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The article describes multidisciplinary design process of high-performance 

electric generator for advanced aircrafts by analytical methods and computer 

modeling techniques (electromagnetic, thermal and mechanical calculations). 

New technical solutions used in its development are described. The main 

ideas are revealed of the method of EG voltage stabilization we used. To 

improve the heat dissipation efficiency, we have developed a new cooling 

system, and provide its study and description in this paper. The advantages of 

this cooling system include the fact that EG is made with dry, uncooled rotor. 

This allowed eliminating additional pumps, and significantly reducing the 

size of CSD. According to the results of our study, we created an 

experimental full capacity layout, and its studies are also provided in this 

paper. 
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1. INTRODUCTION 

Electric generators (EG) for advanced power supply systems of autonomous objects play a very 

important role in today’s aerospace industry. Power, reliability and EG weight and size characteristics largely 

determine functionality, performance and fuel efficiency of civil and military aircrafts (A/C) [1]. Electrical 

machines, which eliminate pneumatic or hydraulic constant speed drive are promising to improve A/C 

efficiency (electric machines made to a variable speed, similar to Boeing 787 starter-generators) or electrical 

machines, integrated in the aircraft engine or auxiliary power plant without gear [2-5]. [2] provide multi-

criteria selection of the type of a high-speed electrical machines for the aerospace industry. This analysis 

shows that the use of electrical machines with permanent magnets (PM) is the most effective. The similar 

conclusion was obtained in [3] – [9]. [10] also describes a high speed EG for commercial A/C. there are 

almost no papers devoted to the design and development of EG with PM in A/C systems with constant rotor 

speed of not more than 24,000 rpm and an output voltage of 400 Hz, except publications [11], [12] which 

does not describe the process of designing and creating such EG, and describe methods of protection of EG 

with PM from short circuit. 

Output voltage with a frequency of 400 Hz is provided by EG, which are integrated into a constant 

speed drive (CSD) with a rotor speed of not more than 24,000 rpm. Although, as was shown above, the 

prospect is to get rid of CSD, the use of CSD for some aircrafts (military and transport aviation) is a technical 

solution that provides the required reliability of A/C, and eliminating this unit is economically and 

technically inexpedient at this stage. Therefore, in addition to the development of promising directions for 

creating integrated electric machines for aircrafts, it is also very important to improve power characteristics 

of EG integrated in CSD of A/C, while minimizing their weight and size, and this task is not fully disclosed 

in the publications. 
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To solve this problem, our research team in the interests of our industrial partner, has designed a 

high-performance EG with permanent magnets (PM), a power of 100 kW, with a weight of 22 kg. Together 

with this EG, we developed a voltage stabilization system weighing 10 kg. EG is configured to 24,000 rpm, 

with an output frequency of 400 Hz (two-pole rotor) and designed to be integrated in the fixed speed 

hydraulic actuator of A/C. This paper describes multidisciplinary design process (electromagnetic, thermal 

and mechanical calculations) of the developed EG, as well as new technical solutions used in its creation, 

including the main ideas of EG voltage stabilization method that we used. To improve heat dissipation 

efficiency, we have developed a new cooling system also described in this paper. The advantages of this 

cooling system include the fact that EG is made with a dry, uncooled rotor. This eliminated additional pumps 

and significantly reduced CSD size. According to the results of our study, we made a full capacity 

experimental layout also described in this paper. 

 

 

2. REQUIREMENTS FOR EG AND EG TOPOLOGY SELECTION 

Specifications of the developed EG for advanced A/C with CSD, were given by our industrial 

partner. The main ones are: 

1. Rated power of EG – 100 kVA; 

2. Rated voltage – 115/200 V; 

3. The number of phases – 3; 

4. Nominal frequency of the alternating current – 400 Hz at a nominal EG shaft rotational frequency of 

24,000 rpm; 

5. EG operational load: 100 kVA. 

6. EG overloads: 
7. Long-term operating power of 150 kVA for not more than 5 minutes; 

8. Overload capacity of 200% of the generator rated power of 200 kVA for 5 seconds. 

The industrial partner has also established very strict limits on the length: the total length of EG 

(taking into account frontal parts) was not to be greater than 145 mm, weight and overall dimensions of EG 

together with the control system – not more than 35 kg. With all of this, EG and its control system were to 

ensure quality of the output power within MIL STD 704IE. 

