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In this paper, we present an extensive analysis of the performance degradation in MOS-
FET based circuits. The physical effects that we consider are the random dopant fluctua-
tion (RDF), the oxide thickness fluctuation (OTF) and the Hot-carrier-Instability (HCI). The

work that we propose is based on two main key points: First, the performance degradation
is studied considering BULK, Silicon-On-Insulator (SOI) and Double Gate (DG) MOSFET
Keyword: technologies. The analysis considers technology nodes from 45nm to 11nm. For the HCI ef-
fect we consider also the time-dependent evolution of the parameters of the circuit. Second,
the analysis is performed from transistor level to gate level. Models are used to evaluate the
variation of transistors key parameters, and how these variation affects performance at gate
level as well.The work here presented was obtained using TAMTAMS Web, an open and
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1. INTRODUCTION

The MOSFET transistor has proven to be a very robust device. As testified by the ITRS Roadmap [1], its
size has been reduced from micrometers to nanometers over the course of the last four decades. The extraordinary
development of electronics is due mainly to this continuous physical scaling. Nowadays commercial devices employs
transistors that have a size of few tenth of nanometers [2]. A single chip can house billions of transistors [3]. Scaling at
such a fast pace eventually leads to increased variability and reliability issues, that pose a unique challenge for circuit
lifetime estimation [4].

1.1. State of the art analysis

Variations can be categorized into two main types, depending on their source of origin; process- induced
variation and intrinsic fluctuations [5]. Intrinsic variability and reliability such as Oxide Thickness Fluctuation (OTF)
and Random Dopant Fluctuation (RDF), are induced by charges and geometrical fluctuations at atomic scale level.
These variations and reliability issues are unique to device structure and their effects may be different for different
CMOS devices. On the other hand, process-induced variations are caused by defects during silicon fabrication, which
may be particular to a process in a foundry. In addition, transistor performance not only depends upon static process
variations, but transistors parameters also start to degrade over time. This individual device degradation, named aging,
affects the circuit performance metrics over a period of time. These effects are, as an example, Negative Bias Temper-
ature Instability (NBTI), Hot-carrier-Instability (HCI) and Time Dependent Dielectric Breakdown (TDDB) [6][7][8].
Such performance limiting mechanisms are being investigated since three decades, but they are more pronounced in
the nano-scale regime now and are inevitable for design consideration as the equivalent oxide thickness scales down
as low as 5 Angstrom in the future [9]. These intrinsic variations and aging parameters are limited by fundamental
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device physics, making it one of the ultimate bottleneck for CMOS design process and continual technology scaling.
As the device size approaches to atomic dimensions,the intrinsic variability and reliability considerations have become
integral part of CMOS circuit design by the technologists. The most notable change that these effects have on a tran-
sistor is a shift in the value of threshold voltage (V) and mobility (1). As a consequence, reliability issues leads to
performance degradation and eventually to the failure of devices. While the effects of variations on a single transistor
are well known and studied, it is more difficult to understand their impact at logic gate level. In [10] a reliability
analysis was performed on a static RAM memory.

Transistor with planar and simpler structures have been extensively studied over the past decades. Reliability
analysis of complex structures and advances devices has also been presented in literature. For example, the work
presented in [11] focuses on junctionless Fet transistors, while in [12] authors analyze sub-20 nm asymmetric DG
devices. In [13] Shashi Kant Dargar performed degradation analysis of GaN Based Thin Film Transistors. Finally,
given that many technologies are currently studied as possible MOSFET replacement, reliability analysis has been
conducted also on emerging technologies. For example in [14] authors studies effect of device variables on surface
potential and threshold voltage in Double gate graphene FET (DG-GNRFET). Instead in [15] authors focus on carbon
nanotube FETs.

