

system transmission losses are optimized [2].   

The optimal reactive power scheduling is a major issue in the optimal operation of electrical power 

systems. It is a mixed integer and nonlinear problem, which finds the optimal control variables settings for 

the reactive power producers to optimize a specific objective function while satisfying all the technical 

constraints. Voltage is an important indicator for the safety and economy of power system operation. It 

directly reflects the balance and distribution performance of reactive power of the power system. If the 

system reactive power is insufficient or unreasonable distribution, which will lead to lower voltage, 
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instability, abnormal operation of electrical equipments, can also cause serious problems such as voltage 

collapse. When the network structure, the system voltage and the active power transmitted is determined, the 

system power loss depends entirely on the reactive power distribution, transmission and management. The 

rational allocation and optimal operation of reactive power equipment can effectively improves the voltage 

quality, guarantees the system voltage stability and reduces the network loss, which in turn improves the 

safety and economy of power system operation [3]. 

Real world optimization problems involve complex and non-linear interactions among the variables, 

and the search space usually contains more than one optimal solution. Classical algorithms are designed to 

solve a specific type of optimization problem may not be efficient in solving other type of problems. Further, 

the classical optimization techniques are not efficient in handling the problems with discrete search space [4-

5]. Difficulties arise in the classical approach, as it assumes all variables to be continuous during the 

optimization and there after a value close to the obtained solution is recommended for a discrete variable. 

Complex real world optimization problems can now be easily solved with the parallel computing systems. 

Most classical algorithms use point-by-point approaches, where in one iteration; one solution is updated 

using the previous solution. Therefore, the advantage of parallel computing cannot be exploited fully [6-7]. 

The above discussion reveals that classical optimization algorithms may face difficulties in solving 

the practical real world optimization problems. Evolutionary algorithms find applications in solving various 

optimization problems including science, commerce and engineering [8]. Different classes of evolutionary 

algorithms include Evolutionary Programming (EP), Evolution Strategies (ES), Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and Differential Evolution (DE), etc. All these methods are inspired by 

nature’s evolution. All these optimization approaches share a common conceptual base of simulating the 

evolution of individual structures. 

In the literature, a number of classical optimization algorithms have been presented to solve the 

reactive power scheduling problem. These techniques include the Non-linear programming, Gradient method, 

Linear programming, Quadratic programming and Interior point method [9]. Although these methods have 

been applied successfully for the solution of optimal reactive power scheduling problem, still there are some 

difficulties associated with them. One is the multimodal characteristics of problems to be handled. Also, 

because of the non-linearity, non-differential and non-convex nature of the reactive power scheduling 

problem, majority of these algorithms converge to a local optimum [10]. Nowadays, many evolutionary/ 

meta-heuristic based optimization algorithms such as GA [11], EP [12] and Biogeography Based 

Optimization (BBO) [13] have been applied successfully to solve the optimal scheduling problem.  

Reference [14] presents different conventional and evolutionary based computational approaches for 

solving the optimal reactive power dispatch problem. A Quantum Stirred Cuckoo Search Algorithm (QS-

CSA) for solving the optimal reactive power dispatch problem is presented in [15]. In recent years, the meta-

heuristic techniques have been closely concerned and widely used in the global optimization problem. 

Therefore, Tabu Search (TS), Simulated Annealing (SA), Particle Swarm Optimization (PSO), Improved 

PSO, Harmony Search (HS), Differential Evolution (DE) and Artificial Immune Algorithm (AIA), etc. have 

been used widely in the reactive power optimization of power system. However, the main shortcomings of 

these algorithms are the premature convergence and the convergence speed. Recently, a new meta-heuristic 

technique proposed by X.S. Yang and S. Deb in 2009 [16] i.e., Cuckoo Search Algorithm (CSA) has been 

used to overcome the above mentioned short comings. The proposed approach is inspired from the life of the 

family of cuckoo. Recent studies show that the CSA is more efficient than the GA and PSO [17-18]. The 

number of parameters to be tuned in the CSA is less than the GA and PSO, and hence it is more generic to 

adapt to a wider class of optimization problems. In this paper, CSA is proposed for solving the reactive 

power scheduling optimization. The proposed CSA approach is examined on the Ward-Hale 6 bus, 30 bus, 

57 bus, 118 bus and 300 bus systems, and the results obtained are compared with many other optimization 

algorithms presented in the literature. 