From the analysis of publications, as well as from practical experience of EG designing, we have 

found that the only EG type able to provide these characteristics is EG with permanent magnets (PM). At the 

same time to reduce the overall dimensions of EG with PM, it is appropriate to use the tooth winding [13-15]. 

At the same time the use of tooth winding results in significant harmonic distortion of the output voltage of 

EG due to spatial harmonics of MMF. To reduce these distortions and EG output power compliance with the 

requirements of MIL STD 704IE, a frequency converter at full power equal to EG power is used together 

with EG with tooth winding. But even the use of the most advanced element base does not allow to create a 

rectifier or frequency converter with a power of 100 kW and a weight of less than 22-25 kg [16]. Given that 

our industrial partner has established the requirements to EG weight with the control system was not more 

than 35 kg, and EG rotor speed – not more than 24,000 rpm, it is evident that the use of frequency converter 

and EG with tooth winding in this case is not possible. At a weight of frequency inverter of 25 kg, EG had to 

weigh not more than 10 kg and provide power of 100 kW at a speed of 24,000 rpm, and overload capacity of 

150 kW also at 24,000 rpm. At this stage of development, practical implementation of these parameters is not 

possible. 

Therefore, we have chosen topology of EG with PM with distributed winding and two-pole 

magnetic system, Figure 1, which made it possible to improve the output voltage quality. In order to stabilize 

EG output voltage, we used not a serial frequency converter at full power, but parallel one at power of not 

more than 40% of the rated power, Figure 2. This converter (digital module (DM)) is designed to stabilize 

voltage with the change in the load to EG at a constant rotor speed. Permanent frequency is provided by 

CSD. The essence of the control method used and EG output voltage stabilization is in fact that voltage is 

controlled by the magnetic field of EG response anchors by inductive or capacitive current generated by DM. 

DM is connected parallel to the load upstream EG feeder and consumes current shifted relative to voltage EG 

strictly to ±90°. Thus DM intensifies the magnetic field of EG response anchors and reduces its voltage 

(inductive current), or lowers the magnetic field of armature reaction and increases EG voltage (capacitive 

current). In this case, DM current is reactive for EG and does not generate additional heat losses in EG 

winding and mechanical load on the shaft. 

To protect against short circuits, EG phases are connected to star configuration through bi-

directional semiconductor switches that open in short-circuit (SC), thereby isolating the point of short circuit. 

The solution used is similar to the solution proposed by Honeywell International [17], but our solution uses 

new algorithms to improve performance of the whole protection system. It would be more efficient to use a 
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highly inductive EG (High-reactance permanent magnet machine), but since short-circuit current is not much 

higher than the rated current in this type of electric machines, we would not be able to fulfill the requirements 

for overload, established by our industrial partner. Therefore, we rejected this solution at the stage of 

topology selection.  

To maximize heat dissipation, we used our developed and patented EG cooling system [18]. The 

uniqueness of this cooling system is that it uses two counter flows of cooled liquid, Figure 3, while providing 

uniform and effective heat dissipation. 

 

 
 

 
 

Figure 1. EG winding connection scheme Figure 2. Schematic diagram of EG with DM 
 

 

This EG liquid-cooling system operates as follows: the pump is pumping the coolant through the 

inlet fittings, which is simultaneously supplied to the first manifold and the second manifold where the front 

parts are installed. By washing the front parts, the coolant from the first and the second manifolds enters the 

coolers, made in the form of a cylinder with helical channels, and the coolant flows from the first and the 

second manifolds oppositely and then flows out through the outlet fitting. To prove effectiveness of all of the 

technical solutions, it is necessary to make multidisciplinary EG calculations. The algorithm proposed in [19, 

20] was adopted as a basis in multidisciplinary calculations. 

 

 

 
Figure 3. Structural diagram of EG cooling system 

 

 

3. ELECTROMAGNETIC CALCULATIONS OF EG 

In electromagnetic calculations, we have initially used the analytical expressions to calculate the 

preliminary geometrical dimensions of EG. After that, based on these geometric dimensions, a finite element 

model was developed. Sm2Co17 with residual induction rB  not less than 1.1 T and permanent magnet 

coercive force in terms of magnetization of 812cH  kA/m are used as a material of permanent magnets. 

The maximum preliminary temperature of PM ( С175pm ) is defined on the basis of empirical data. 