1.2. Motivation of the work

The aim of this paper is to analyze in a coherent way the impact of reliability on the transistor’s performance.
Particularly, we are interested to analyze the performance degradation due to the Oxide Thickness Fluctuation (OTF),
Random Dopant Fluctuation (RDF) and Hot-carrier-Instability (HCI). The novelty of our approach is that we consider
and evaluate the effect of these issues starting from the transistor level up to gate level together.

e The E. Maricau [7] and Yu Cao [4][9] models are used for the Oxide Thickness Fluctuation (OTF), Random
Dopant Fluctuation (RDF) and Hot-carrier-Instability (HCI), to evaluate the variation of threshold voltage (V)
and mobility (). The consequent change in the drive current (I,,,) are evaluated.

e The variation of V,, p and I,, has been analyzed considering three different types of MOSFETs: BULK,
Silicon-On-Insulator (SOI) and Double Gate (DG) considering the technology scaling. Technology nodes from
45nm to 11nm are studied.

e For the HCI effect [7][9], both the trend with technology scaling and the time-dependent evolution are studied.

e A model to estimate the performance of standard logic gates, both in terms of timing and dynamic power, was
developed. The model takes into account the variation of the parameters of transistors, therefore it is possible to
evaluate the impact of reliability at logic gate level.

e Using a NAND gate as a testbench, the variation of timing and dynamic power considering both the technology
scaling and the time dependent analysis (for the HCI effect) are carried on. The analysis is repeated for all the
three types of transistors.

2. SIMULATION TOOL

Among the performance estimation tools, MASTAR is the best-known [16]. It is used by the International
Roadmap for Semiconductors [1] to forecast future transistors performance. Unfortunately, MASTAR limits the anal-
ysis at the device level. To explore system level parameters, another tool named BACPAC [17] can be used. It includes
a large set of analytical models to estimate and predict the performance of future VLSI circuits. However, both these
tools present some limitations. They are restricted to one abstraction level, that can be the device, the gate or system
level. Moreover, they are focused on MOSFET technology and do not consider emerging devices. To overcome these
limitations and enable the performance estimation of electronic circuits from device to system level, we developed
TAMTAMS (Torino Assessment of Mos Technology and Advanced perforMance of System Calculator). TAMTAMS
is a web-based tool, presented in [18], that combines the device level analysis available in MASTAR with the system
level analysis provided by BACPAC. TAMTAMS is developed by the VLSI group at Politecnico di Torino and it is
constantly evolving. Currently, it is used as teaching tool in the master level course Integrated System Technology for
the Electronics Engineering Master degree held at Politecnico di Torino.
TAMTAMS includes many models and technologies. Its flexibility and modularity eases the extension of new modules
and new technologies. At the time of writing, CMOS technology is fully supported. It includes BULK, SOI and double
gate (DG) devices. Within digital electronic circuits, three abstraction level can be identified: i) device level, ii) gate
level, iii) system level. The TAMTAMS structure is summarized in Fig. 1. It is built considering this three-layered
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Figure 1. TAMTAMS analysis flow. Three kind of analysis are possible: device level, gate level and system level.
Device and system level parameters are used according to the kind of investigation selected by the user. Computed
results are reported in a textual or graphical form.

structure. In the lowest level of abstraction, device level models can be found. To this category belong threshold
voltage, mobility and current models. Implemented models are specific for the selected technology (BULK, SOI,
DG). The physical characteristics of a transistor, such as gate length, the gate oxide thickness, etc.., are grouped in the
device parameters. Moving to a higher level of abstraction, a gate level analysis can be executed. Here NAND/AND,
Flip-Flop models are available. The analysis starts from device level modules, whose results are used by gate level
models.

System level analysis is based on a set of technology independent parameters. They can be the total number of tran-
sistors, the percentage of memory and logic within a digital circuit. Another important feature is that TAMTAMS
automatically solves and keep track of all the module dependencies. According to the analysis selected by the user,
the dependency tree is analyzed and the proper models are solved. Computed results are reported in a textual or graph-
ical form. Thus, data can also be post-processed by using external tools.

In addition, TAMTAMS supports parametric analysis, i.e. device or system level parameters can be varied to under-
stand their impact at different abstraction levels. Indeed, this approach has been exploited in paper to analyze the
effect of threshold voltage degradation with time.

3. TRANSISTOR PERFORMANCE DEGRADATION
3.1. Description of Models

This work focuses on the prediction of performance degradation as the technology scales down, both at
transistor level as well at circuit level. Predictive technology models for reliability aware transistor to circuit design
analysis were considered. The models are scalable with wide range of technologies and process variations [7][4][9].
Variation in threshold voltage V;;, and carrier mobility u at device level provides the basis for the performance degra-
dation analysis at circuit level. In the next sections, static and time-dependent models are described before presenting
the obtained results.

3.1.1. Static variability model

The primary intrinsic variations are Random Dopant Fluctuation (RDF) and Oxide Thickness Fluctuation
(OTF).

