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The augment of ecological shield and the progressive exhaustion of 

traditional fossil energy sources have increased the interests in integrating 

renewable energy sources into existing power system. Wind power is 

becoming worldwide a significant component of the power generation 

portfolio. Profuse literatures have been reported for the thermal Unit 

Commitment (UC) solution. In this work, the UC problem has been 

formulated by integrating wind power generators along with thermal power 

system. The Wind Generator Integrated UC (WGIUC) problem is more 

complex in nature that necessitates a promising optimization tool. Hence, the 

modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) 

algorithm has been chosen as the main optimization tool and real coded 

scheme has been incorporated to handle the operational constraints. The 

standard test systems are used to validate the potential of the GWO 

algorithm. Moreover, the ramp rate limits are also included in the 

mathematical WGIUC formulation. The simulation results prove that the 

intended algorithm has the capability of obtaining economical resolutions 

with good solution quality. 
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1. INTRODUCTION  

1.1. Wind Generator Integrated Unit Commitment 

The aim of the Unit Commitment (UC) problem is to identify the optimum generating schedule, that 

minimizes the total operational costs and satisfying the system load demand, by considering several physical, 

inter-temporal constraints of generating units, transmission and system reliability requirements. In recent 

years, as wind power is sustainable and green power, its penetration in power system has increased 

significantly and is expected to persist rising in the future. Furthermore, it increases the complexity of power 

system operations due to its inadequate predictability and variability.  

Numerous reports have been addressed for solving thermal UC problem. As the Wind Generator 

Integrated UC (WGIUC) is the emerging field of research, very few research reports detail the WGIUC 

solution. Hence, the solution quality of WGIUC problem can be improvised by exploring the search space. 

This motivates, to develop a prominent method to determine the most economic UC schedule for WGIUC.   

 

1.2. Existing Solution Methods 

The UC is a non-convex, large-scale mixed integer nonlinear programming problem. Determination 

of the optimal solution for UC problem within reasonable computational time and memory requirement is 
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very difficult. The exact solution of the UC problem can be determined by complete enumeration approach. 

But this is not applicable to practical power systems, since the computational time requirement is high. The 

above has motivated the researchers, to investigate alternate approaches to obtain approximate solutions for 

realistic UC problem in reasonable computational time. Numerous techniques have been developed and 

applied to solve the UC problems. They can be classified into mathematical, meta-heuristic and hybrid 

methods.  

a) Mathematical Methods: The deterministic methods for thermal UC include Priority List (PL) [1], 

Dynamic Programming (DP) [2], Branch-and-Bound (BB) [3], Lagrangian Relaxation (LR) [4] and 

Mixed Integer Programming (MIP) [5] methods. The improved versions of PL, DP and LR such as 

Extended PL (EPL) [6], Intelligent DP (IDP) [7], Enhanced Adaptive LR (EALR) [8] and Improved LR 

(ILR) [9] have been developed. Most of the above techniques suffer from numerical convergence and 

solution quality problem. They are inadequate in handling large number of generating units and non 

convex search space of the UC problem. Because of high nonlinearity and high complexity nature of the 

practical UC problem, soft computing methods are used as alternative to the classical approaches. 

b) Meta-Heuristic Methods: Various artificial intelligence techniques such as Simulated Annealing (SA) 

[10], Genetic Algorithm (GA) [11], Expert System (ES) [12], Evolutionary Programming (EP) [13], 

Neural Network (NN) [14], fuzzy methods [15], Tabu Search (TS) [16], Particle Swarm Optimization 

(PSO) [17], Fire Fly (FF) algorithm [18], [19], Ant Colony System (ACS) algorithm [20], Differential 

Evolution (DE) [21], [22], Bacterial Foraging Algorithm (BFA) [23], Shuffled Frog Leaping Algorithm 

(SFLA) [24], Gravitational Search Algorithm (GSA) [25], [26] and Memetic Algorithm (MA) [27] have 

been applied to solve the thermal UC problems.  
The improved versions of GA, parallel repair GA [28], Integer-Coded GA (ICGA) [29] and Binary-

real-Coded GA (BCGA) [30] have been developed to solve thermal UC problem. The modified versions of 

SA namely, Enhanced SA (ESA) [31], [32], Adaptive SA (ASA) [33] and modified versions of PSO namely, 

Hybrid PSO [34], pseudo-inspired weight-improved crazy PSO [35] have been evolved to solve the UC 

problem. Fireworks algorithm [36] is one type swarm optimization algorithms recently developed and 

applied to solve the UC problem. 