Based on this, characteristics of a permanent magnet are determined at the maximum operating 

temperature: 
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Based on empirical data, preliminary rotor diameter and PM thickness is given:

mm11mm,100  mhpD .  

Based on the thickness of permanent magnets, rotor bandage sheath is determined according to [20]. 

The total thickness of bandage sheath was 2.2 mm made of carbon fiber, while the relative air gap of the 

generator is equal to: 

 

mm06,0
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       (3) 

 

The coefficients taking into account the change in the magnetic induction vector along the air gap 

length are determined: 
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A coefficient taking into account the fall in MMF in steel sections 

 

 15,1Fk          (5) 

 

Dissipation coefficient: 

 

 15,1pk          (6) 

 

Induction in the air gap at idle can be determined by expression [21]: 
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Further, according to Arnold equation, a linear current generator load is determined: 
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The number of slots per pole and phase 

 

3q           (9) 

 

The number of teeth  

 

1831322  qpmz        (10) 

 

Then, the number of effective conductors in the slot: 
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Adjusted value of the linear current load: 
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Then the effective windings in the stator winding phase: 
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Idling EMF [24, 25]: 
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According to the obtained geometric dimensions, a computer model was developed in Ansoft 

Maxwell software package. The simulation results are given in Figure 4. Upon the results of computer 

simulation (Figure 4), the results of preliminary settlement calculations were confirmed, and certain basic 

parameters of EG were determined, Table 1. EG calculations were performed under load and overload. 

Furthermore, the results of computer simulation show that the maximum induction in the stator yoke is not 

more than 2 T, which is permissible for CoFe alloy. In building the external characteristics of EG, we used 

the known technique to describe the external characteristics with the ellipse equation. 

 

 

 
 

Figure 4. The results of EG computer simulation 

 

 

In this case, inter alia, in building the external characteristic, we took into account the change in PM 

characteristics due to temperature. 
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PM flowchart was built to determine current Ik, and it was found from it that Ik for the operating 

temperature of 175°C is 14173 kA. Given these values, and also based on calculations in Table 1, we have 

built the external EG characteristic, Figure 5.  
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Figure 5. The external EG characteristic 

 

 

Table 1 shows that the developed generator has a current density in the winding of 12 A/mm
2
, which 

corresponds to the selected cooling system. At the same time, it is able to withstand three times multiplicity 

of demagnetization current, which also corresponds to the requirements for aircraft generators of this type. 

Specific electric loading of the designed generator also does not exceed the limits for the selected cooling 

system. Therefore, it can be concluded that the calculated data obtained in Table 1 fully satisfy the task. 

As a result of electromagnetic calculations, a certain main structural diagram of EG and its 

parameters were determined, which fully meet the conditions set by our industrial partners. 

Figure 5 shows that the external characteristic of the generator being developed is affected both by 

electric parameters, and also to a great extent by thermal processes. The external characteristic becomes 

nonlinear when they are taken into account. 

 

 

Table 1. Results of EG parameters calculations determined as a result of computer simulation 
Active area steel grade  - CoFe 

Thickness of sheets mm 0.07 

Phase current frequency  Hz 400 
Phase voltage V 124 

Phase current (rms) А 306,22 

Current density in the winding А/mm2 12,2 
Specific Electric Loading А/m 33104 

Heat factor А/mm2* 

*А/sm 

3972 

Generator power kVA 108 

Shortening coefficient - 0,965 

Distribution coefficient - 0,957 
Active resistance and dissipation resistance Оhm 0,00268/0,0255 

Multiplicity of demagnetization current - 3,3 

Inductive phase resistance along axes d-q Оhm 0,099/0,099 

 

 

3.1.  Calculations of EG rotor mechanical strength 
The developed EG has a sufficiently larger rotor diameter at relatively high speed, so it is necessary 

to make more accurate calculations of mechanical strength of rotor bandage sheath. 

At a thickness of the sheath of 2.2 mm, and taking into account the mass of magnets (2.6 kg), 

centrifugal forces were calculated acting on the rotor bandage taking into account increased speed (28,800 

rpm): 

НRmF 11817296,205.023015mag
2ω       (17) 

where ω is the rotor speed (24,000 rpm or 2,514 rad/sec), R is the rotor radius (determined from 

electromagnetic calculations and is 50 mm), magm is the mass of the magnets is 2.6 kg.  