The rest of the paper is outlined as follows. Section 2 presents the detailed formulation of reactive 

power scheduling problem. The description of Cuckoo Search Algorithm (CSA) is described in Section 3. 

The simulation results on different test systems and the comparison of results with previous algorithms 

presented in the literature are provided in Section 4. Finally, the contributions with the concluding remarks 

are presented in Section 5.  

 

 

2. REACTIVE POWER SCHEDULING: PROBLEM FORMULATION 

For the reactive power scheduling problem, the minimization of system transmission losses is 

selected as the objective function. Transmission loss in each line is calculated from the power flow solution. 

The converged power flow solution gives the bus voltage magnitudes and phase angles. Using these, the 

active power flow through the transmission lines can be evaluated. The total power loss is the sum of power 
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losses in each transmission line. In this paper, the generator bus voltage magnitudes, transformer tap limits 

and the limits on switchable shunt VAR sources are considered as the control variables. The objective of 

reactive power scheduling problem is to determine the optimal settings of various controls which minimizes 

the power losses during the control and operation of a network. The power loss is a nonlinear function of bus 

voltages and phase angles which are implicitly the functions of control variables. The real power loss (Ploss) is 

represented as [19]. 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ ∑ 𝐺𝑖𝑗[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗)]𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1        (1) 

 

where Gij is conductance of a transmission line connected between the buses i and j. N is the total number of 

buses in the system.  𝑉𝑖 and 𝛿𝑖 are the voltage magnitude and phase angle at bus i, respectively.  

 

2.1. Problem constraints 

2.1.1. Equality constraints: 

These constraints include the typical power flow equations, and they are represented as, 

  

𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗] = 0                      𝑁
𝑗=1    (2) 

 

𝑄𝑖 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗] = 0                     𝑁
𝑗=1    (3) 

 

In the above equations, i =1,2,3,.....,N. PGi and QGi are the active and reactive power generations at bus-i, PDi 

and QDi are the corresponding active and reactive load demands.  

 

2.1.2. Inequality Constraints 

These constraints represent operating limits of the power system. 

Generator Constraints: Generator Voltage magnitudes (VGi), Generator active power outputs (PGi) and 

reactive power generation (QGi) are limited by their lower and upper limits. They are represented as,  

 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝐺                        (4) 

 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝐺                            (5) 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝐺                              (6) 

 

Transformer Constraints: Transformer taps have lower and upper settings. They are expressed as,  

 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝑇                                    (7) 

 

Switchable VAR sources: The sources have limitations as,   

 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝐶                                 (8) 

 

Security constraints: These constraints include the limits on load bus voltage magnitudes and transmission 

line flows.  

 

𝑉𝐷𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐷𝑖 ≤ 𝑉𝐷𝑖

𝑚𝑎𝑥                          𝑖 = 1,2,3, … . . , 𝑁𝐷                             (9) 

 

 𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥                      𝑖 = 1,2,3, … . . , 𝑁𝑙𝑖𝑛𝑒                                     (10) 

 

 

3. CUCKOO SEARCH ALGORITHM (CSA) 

The CSA is a novel evolutionary technique which is nature-inspired by Cuckoos' search for their 

nests where they could lay their eggs. Cuckoo Search Algorithm (CSA) [20-22] is one of the recent 

optimization approaches and it developed from the inspiration from obligate brood parasitism of some the 

cuckoo species lay their eggs in nests of other host birds which are of other species. This technique was 

proposed by X.S. Yang and S. Deb [16], they optimized 10 standard test functions and then gave the working 

principle of CSA. Reference [17] presents the extension of Reference [16], it uses the standard test functions 
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as well as the stochastic functions for testing the efficiency of the algorithm. This CSA is developed based on 

the following principles [20-21]:  

1. Each Cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest.  

2. Best nests with high quality of eggs will carry over to the next iterations/ generations. 

3. The number of available host nests is fixed and the egg laid by a Cuckoo is identified by the host 

bird with a probability in the range between 0 and 1. In this situation, the host bird can throw the egg 

away or abandon the entire nest, and build a completely new nest.  

 

Based on these principles, the flow chart of CSA is depicted in Figure 1.  

 

 

Is population less than 

maximum value?

Check survival of 

eggs in nests 

Is 

stopping criteria 

satisfied?

Kill Cuckoos 

are worst area

No

Yes

Initialize Cuckoos 

with eggs

Start

Lay eggs in different 

nests

Some of eggs are 

detected and killed 

Find egg laying radius 

for each Cuckoo  

Move all Cuckoos 

toward best environment

Find Cuckoo societies

Find nest with best 

survival rate

Stop

Let eggs grow

No

Yes

 
 

Figure 1. Flow Chart of Cuckoo Search Algorithm (CSA). 