Various hybrid methods combining metaheuristic with traditional techniques or other metaheuristic 

are developed to explore the search space in large size UC problems. Hybrid methods include hybrid fuzzy 

NN-ES [37], LR and GA [38], LR and EP [39], EP and TS [40], ES and Elite PSO [41], Hybrid Taguchi 

(HT) - ACS [42], LR and PSO [43], GA and DE [44] and hybrid harmony search/random search algorithm 

[45]. Quantum-inspired evolutionary computing techniques such as Quantum-inspired Evolutionary 

Algorithm (QEA) [46], Quantum-inspired Binary PSO (QBPSO) [47], Advanced Quantum-inspired 

Evolutionary Algorithm (AQEA) [48] and Quantum-inspired Binary GSA (QBGSA) [49] have been applied 

to solve UC problem.  

 

1.3. Why Grey Wolf Optimization Algorithm? 

The existing metaheuristic approaches find difficult to determine the proximity of the estimated 

solution to the optimal solution. Parameter selection plays a vital role in success of these techniques but it is a 

time consuming process as it requires complete knowledge about the algorithm. Recently, in the field of 

swarm intelligence computations, a new optimization algorithm, namely Grey Wolf Optimization (GWO) 

[50] has been developed. This is inspired by democratic behaviour and the hunting mechanism of gray 

wolves in the nature. In a pack, the wolves follow social leadership hierarchy. Seyedali Mirjalili et al., have 

proposed the GWO algorithm and the algorithm is inspected with standard test functions. It yields 

competitive solutions compared with other heuristic algorithms. The merits of the GWO are simple, easy 

implementation and require few parameters to adjust.  

 

1.4. Research Gap and Contribution 

Profuse literatures have been addressed thermal UC solution. Few research works has been carried 

in the field of UC considering wind power generation [26], [49], [51]. The integration of wind power 

increases further the non-linear solution space, hence determining the best feasible schedule has become 

crucial. Though, numerous soft computing techniques have been reported for the UC solution, improving 

their solution quality is still a interesting research task. The advantages of GWO against other population 

based algorithms motivate us to use it as the main optimization tool to solve the WGIUC problems. The real 

coded scheme is adopted in GWO algorithm in order to handle the operational constraints and is applied for 

the first time to solve WGIUC problems. 
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1.5. Paper Organization 

The remainder of the paper is organized as follows: Section 2 describes the UC problem and 

presents the mathematical formulation of the problem. In Section 3, implementation of GWO is presented. 

Section 4 details the numerical results and discussions. The performance analysis of the GWO algorithm is 

presented in section 5. Finally, Section 6 summarizes the conclusion. 

 

 

2. PROBLEM FORMULATION  

2.1. Objective Function 

The total cost, over the entire scheduling period is the sum of the running cost, start up cost and shut 

down cost of all the units [6]. Accordingly, the overall objective function of the UC problem is stated as: 

min  
 


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Generally, the fuel cost, Fi(Pi(t)) of unit i in any given time interval t is a function of the generator 

power output. The production cost of unit i can be approximated as a quadratic function of the real power 

outputs from the generating units and can be expressed as: 
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The generator start up cost depends on the time, the unit has been off prior to start up. In this work, 

time-dependent start up cost is used and is defined as follows: 
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The SD cost is usually given a constant value for each unit. In this paper, the SD cost has been taken 

equal to zero for each unit. The objective function, i.e., minimization of total cost Ft is subject to the system 

and generating unit constraints which are as follows: 

 

 2.2. System Constraint 

Power Balance Constraint: The total power generated by the combination of thermal and wind generating 

units must meet the load demand Pd(t) on hourly basis:  