The RDF phenomena arises due to variation of impurity concentration during ion implantation process. RDF
is more pronounced in smaller transistors as the technology scales down. Because of lower doping concentration,
addition or deletion of a few impurity atoms can significantly change transistor properties, especially the V;;,. The
physics based model, as stated in [4] is given by:

q Ncthep
A = 1.2 1
Vin(rRDF) oV T3WL X (D

where W, L, Ncp,, Wep are the channel width, channel length, channel doping and depletion width, respectively. A
more explicit expression is obtained by expanding the W), term and ignoring other second order terms. Equation 1
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becomes:
1/4
tome 25 iNc
AVinrpry) = Ch \/3(112[/7L€7 <th> )

where C'; is a fitting parameter accounting for surface potential. The other parameters, tyyc, €55, o and g are the
equivalent oxide thickness, permittivity of silicon, permittivity of the oxide layer, and elementary charge, respectively.
The above equation suggests that RDF induced variation is directly proportional to t,,. and Ncho‘25.

The OTF phenomena arises due to surface roughness between silicon and gate oxide interface at atomistic
level. As Vy, is directly proportional to gate oxide thickness 75,,, any fluctuation in oxide thickness leads to change
in V;;,. This effect is even more highlighted when the gate oxide thickness approaches atomic dimensions [4]. The
threshold voltage variation due to oxide thickness fluctuation can be expressed as:

VaNenesig A
Eox 2W L

AVinorry = Cy AH, 3)

where Cy is the only fitting parameter. AH represents the minimum possible magnitude of OTF, that is the height of
one silicon atom layer which is equal to 2.71 A. The correlation length )\ of OTF typically ranges between 1-3nm, as
reported in [4].

3.1.2. Time-dependent reliability model

As mentioned, many effects can degrade the device performance over time. In the following, the Hot-Carrier-
Instability (HCI) aging mechanism and its corresponding model are described. HCI manifests itself as an increase in
the threshold voltage V};, and carrier mobility p, especially for the NMOS transistor [9][6][7]. The HCI model is
based on the classical Reaction-Diffusion (R-D) model [6]. HCI mechanism can be physically described as generation
of charges at the Si — SiO5 interface. HCI model shows power law dependence with time ¢. As reported in [7][9],
analytical model for shift in V;; and p as a function of stress, operating condition and device parameters can be
expressed as:

nmt 1
AV;h(HCI) = A[(Vqs _ Vth)Kv]nm-&-l/nm (T) o @
where

o ox _¢t _Ea o Vds - Vdsat o 0.33 0.5
K'U _exp( EO )el.p(qAEm)( KT )7 m l ’l _0’2(TOI) (XJ) )

Le Esa VS_V S_V ox KT

Vdsat: 1 t( N th) 7EOI:M7COI:L7‘/;:7'

LeffEsat + (Vgs - ‘/th) Tow Tow q

The increase in concentration of interface charge NN;; also result in increase of mobility x. The mobility degradation
is given by:
pref f

=l 4=5 =16 5

Default values of the technology independent model coefficients as stated in [7][9] are shown in Table 1.

Table 1. HCI Model parameters

A 1.5e-5 vsat (m/s) | le5

N 1.21 D, (eV) 3.7
q(©C) 1.6e-19 | Ep (V/im) | 0.71e8
A(m) | 7.8e-9 e (V) 0.95

E, -0.06 K (J/k) 1.38e-23

where n,, Ey, E, and A are process parameters, ¢;; is the critical electron energy for generating an interface
trap, F,, is maximum channel electric field which occurs at the drain end of the channel, [ is the pinch off length, ) is
hot electrons mean free path, E,, is electrical field across oxide, V; is the thermal voltage at room temperature and ¢
is stress time given in seconds [7] [9]. These performance degradation models have been integrated in TAMTAMS.
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Figure 2. Trend of V4, , p and I, degradation on BULK, SOI and DG device scaling. A) Thresold voltage, D)
Mobility and G) Drive current percentage degradation for BULK technology. B) Thresold voltage, E) Mobility and
H) Drive current percentage degradation for SOI technology. C) Thresold voltage, F) Mobility and I) Drive current
percentage degradation for DG technology. For each case, the variation considering HCI, OTF and RDF are reported
alongside to the combined effect of all these contributions together.
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Figure 3. a)First Row: HCI induced performance degradation vs stress time for LOP 20 nm node for 3 different
technologies. A) Threshold voltage, B) Mobility and C) Drive current percentage degradation. 3. b) Second Row:
NAND?2 gate time delay and dynamic power percentage degradation as a function of stress time ’t’ for LOP 20 nm
BULK, SOI and DG technologies. A) Delay variation. B) Dynamic power variation.
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3.2. Results (Device level)