 

 

The steps to implement the CSA can be described as follows [20-23]: 

Step 1: Initialize the population size (n host nests i.e., xi (i=1,2,3,...,n)) and maximum number of iterations/ 

generations.  

Step 2: Determine the objective function, i.e., J(x). Where x=(x1,x2,x3,.....,xn). 

Step 3: Find the current best solution (i.e., determine the best nest) and set the current generation 

number/count as 1. 

Step 4: For each generation count, generate the new solutions and store the current best.  

Step 5: Update the generation count. Generation count = Generation count + 1. 

Step 6: If the number of generations is more than or equal to the maximum number of generations. Then, go 

to Step 7, otherwise go to Step 2.  

Step 7: The best objective obtained so far is the best nest, and it is the optimal solution.  

 

 

4. RESULTS AND ANALYSIS 

The performance of the proposed reactive power scheduling approach using CSA has been 

examined on Ward Hale 6 bus, IEEE 30 bus, 57 bus, 118 and 300 bus test systems. The simulation results 

obtained with the proposed CSA are also compared with other optimization techniques reported in the 

literature. In this paper, the generator voltage magnitudes are considered as the continuous control variables 

and the transformer tap settings, switchable shunt VAR sources limits are considered as the discrete control 

variables. All the optimization programs are coded in MATLAB R20016a and executed in a PC Core i7 with 

8 GB of RAM. Thirty runs have been performed for the each optimization program. The reported results are 

the best solution obtained over these 30 runs. 
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4.1. Simulation Results on Ward Hale 6 bus system 

The system data for Ward Hale 6 bus test system is taken from Reference [2]. The minimum and maximum 

limits of transformer tap settings are 0.9 p.u. and 1.1 p.u., respectively. Table 1 presents the optimum control 

variables settings and the optimum loss obtained for the Ward Hale 6 bus system using the CSA and other 

optimization algorithms reported in the literature.  

  

 

Table 1. Optimum control variables and loss for Ward Hale 6 bus system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 1, the optimum loss obtained with the non-fuzzy approach [24], fuzzy approach [24], GA 

[24], PSO [2] and Improve PSO [2] are compared with the optimum loss obtained with the CSA. From this 

Table, it can be observed that the optimum transmission loss obtained using GSA (i.e., 8.1534 MW) is 

optimum compared to all other optimization algorithms reported in the literature. 

 

4.2 Simulation Results on IEEE 30 bus test system 

IEEE 30 bus test system consists of 6 generating units, 21 load demands and 41 transmission lines, 

of which 4 lines are the transformer tap setting branches. The generation, load demand and the network 

parameters of the system are taken from Reference [25]. The network buses 10, 12, 15, 17, 20, 21, 23, 24 and 

29 have been selected as the shunt compensation buses. The active and reactive power load demands in this 

system are 283.4MW and 126.2MVAr, respectively. The transformer tap settings have lower and upper tap 

settings of 0.9p.u. and 1.1 p.u., respectively. Switchable shunt VAR compensators have minimum and 

maximum limits of 0 MVAR and 5 MVAR, respectively. Generator bus voltage magnitudes have minimum 

and maximum limits of 0.95p.u. and 1.1p.u., whereas the load bus voltage magnitudes have minimum and 

maximum limits of 0.95p.u. and 1.05p.u., respectively. The thermal flow limits of lines are presented in [26].  

 

 

Table 2. Optimum control variables and loss for IEEE 30 bus system. 
Control 

Variables 

GA [2] PSO [2] Improved 

PSO [2] 

DE 

[27] 

OGSA 

[28] 

FA 

[29] 

GSA 

[30] 

CSA 

VG1 (p.u.) 1.0 1.018 1.015 1.1 1.05 1.1 1.07165 1.0851 

VG2 (p.u.) 0.999 1.012 1.0048 1.0944 1.041 1.0644 1.02219 1.0388 
VG5 (p.u.) 0.974 1.013 1.0017 1.0749 1.0154 1.0745 1.04 1.0512 

VG8 (p.u.) 1.007 0.994 0.99 1.0768 1.0267 1.0869 1.0507 1.0476 

VG11 (p.u.) 1.0894 1.04 1.0019 1.0999 1.0082 1.0916 0.97712 1.0950 
VG13 (p.u.) 1.088 1.016 0.993 1.0999 1.05 1.099 0.96765 1.0566 