 
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2.3. Unit Constraints 

The generating unit operational constraints [6], [21] are as follows: 

a) 
Generation Limits: The real power generation of each generator has a lower and upper limit, so that 

  

generation should lie within this boundary. This inequality is stated as follows: 

a. maxmin )( iii PtPP          (5) 

 

b. maxmin )( www PtPP          (6) 

b) Unit Minimum Up/Down Time Constraints: The inequality constraints of minimum up/down time 

limits of generating units is given by:  

a. 
off
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c) Up/Down Ramp Limits: The up and down ramp limits of the thermal units are given by, 

a. iiii URtPtPDR  )1()(        (8) 

 

d) Unit Initial Status: The initial status at the start of the scheduling period must be taken into account.  
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3. UNIT COMMITMENT BASED ON GWO 

The GWO algorithm has essential steps such as social hierarchy, encircling, hunting, attacking and 

search for prey. The implementation of GWO algorithm for solving UC problem is detailed in this section.  

3.1. Definition of Wolf and Initial Population  

In the integer coded GWO, each unit sequence of the operating mode (ON/OFF) cycle duration is 

indicated by a  sequence of integer  numbers  which represents the Wolf Position (WP) in the UC horizon. 

The duration of continuous ON and OFF state is indicated by positive and negative integers in WP. Based on 

number of load peaks during the UC horizon and the sum of the minimum up and down times of the unit, the 

number of a unit’s ON/OFF cycles is decided. For base, medium, and peak load units, the numbers of 

ON/OFF cycles are 2, 3, and 5 respectively. To overcome the restriction of search space for base and medium 

units due to reduction of cycles, the number of cycles of all units same as number of cycles peak load units 

are selected. For day scheduling (D), NC is equal to D × 5. Each solution contains N × D × 5 variables for D-

day scheduling. 

The initial population of the GWO is generated as follows: 

The running duration of the first cycle of unit i, Ti
1
is initialized by considering unit i operating state 

of the last cycle of the previous scheduling day to avoid violation of minimum up/down time constraints. 
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For c < NC, the operating period of the c
th

 cycle of unit i, 
c

iT is determined by taking into account of the 

minimum up and down time constraints of the generating units, the UC scheduling period and the operating 

period of the c -1 prior cycles of operation of the unit. 

For 01 c
iT , cycle c is in ON mode with duration 
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For 01 c
iT , cycle c is in OFF mode with duration  
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where 
1c

iBT corresponds to the scheduling time remaining after the allocation of the first c -1 cycles. 
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By taking into account the randomly generated cycle durations, the entire scheduling period is 

covered with the first c < NC operating cycles. The remaining cycles are filled with zero. Once initial 

population is determined, the unit minimum up and down-time constraints are satisfied automatically. 

 

3.2. GWO Execution for WGIUC 

In this section, the algorithmic steps of GWO for WGIUC are presented. The constraint handling 

schemes are also briefed:  

1. Read the system data and initialize GWO parameters such as population size (PS), maximum number of 

iterations (iter-max) and the vector value (a, A and C). 

2. Initialization 

a. The initial population (Xt) is generated as follows: 

a) The entire scheduling period is divided into number of cycles and is denoted by NC. 

b) All the units are committed based on their initial state conditions. 

c) The operating duration is determined by considering the minimum up and down time constraints. 
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d) This process is repeated for all NC-1 cycles and the remaining time is computed which is the operating 

duration of the last segment. 

e) Apply the constraint handling scheme to satisfy the operational constraints. 

f) The online generating units along with dependent units are identified within their operational limits. 

3. Compute the fitness of each individual, an individual having the minimum fitness is mimicked as the 

alpha, second minimum is beta and third mimimum is delta. 

 

a. Fitness = Ft + OCV         (13) 

 

b. Where: OCV is the Operational Constraint Violation and Xα, Xβ and Xγ are the best, second and third 

search agents respectively.  

4. iter = iter +1. 

5. Search agent, SAg= SAg+1. 

6. Modify the generation of N-1 online units based on the hunting mechanism. 

 

a.      
3

).().().( γ3γβ2βα1α1 DAXDAXDAX
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b. Where: Dα = |C1.Xα - X|; Dβ = |C2.Xβ - X|; Dγ = |C3.Xγ - X|; A= 2a.rand – a. 