In this section we discuss and analyze the performance degradation at device level relating to three different
types of technologies, i.e. BULK, SOI and DG. The choice of different technologies not only contribute to different
structures but also follow their scaling trend, e.g. the first node of LOP BULK technology analyzed is 45 nm and last
node of LOP DG technology scales down to 11 nm. Two kind of analysis are considered: First analysis considers
technology scaling across multiple types of transistors and nodes. Second one is a parametric analysis that focuses on
one technology node and studies the variation in transistor’s parameters like V4, , i and I,,,, with time.

Fig. 2 shows the scaling trend for OTF, RDF and HCI induced degradation for Low operating Power (LOP)
BULK, SOI and DG transistor technologies. It is to be noted that both static and dynamic models are analyzed together,
because according to Alam [19] spatial and dynamic variations should be considered within the same framework. In
Fig. 2, technologies are listed column-wise with BULK technology in Fig. 2.A-D-G, SOI in Fig. 2.B-E-H and DG
in Fig. 2.C-F-I. The shift in V;; , p and I, are plotted in rows with V;; in the first row, p in the second row and
I,y third row. All variations are shown in relative units (%) and represent how much each quantity (V;, @ and
1,,,) varies comparing to their nominal values. For each case, the variation considering HCI, OTF and RDF are
reported alongside the combined effect of all these contributions together. The larger picture bring in some interesting
observations. Relative variations are maximum for BULK technology nodes. As expected, the scaling trend increases
within the framework of same technology for all the three types of devices. Considering static models, RDF remains
the major source of V;;,, p and I, variability, as indicated by [4], with maximum V}; relative increase recorded as
12% for first node , i.e. LOP BULK 45 nm node (Fig. 2A), and maximum relative decrease in x4 and I,,, recorded
as 9% for the last node, i.e. LOP 11nm DG technology node (Fig. 2F and 2I). Considering time-dependent model,it
is interesting to note that HCI induced degradation is larger for SOI devices than DG. The reason is, in DG case the
carriers flow close to the center of the device where the potential fluctuations introduced by the trapped charges are
relatively small, resulting in a lower variability compared the SOI device where the transport occurs close to the top
interface and device is more affected by potential fluctuations [20].

Fig. 3.a) depicts the variations of V;j, p and I, at room temperature with increasing time. Fig. 3.a) shows
HCI induced time-dependent variations Vyp, p and I, remains below 1% for all the nodes under consideration, for
a period of 10? stress seconds. It can be seen in Fig. 3.a) that as the devices are exposed to longer period of stress
time ¢, , from 103 to 10° the degradation becomes more severe. Fig. 3.a) shows the performance degradation as
function of stress time ¢, considering LOP 20 nm as reference node for all the three technologies. BULK devices are
more affected as compare to the other two. For BULK, degradation in V;;, is 0.5% at t, = 103, it increases to 2% at
ts = 10%, and it reaches 6.35% at t, = 10° (Fig. 3a.A). Similarly, maximum degradation in V};, of 6.04% and 4.63%
are recorded for SOI and DG technology respectively at t, = 10° (Fig. 3a.A). According to Alam [19], time-induced
variation can be larger than the nominal degradation by more than 34% in 3 years lifetime. It has been observed that
nominal shift remains near constant throughout different technologies. This is mainly due to relaxed oxide scaling but
relative magnitude of V};, variation increases with technology scaling.

4. FROM DEVICE LEVEL TO GATE LEVEL

After detailed analysis of degradation of performance metrics at device level arising from intrinsic fluctuation
and charge trapping, we have observed how the primary performance parameters like V;; and p are affected. In the
following, we consider their impact at gate level.

4.1. Description of NAND gate model

Reliability aware gate level analysis is interesting in a way that NAND gate is considered as universal building
block for all high level CMOS circuits. Since the threshold voltage directly affects the delay of a digital gate, the
operating frequency of the gate degrades, which in-turn affect the dynamic power consumption [21]. Mathematically
putting:

T = f(Vip), Frequency, F = 1/7, Dynamic Power, Py, = f(F).