T6-9 (p.u.) NA NA NA 1.0465 1.0585 1.0 1.0984 1.075 

T6-10 (p.u.) NA NA NA 0.9097 0.9089 0.94 0.9824 0.9875 
T4-12 (p.u.) NA NA NA 0.9867 1.0141 1.0 1.0959 1.0215 

T28-27 (p.u.) NA NA NA 0.9689 1.0182 0.97 1.0593 1.025 

QC10 (MVAR) NA NA NA 5.0 3.30 3.0 1.6537 4.0 
QC12 (MVAR) NA NA NA 5.0 2.49 4.0 4.3722 5.0 

QC15 (MVAR) NA NA NA 5.0 1.77 3.3 0.1199 4.0 

QC17 (MVAR) NA NA NA 5.0 5.0 3.5 2.0876 5.0 
QC20 (MVAR) NA NA NA 4.406 3.34 3.9 0.3577 5.0 

QC21 (MVAR) NA NA NA 5.0 4.03 3.2 0.2602 3.0 

QC23 (MVAR) NA NA NA 2.8004 2.69 1.3 0.0 4.0 
QC24 (MVAR) NA NA NA 5.0 5.0 3.5 1.3839 2.0 

QC29 (MVAR) NA NA NA 2.5979 1.94 1.42 0.0003 5.0 

PLoss (MW) 4.2716 4.1501 4.1396 4.555 4.4984 4.5691 4.5143 4.1066 

Variables Non fuzzy 

Approach [24] 

Fuzzy 

Approach [24] 

GA [24] PSO [2] Improved 

PSO [2] 

CSA 

V1 (p.u.) 1.09 1.1 1.0225 1.023 1.023 1.1 

V2 (p.u.) 1.15 1.15 1.1 1.1 1.1 1.1 

V3 (p.u.) 1.00 1.01 0.99 1.0 1.0 1.0486 
V4 (p.u.) 1.00 1.01 0.917 0.9185 0.918 1.0359 

V5 (p.u.) 1.00 1.01 0.969 0.9696 0.9696 0.9914 

V6 (p.u.) 0.98 0.994 0.90 0.9019 0.9019 0.9903 
Q1 (MVAR) 36.3 35.3 42.3 19.3 92.7 50.12 

Q2 ( MVAR) 19.3 19.4 37.8 56.1 57.9 36.70 

Q4 ( MVAR) 5 5 5 5 5 5 
Q6 ( MVAR) 5.5 5.5 5.5 5.5 5.5 5.5 

T6,5 (p.u.) 0.96 0.98 0.9 0.9 0.9 0.9250 
T4,3 (p.u.) 0.98 0.99 0.9 0.9 0.9 0.9750 

PLoss (MW) 8.93 8.77 8.1746 8.1745 8.1745 8.1534 
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Table 2 presents the optimum control variables and optimum loss values using the different 

optimization algorithms presented in the literature. From this Table, it can be observed that the optimum 

transmission losses obtained using the CSA (i.e., 4.1066 MW) is better than all other optimization algorithms 

presented in the literature i.e., GA [2], PSO [2], Improved PSO [2], DE [27], Opposition-based Gravitational 

Search Algorithm (OGSA) [28], Firely Algorithm (FA) [29] and Gravitational Search Algorithm [30].  

 

4.3. Simulation Results on IEEE 57 bus test system 

IEEE 57 bus system [25] consists of 7 generating units, 80 transmission lines and 15 branches with 

transformer tap settings. The reactive power sources are considered at the buses 18, 25 and 53 [31]. The total 

active and reactive power demands in the system are 1250.8 MW and 336.4 MVAR, respectively. The 

system bus data and line data is given in [25]. The generator data of IEEE 57 bus system is given in Table 3. 

The optimum loss obtained using different optimization algorithms i.e., Comprehensive Learning PSO 

(CLPSO) [32], DE [31], Gravitational Search Algorithm (GSA) [31], Opposition-based GSA (OGSA) [33], 

Seeker Optimization Algorithm (SOA) [32], Quasi-Oppositional DE [31] and CSA techniques is presented in 

Table 4. From this Table, it can be observed that the optimum loss obtained using the CSA is better than the 

algorithms reported in the literature.  