 

7. Apply constraint handling strategy. 

8. Repeat step 5 for all search agents. Otherwise go to next step. 

9. Update the vector values of (a, A and C). 

10. Compute the fitness for all search agents. 

11. Update the values of Xα, Xβ and Xγ. 

12. Termination criterion. 

a. Repeat the procedure from steps 4 to 6, until the maximum number of iteration is reached. 

 

4.  SIMULATION RESULTS AND DISCUSSIONS 

The algorithm is developed in Matlab platform which is executed on a personal computer 

configured with Intel core i3 processor 2.20 GHz and 4 GB RAM. The performance of the GWO method is 

tested on the standard test system which consists of ten thermal generating units and one wind farm over a 

planning horizon of 24 hours. The generating unit data and load demands are adopted from [11]. The wind 

farm consists of 20 number of same model wind turbine generators which are operating in parallel. The wind 

power generation data [51] are provided in Table 1. They are calculated using forecasted wind power 

beforehand and converted into electrical power. The minimum and maximum output power of wind farm is 

15 MW and 100 MW respectively. The wind farm yields the minimum and maximum output of 15.01 MW at 

10
th

 hour and 98.559 MW at 16
th

 hour respectively. 

 

 

Table 1. Wind power generation data 

Interval (h) 1 2 3 4 5 6 

Wind power (MW) 42.602 35.409 60 17.193 20 31.309 

Interval (h) 7 8 9 10 11 12 

Wind power (MW) 40 32.802 21.784 15.01 24.383 27.058 

Interval (h) 13 14 15 16 17 18 

Wind power (MW) 41.233 50.478 80 98.559 72.194 49.655 

Interval (h) 19 20 21 22 23 24 

Wind power (MW) 36.44 57.185 64.243 85.541 70.677 61.298 

 

 

The simulation runs, for standard 10 unit system with the scheduling period of 24 hours. The 

maximum number of cycles for each unit is taken as 5. For each problem set, 50 test trials are made with 
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random initial population for each run. Multiple runs have been performed, to verify the robustness of the 

GWO in solving UC problem. The following two case studies have been conducted in order to show the 

effectiveness of GWO in solving UC problem. The Table 2 illustrates the configuration for final population 

to WGIUC problem using GWO. 

 

 

Table 2. Configuration for final population to WGIUC problem using GWO 

 Cycles 

Unit 1 2 3 4 5 

U1 24 0 
 

 

U2 24 0 

U3 -5 16 -3 

U4 -4 17 -3 

U5 -2 20 -2 

U6 -8 6 -5 4 -1 

U7 -8 6 -5 3 -2 

U8 -9 4 -6 1 -4 

U9 -10 2 -12 0 0 

U10 -11 1 -12 0 0 

 

 

4.1. UC Considering Ramp Rates 

In general, the amount of power generated by thermal units at each time period will not consider the 

dynamic of thermal units. But it is essential to include ramp rate constraints in large practical UC problem. 

These dynamic constraints enforce limitation on drastic change in thermal unit generation output in 

successive time interval. These make generation levels of two successive periods are interrelated. Thus ramp 

rate restricts the rate of increase or decrease of power generation of each unit considering the thermal and 

mechanical inertia of the thermal units. However, this reduces the search space for obtaining more and better 

feasible solutions.  

Table 3 demonstrates that the best, worst and average operating costs obtained by Iterative Linear 

Algorithm (ILA) [52], Quadratic Model (QM) [25], Semi-Definite Programming (SDP) [52], GSA, Teaching 

Learning Based Optimization (TLBO) algorithm [52], Quasi-Oppositional TLBO (QOTLBO) [52] and 

GWO. This illustrates the GWO can overcome the early convergence when compared with other 

optimization algorithms.  
 