Taking into account the geometric parameters and the resulting magnitude of centrifugal forces, a 

finite element model was developed in Solid Works software package, and stress in the rotor sheath was 

calculated as, Figure 6. Figure 6 shows that the stresses in the rotor sheath do not exceed 609 MPa, and this 

provides a safety factor for the projected generator of 1.76. The above calculations confirm performance of 

the proposed design. 
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4. EG ROTOR DYNAMICS ANALYSIS 

A rotor developed at the stage of electromagnetic calculation is considered when calculating the 

critical rotor speed. The problem of dynamics analysis was solved using Ansys software package, Figure 7. 

As a result of the calculation (Figure 7), it was found that the maximum lateral force acting on the 

rotor is 2,652 N, the first critical speed is at 98,000 rpm, i.e. is much higher than the rated speed. This proves 

performance of the selected constructive scheme of the rotor. 

 

 

 
 

Figure 6. Calculations made in Solid Works software 

package 

Figure 7. Deflection of the magnetoelectric generator 

rotor at the first critical rotation speed 

 

 

5. CALCULATION OF LOSSES AND EVALUATION OF EG EFFICIENCY, AND COOLING 

SYSTEM CALCULATION 

 

EG loss calculation is an important step in the design. Due to the limited EG volume, total losses in 

the active elements should be calculated as accurately as possible, to ensure maximum heat dissipation and 

reliability of EG. Mechanical losses in EG can be determined according to the procedure given in [22]. 

Losses in Co-Fe alloys for 400 Hz are usually specified by the manufacturer [23], and can be estimated based 

on the weight of the magnetic circuit and the magnetic flux density values obtained in electromagnetic 

calculations, Figure 5. Particular attention should be paid to losses for eddy current in permanent magnets, 

since the rotor in the developed EG is not cooled, and there will be virtually no heat dissipation from PM. 

Losses in PM were calculated by finite element method, Figure 8. 

 

 

 
 

Figure 8. Distribution of losses for eddy currents in PM 

 

 

Results EG loss calculations are shown in Table 2. Based on this calculation, the cooling system was 

designed described above. The estimate of temperatures by finite element method showed that the maximum 

PM temperature is not more than 180 °C, and winding temperature is not more than 205 °C, which fully 

provides EG performance. 

 

 

Table 2. Losses in active EG elements 
Ohmic losses in the stator copper W 1,154 

Losses in steel  W 693 

Surface losses in the rotor due to tooth harmonics of the stator W 193 

Losses in the winding due to proximity effect and eddy currents W 528 
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Analysis of Table 2 shows that the developed aircraft electric generator has a sufficiently high 

efficiency. Total losses in the designed structure do not exceed 2.6 kW, which at an electric power of 100 kW 

provides efficiency of 97%. Maximum losses take place in the stator winding, while losses are not significant 

in the stator iron. Minimum losses in the stator iron were achieved due to the use of the siliceous electrical 

steel with a sheet thickness of 0.18 mm. In general, as shown by thermal analysis, all these losses are diverted 

by the selected cooling system, which confirms workability of the developed electric generator in terms of 

thermal loads. 

 

 

6. EG VOLTAGE CONTROL AND STABILIZATION SYSTEM 

An important task in creating EG is the design of its control system, implementing the method 

described above. A block diagram of the control method and voltage stabilization implemented by DM, is 

shown in Figure 9. 

To confirm efficiency of the proposed control and stabilization method for the output voltage of A/C 

EG and prove its practical implementation, the authors have developed a simulation model of generation 

channel in Matlab software package, which allows evaluating efficiency of the proposed control and 

stabilization method for EG output voltage, as well as duration of transients, voltage stabilization accuracy 

and to obtain DM adjustment characteristics. 