 

 

Table 3. Generation data of IEEE 57 bus test system. 
Generator Number 𝐏𝐆𝐢

𝐦𝐢𝐧 (MW) 𝐏𝐆𝐢
𝐦𝐚𝐱 (MW) 𝐐𝐆𝐢

𝐦𝐚𝐱 (MVAR) 𝐐𝐆𝐢
𝐦𝐢𝐧 (MVAR) 

1 20 50 0 0 
2 15 90 50 -17 

3 10 500 60 -10 

4 10 50 25 -8 
5 12 50 200 -140 

6 10 360 9 -3 

7 50 550 155 -50 

 

 

Table 4. Comparison of optimum loss obtained for IEEE 57 bus system using different optimization 

algorithms. 
 CLPSO  

[32] 

DE  

[31] 

GSA  

[31] 

OGSA  

[33] 

SOA  

[32] 

QODE 

[31] 

CSA 

PLoss (MW) 24.5152 16.7857 23.4611 23.43 24.2654 15.8473 15.5149 

 

 

4.4. Simulation Results on IEEE 118 bus test system 

This test system consists of 54 generating units, 64 load demands, 9 tap setting transformers and 14 

switchable shunt VAR compensators. This test system data including lower and upper limits of reactive 

power sources and transformer tap settings are presented in [31]. The total active and reactive power 

demands are 4242 MW and 1438 MVAR, respectively [34]. As mentioned earlier, the generator voltage 

magnitudes, transformer taps and switchable VAR sources are considered as the control variables. Hence, the 

totals of 77 control variables are required to be optimized. Table 5 presents the optimum power loss obtained 

using the CSA and various optimization algorithms reported in the literature i.e., PSO [31], Comprehensive 

Learning PSO (CLPSO) [34], Gravitational Search Algorithm (GSA) [34], Opposition-based GSA [31], DE 

[31], Gray Wolf Optimizer (GWO) [34], Quasi-oppositional DE (QODE) [31] and CSA techniques. From 

this Table, it can be observed that the total transmission loss obtained by using the CSA is superior to the 

other algorithms reported in the literature.  

 

 

Table 5. Comparison of optimum loss obtained for IEEE 118 bus system using different optimization 

algorithms. 
 PSO 

[31] 

CLPSO 

[34] 

GSA 

[34] 

OGSA  

[31] 

DE  

[31] 

GWO 

[34] 

QODE 

[31] 

CSA 

PLoss (MW) 131.99 130.96 127.76 126.99 82.2473 120.65 80.9257 80.5864 

 

 

4.5. Simulation Results on IEEE 300 bus test system 

This test system [25] consists of 69 generating units, and 411 transmission lines, of which 62 lines 

are the transformer tap setting branches, and 12 buses have been considered as the shunt compensation buses 

[35]. The system generation, load and line data is given in [25]. Table 6 presents the optimum objective 



IJECE  ISSN: 2088-8708  

 

Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm (S. Surender Reddy) 

2355 

function values obtained using the Enhanced GA (EGA) [35], Efficient Evolutionary Algorithm (EEA) [35] 

and the proposed CSA. From this Table, it can be observed that the optimum loss obtained using CSA is 

superior to the other algorithms reported in the literature.  

 

 

Table 6. Comparison of optimum transmission losses obtained for IEEE 300 bus test system using different 

optimization algorithms. 
 EGA [35] EEA [35] CSA 

PLoss (MW) 646.2998 650.6027 635.8942 

 

 

5. CONCLUSION 

This paper presented a meta-heuristic based Cuckoo Search Algorithm (CSA) for solving the 

optimal reactive power scheduling problem considering the generator voltages, transformer tap settings and 

switchable shunt VAR sources as the control variables for achieving the optimum transmission losses. The 

problem is formulated as the minimization of transmission losses by controlling the control variables. It is 

formulated as a non-linear constrained optimization problem with continuous and discrete variables. This 

paper proposes a very effective and robust optimization algorithm based on the manner on which Cuckoos' 

search their nests for laying their eggs. This Cuckoo Search Algorithm (CSA) is used for the solution of 

optimal reactive power scheduling problem. The performance of the CSA is examined on Ward Hale 6 bus, 

IEEE 30 bus, 57 bus, 118 bus and 300 bus test systems. The simulation results obtained using the proposed 

CSA have been compared with other optimization techniques reported in the literature. This algorithm is 

effective for reactive power scheduling problem, it has good theoretical as well as practical value. The scope 

for the future study is to improve the efficiency of CSA. 
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