 

Table 3. Statistical total operating cost result of 10 unit system with ramp rate constraints  

Methods Best Cost ($) Worst Cost ($) Mean Cost ($) 

ILA[52] 570396.4 NR NR 

QM[25] 570396.4 NR NR 

SDP[52] 564482 NR NR 

GSA[25] 564384 NR NR 

TLBO[52] 564402.9 564594.6 564497.4 

QOTLBO[52] 564394.0 564443.7 564405.3 

GWO  564006.63 564149.19 564098.59 

 

 

4.2. UC Integrated with Wind 

The wind becoming an increasingly common electric energy source. This introduces new technical 

and economical challenges to power system operators. This makes Wind Thermal Generating Scheduling 

(WTGS) problem plays a vital role in producing zero carbon emission power. The preparation of generating 

scheduling is a complex optimization problem that has to determine the optimal schedule of generating units 

within a power system subject to all prevailing constraints. Here the thermal units generating schedule is 

determined by using GWO algorithm.  
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Table 4 shows that the minimum up/down time limits and initial status of units are satisfied for all 

thermal generating units. U1 and U2 are committed for whole scheduling period, since their commitment 

priorities are high when compared to other thermal units. These units will operate as "Must-Run" units. The 

Table 4 illustrates the optimum UC schedule obtained by GWO and real power sharing of online generating 

units. The integration of wind farm with thermal generating units made the following changes in thermal unit 

scheduling when compared with [45]. The power generation of U2 is reduced significantly in the scheduling 

hour 1
st
 to 8

th
 , 15

th
 to 19

th 
and 21

th 
hour. Since the incremental fuel cost of this unit is high compared with 

U1. The considerably reduction of dispatch on U5 for the scheduling period hours 5 to 9, 13 to 15
 
and 18 to 

21. The lesser power dispatch can be realized on U6 during 10
th

, 11
th 

and 13
th 

hour. Similarly, the load 

dispatch by U8 is less at 12
th 

hour. These reduced dispatches by thermal units realize significant amount of 

fuel and cost savings. 

 

 

Table 4. Wind combined schedule of 10-unit system without ramp rate by GWO 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

Wind 

Generation  

(MW) 

Total 

PD  

(MW) 

Fuel 
Cost($) 

Startup 
Cost($) 

Total 
Cost($) 

1 455 202.39 0 0 0 0 0 0 0 0 42.602 700 12941.9 0 12941.9 
2 455 259.59 0 0 0 0 0 0 0 0 35.409 750 13937.23 0 13937.23 

3 455 310.00 0 0 25 0 0 0 0 0 60 850 15761.2 900 16661.2 
4 455 452.80 0 0 25 0 0 0 0 0 17.193 950 18259.83 0 18259.83 

5 455 370.00 0 130 25 0 0 0 0 0 20 1000 19670.11 560 20230.11 

6 455 328.69 130 130 25 0 0 0 0 0 31.309 1100 21839.97 1100 22939.97 
7 455 370.00 130 130 25 0 0 0 0 0 40 1150 22561.92 0 22561.92 

8 455 427.19 130 130 25 0 0 0 0 0 32.802 1200 23563.29 0 23563.29 

9 455 455 130 130 63.21 20 25 0 0 0 21.784 1300 26809.08 860 27669.08 
10 455 455 130 130 159.99 20 25 10 0 0 15.01 1400 29721.11 60 29781.11 

11 455 455 130 130 162 48.61 25 10 10 0 24.383 1450 31352.2 60 31412.2 

12 455 455 130 130 162 80 25 15.94 10 10 27.058 1500 33182.25 60 33242.25 
13 455 455 130 130 133.76 20 25 10 0 0 41.233 1400 29173.86 0 29173.86 

14 455 455 130 130 34.52 20 25 0 0 0 50.478 1300 26232.64 0 26232.64 

15 455 380.00 130 130 25 0 0 0 0 0 80 1200 22736.84 0 22736.84 
16 455 211.46 130 130 25 0 0 0 0 0 98.559 1050 19796.95 0 19796.95 

17 455 187.80 130 130 25 0 0 0 0 0 72.194 1000 19385.74 0 19385.74 

18 455 310.34 130 130 25 0 0 0 0 0 49.655 1100 21519.69 0 21519.69 
19 455 423.56 130 130 25 0 0 0 0 0 36.44 1200 23499.54 0 23499.54 