 

 

 
 

Figure 9. Block diagram of EG control method Figure 10. Simulation results of EG control 

processes (CM current, A VS t, ms; MEG voltage, A 

VS t, ms; CM current, A VS t, ms) 

 

 

The developed simulation model consists of several units: a load unit (Load), DM unit including 

Current Regulator and Solver, as well as drive-generator unit (Generator). EG model is implemented in dq 

coordinates, and allows simulating operation of EG in generator mode as part of a constant speed drive in the 

range of loads from idling to three-fold overload. The simulation takes into account EG with the following 

numerical parameters: speed – 24,000 rpm, rated power – 100 kVA, frequency of the generated voltage – 400 

Hz, magnetic induction in the air gap – 0.66 T. As a result of the simulation, Figure 10, DM current values 

were obtained, as well as voltage and current of the generator at a sharp change of the load and adjustment 

characteristic of DM, Figure 11. The analysis of simulation results Figure 10 shows that the proposed EG 

voltage control and stabilization method is efficient and allows controlling EG voltage over a wide range of 

load changes. Also the simulation results show that the maximum duration of the transient process is 

observed when the load changes from two-fold overload up to idling and is 70 ms. In this case the generator 

voltage reaches 140 V, that is, increased by 21.7%, and then restored to the nominal value. 

 

 

 
Figure 11. EG adjustment characteristics (CM current, A VS MEG current, rel. units) 
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As seen in Figure 11, DM current varies in the range of 0 A at 80% load to 200 A at idling or 160% 

load. In this case, in generator idling mode, DM current is behind voltage, and in overload mode – it is ahead 

by 90°, which also confirms validity of the proposed voltage control method. 

 

 

7. EXPERIMENTAL EG LAYOUT 

Based on the results, by the geometric dimensions, Table 1, full power EG demonstration layout was 

developed, as well as the layout of its control system was designed, Figure 12, 13. 

 

 

 

 
Figure 12. EG cooling jacket (left) and EG rotor (right) Figure 13. Full-size EG layout (left) 

 

 

As a result of research, the effectiveness of our solution has been fully proved, and all technical 

requirements specified by our industrial partner were complied with. A further step in our research was stand 

tests simulating A/C systems. 

 

 

8. RESULTS AND CONCLUSIONS 

Thus, the paper describes a process of multidisciplinary design of a high-performance EG with 

permanent magnets (PM), power of 100 kW, weight of 22 kg. Together with this EG, we have developed a 

system of voltage stabilization weighing 10–12 kg. EG is configured to 24,000 rpm, with an output frequency 

of 400 Hz (two-pole rotor) and is designed for integration into CSD of A/C. 

Comparing our results with works of other authors, we can conclude that the new aircraft generator 

that we have created has minimized mass parameters at sufficiently high energy values. The control system 

proposed by us is of particular value in this case, which also outperforms analogs in terms of mass 

parameters. At the same time, the mass in aerospace industry is the main criterion for making decisions, since 

it allows to significantly minimize the economic costs associated with the fuel efficiency of the aircraft. 

Table 3 provides comparisons of our generator and known aircraft electric generators described in [1] – [18]. 

 

 

Table 3. Comparison of the developed generator and other types of generators with permanent 

magnets, used on various aircrafts 
 Developed 

power generator 
Electric generator 
with permanent 

magnets and bias 

windings 

Electric generator with 
permanent magnets and 

full power inverter 

Combined excitation generator 

Rated/overload 
power, kW 

100 / 150 100 / 150 100/150 100 / 150 

Generator weight, 

kg 

24,2 27,2 20,2 34 

Control system 

weight, kg 

12 11 25 5 

Total system weight, 

kg 

36,2 38,2 45,2 39 

Losses in the stator 
magnetic circuit, W 

693 693 700 1050 

Losses in rotor, W 193 210 300–350 700  

Aerodynamic losses, 
W 

26 26 26 120  

Ohmic losses in the 1154 1154 1200 1154 
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main winding, W 
Additional losses, W 528 528 550 700 

Total losses, W 2594 2611 2826 3724 

 

 

The analysis of Table 3 shows that since the rectifier and the full power inverter are not used 

together with our generator, the eddy current losses in it created in permanent magnets are lower than in other 

options. This is due to the fact that in our generator the eddy current losses are induced only because of the 

spatial harmonics of MMF, the time harmonics in our generator are not significant. In other competing 

options, losses in permanent magnets are greater, since the time harmonics are significant in them. The 

combined excitation generator is also inferior to our solution both in terms of efficiency and mass of the 

system. 

Table 3 shows that our system has minimal mass-dimension parameters and minimal energy losses. 

And this, in the aggregate, shows the high efficiency of the solution developed. All this is achieved due to the 

optimal electric generator design. The basis of this method was set forth by us in [24], and also thanks to the 

use of a new method of stabilizing the generator voltage. Our conclusions are confirmed by the results of 

experimental studies of the full-size model. 
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