The delay analysis of the NAND gate is implemented exploiting the Elmore Delay model [22], considering
its easy implementation and optimistic results. Here, the shift in V};, is translated into an increase in resistance that
affects the time delay. On the other hand, the dynamic power consumption for NAND?2 gate is estimated considering
the probabilistic model that can be expressed as:

1
Dynamic Power, Pay, = 3 fCavy W],

A Unified Approach for Performance Degradation Analysis from ... (Izhar Hussain)
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Figure 4. NAND?2 gate time delay and dynamic power percentage variation trend with BULK, SOI and DG scaling. A)
and D) depicts respectively delay and dynamic power variation for BULK technology. B) and E) depicts respectively
delay and dynamic power variation for SOI technology. C) and F) depicts respectively delay and dynamic power
variation for DG technology.

where « is the switching activity, f is the frequency and C is the total capacitance. In order to get simplified analysis,
two assumptions were made: i) The input probability is always considered as 0.5 . ii) The computation of the switching
activity for every single node is based on a probabilistic model. Further details on the model are not reported for space
reasons. Considering reliability degradation, we assume all other parameters in above equation are unaffected by shift
in Vyy,; thus Py, becomes the function of frequency only. The frequency change [AF/F] in a circuit is measured
as a direct measure of the degradation, which is proportional to V;;, change under HCI [21].

4.2. Results (Gate level)

Fig. 4 shows degradation scaling trend of time delay and dynamic power for 2-input NAND gate. Gate
delay increases due to the variation, while maximum dynamic power decrease accordingly. It is possible to observe
a projection of the results analyzed at device level. BULK transistor based NAND gate is more exposed to static and
dynamic degradation when compared to the other technologies (see Fig. 4.A and Fig. 4.D). The change in V;;, directly
affects the time delay in a digital gate [21], so the effect is more monotonic with the trend of V}; degradation scaling
plots. Dynamic power degradation trend is similar to the delay, because dynamic power depends upon the operating
frequency which is the inverse of critical path delay. As at device level analysis, RDF is contributing the major part
of total degradation. In Fig. 4, it is interesting to see that HCI induced degradation is higher for SOI technology [20],
with maximum time delay and dynamic power degradation reported as 5.3 % and 5.11 % respectively for LOP 18 nm
node at stress time ¢, = 103 (Fig. 4B and 4E), as compared to [0.56%, 0.56%] for same LOP 18 nm DG technology
(Fig.4C and 4E). This shows, how the relative degradation is affected not only due to scaling of transistors, but with
device structure as well [20].

Temporal shift of gate level performance degradation parameters are shown in Fig. 3b.A) (delay) and Fig. 3b.B)
(maximum dynamic power). Degradation in dynamic power is the replication of time delay plots as expected, with
the former plotted as % decrease. HCI induced degradation increases with increase in stress time, validating the ac-
curacy of integrated modules. Maximum relative variation estimated for time delay is 5.5 % for 20 nm LOP BULK
technology as compared to 5 and 4.3 % for SOI and DG technologies (Fig. 3.bA). In order to mitigate the impact of
HCI induced variations at gate level, V4 tuning and PMOS sizing are the most effective techniques. The authors in
[23] shows that as much as 12 % oversizing of gate is needed across five years of operations.

5. CONCLUSIONS
In this paper we have presented a detailed analysis of MOSFET performance degradation considering the
effects of Oxide Thickness Fluctuation (OTF), Random Dopant Fluctuation (RDF) and Hot-carrier-Instability (HCI).
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The work here described is unique in its genre because it does a coherent analysis from transistor to circuit level. The
analysis is carried on considering several types of transistor, considering the technology scaling and for the HCI effect,
considering also the time evolution. The work was carried on under the TAMTAMS framework, an open tool designed
to help researchers and student to understand technologies based on transistors.

As a future work, we are extending our analysis to system level by introducing digital circuits like adders,
multipliers,FPGA, ALU , FIR filter models and different other chip layouts in the analysis as well. Secondly, additional
effects that degrades the performance of transistors, like NBTI and electromigration would be interesting to analyze.
We are also adding more models to the tool and more technologies, extending the analysis to emerging technologies
and Post-Si devices.
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