20 455 455 130 130 117.81 20 25 10 0 0 57.185 1400 28843.63 490 29333.63 

21 455 450.75 130 130 25 20 25 0 0 0 64.243 1300 25968.37 0 25968.37 
22 455 455 0 0 59.45 20 25 0 0 0 85.541 1100 20980.77 0 20980.77 

23 455 354.32 0 0 0 20 0 0 0 0 70.677 900 16408.41 0 16408.41 

24 455 283.70 0 0 0 0 0 0 0 0 61.298 800 14357.45 0 14357.45 

Total Cost ($) 538504.00   4090.00 542594.00 

 

 

By observing Table 4, it can be concluded that the generated power for each hour by thermal 

generating units (U1-U10) along with wind power plants is equivalent to the power demand Pd(t). The 

generation limits are also satisfied in this case study. The fuel, start up and total costs obtained in this case are 

$538504.00, $4090.00 and $542594.00 respectively. 

 

4.3. Ramp Rate Constrained WGIUC  
To verify the efficiency and superiority of the GWO algorithm, the ramp rate is considered for the 

same test system over 24 hour horizon. When the ramp rate constraints are included, it has been assumed that 

the value of DR and UR of each unit is same [53]. The ramp rate limits of each unit are presented in the Table 

5. Referring Tables 4 and 7, the real power output of U2 is increased in the 16
th

 interval due to inclusion of 

ramp rate limits. The generation reallocation among online units is required that leads to slight increase in 

fuel cost hence raise in the total operating cost for the planning horizon. It is also observed from Tables 4 and 

7, that no change in scheduling of committed units. However the dispatches of on-line thermal units are 

changed because of ramp rate constraints. The obtained UC schedule and real power sharing of online 

generating units for standard 10 unit system considering ramp rate limits are presented in the Table 7. The 

wind generating units along with thermal units meet the power demand in each interval. The obtained fuel, 

start up and total costs are $538509.10, $4090.00 and $542599.10 respectively. 

The total operating hours of all thermal units for both cases are listed in Table 6. It is observed that 

the units with higher commitment priorities have longer operating hours in the planning horizon except U6 

and U7.  
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Table 5. Ramp rate limits of thermal generating units 

Unit Up/Down ramp rate (MW/hr) Unit Up/Down ramp rate (MW/hr) 

U1 160 U6 60 

U2 160 U7 60 

U3 100 U8 40 

U4 100 U9 40 

U5 100 U10 40 

 

 

Table 6. Total operating hours of thermal units  

Unit Operating hours Unit Operating hours 

U1 24 U6 10 

U2 24 U7 9 

U3 16 U8 5 

U4 17 U9 2 

U5 20 U10 1 

 

 

Table 7. Wind combined schedule of 10-unit system with ramp rate by GWO 

 

 

5.  PERFORMANCE ANALYSIS 

5.1. Solution Quality 

The numerical values presented in Tables 3, 4 and 7 show that GWO algorithm yields the optimal 

scheduling of thermal units compared with earlier reported algorithms. The statistical analysis is carried out 

and presented in Table 3 for standard 10 unit system with ramp rate constraint. It can be concluded from 

Table 3, the best, worst and mean cost obtained by the GWO are significantly less compared with other 

existing methods. The mean cost of generation is better for optimal scheduling problems, it means GWO had 

an ability of reaching global minimum in consistent manner. GWO method exhibits excellent performance in 

finding the better solution. 

 

5.2. Robustness 

In case of stochastic simulation techniques like GWO, the initial population is generated using 

random numbers. This makes randomness is inherent property of GWO. Hence the performance should be 

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

Wind 

Generation 

(MW) 

Total 

PD 

(MW) 

Fuel 

Cost($) 

Startup 

Cost($) 

Total 

Cost($) 

1 455 202.38 0 0 0 0 0 0 0 0 42.602 700 12941.74 0 12941.74 

2 455 259.58 0 0 0 0 0 0 0 0 35.409 750 13937.16 0 13937.16 

3 455 310.00 0 0 25 0 0 0 0 0 60 850 15761.28 900 16661.28 

4 455 452.81 0 0 25 0 0 0 0 0 17.193 950 18259.99 0 18259.99 

5 455 370.00 0 130 25 0 0 0 0 0 20 1000 19670.23 560 20230.23 

6 455 328.69 130 130 25 0 0 0 0 0 31.309 1100 21840.11 1100 22940.11 

7 455 370.00 130 130 25 0 0 0 0 0 40 1150 22562.01 0 22562.01 

8 455 427.20 130 130 25 0 0 0 0 0 32.802 1200 23563.39 0 23563.39 

9 455 455 130 130 63.22 20 25 0 0 0 21.784 1300 26809.26 860 27669.26 

10 455 455 130 130 159.99 20.61 25 10 0 0 15.01 1400 29721.3 60 29781.3 

11 455 455 130 130 162 48.62 25 10 10 0 24.383 1450 31352.41 60 31412.41 

12 455 455 130 130 162 80 25 15.95 10 10 27.058 1500 33182.49 60 33242.49 

13 455 455 130 130 133.77 20 25 10 0 0 41.233 1400 29174.04 0 29174.04 

14 455 455 130 130 34.53 20 25 0 0 0 50.478 1300 26232.83 0 26232.83 

15 455 380.00 130 130 25 0 0 0 0 0 80 1200 22736.93 0 22736.93 

16 455 220.00 121.46 130 25 0 0 0 0 0 98.559 1050 19799.59 0 19799.59 

17 455 187.81 130 130 25 0 0 0 0 0 72.194 1000 19385.83 0 19385.83 

18 455 310.35 130 130 25 0 0 0 0 0 49.655 1100 21519.77 0 21519.77 

19 455 423.56 130 130 25 0 0 0 0 0 36.44 1200 23499.63 0 23499.63 

20 455 455 130 130 117.82 20 25 10 0 0 57.185 1400 28843.82 490 29333.82 

21 455 450.76 130 130 25 20 25 0 0 0 64.243 1300 25968.48 0 25968.48 

22 455 455 0 0 59.46 20 25 0 0 0 85.541 1100 20980.96 0 20980.96 

23 455 354.32 0 0 0 20 0 0 0 0 70.677 900 16408.48 0 16408.48 

24 455 283.69 0 0 0 0 0 0 0 0 61.298 800 14357.37 0 14357.37 

Total Cost ($) 538509.10 4090.00 542599.10 
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ascertained by number of trails. Several trails have been carried out to find the optimal solution. Since UC is 

a real time problem, it is expected that each run of the execution should approach near to global optimum 

solution. To ascertain the robustness of GWO, 50 number of trails are made to determine the optimal 

scheduling. Figures 1 and 2 that clearly illustrates that GWO algorithm has significant robustness compared 

with other reported algorithms.  

 

 

 
 

Figure 1. Robustness characteristics of 10 unit test 

system without ramp rate 
Figure 2. Robustness characteristics of 10 unit test 

system with ramp rate 
 

 
5.3. Success Rate 

It is the indication that in how many trails the obtained total cost is less than the mean cost. In both 

cases, the success rate of GWO is greater than 85%. It is also noticed that the difference between the mean 

and worst cost is less. It can be inferred that GWO algorithm has good success rate and robustness compared 

with other existing algorithm.  

 

 

6.  CONCLUSION 

This paper presents a novel swarm intelligence approach known as GWO to solve the WGIUC 

problem. The objective function is the sum of the objectives and constraints, which are fuel cost, start-up cost 

and power demand. The up and down ramp constraints are also satisfied for each unit. The numerical results 

for standard ten unit system are validated using GWO algorithm. The incorporation of ramp rate constraints 

with above system also presented. It is clear from the results that the intended scheme not only yields 

monetary benefit and also the fuel consumption and emission of thermal generating units are reduced 

significantly. The implementation of GWO is easy and it handled the operational constraints successfully. 

GWO consistently find optimum solution for WGIUC problem. Results reveal that GWO is a competent 

method to solve the WGIUC problem. Further GWO can be extended to long term, reliability and security 

constrained thermal power scheduling problems along with wind energy.  
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