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ABSTRACT

A robot may need to use a tool to solve a complex problem. Currently, tool use must be
pre-programmed by a human. However, this is a difficult task and can be helped if the robot
is able to learn how to use a tool by itself. Most of the work in tool use learning by a robot is
done using a feature-based representation. Despite many successful results, this representa-
tion is limited in the types of tools and tasks that can be handled. Furthermore, the complex
relationship between a tool and other world objects cannot be captured easily. Relational
learning methods have been proposed to overcome these weaknesses [1, 2]. However, they
have only been evaluated in a sensor-less simulation to avoid the complexities and uncer-
tainties of the real world. We present a real world implementation of a relational tool use
learning system for a robot. In our experiment, a robot requires around ten examples to learn
to use a hook-like tool to pull a cube from a narrow tube.
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1. INTRODUCTION
Humans use tools to help them complete everyday tasks. The ability to use tools is a feature of humans

intelligence [3]. Like humans, a robot also needs to be able to use a tool to solve a complex task. As an example, in the
RoboCup@Home competition, a robot is asked to demonstrate several tool use abilities such as opening a bottle by
using a bottle opener or watering a plant with a watering can [4]. The robot is given complete knowledge of the tools
and how to use them. When such knowledge is not available, a robot must learn it. Most work in tool use learning has
used a feature-based representation that is dependent on an object’s primitive features. Thus, it is not flexible enough
to be applied to different tools and environments. Learning is also limited to tool selection only. Brown proposed a
relational approach which can overcome these limitations. Furthermore, Wicaksono & Sammut ([5]) have suggested
that this representation has potential to solve a more complex problem, such as tool creation.

We define a tool as an object that is deliberately employed by an agent to help it achieve a goal, which would
be too difficult to achieve without the tool. We want to learn a tool action model that explains changes in the properties
of one or more objects affected by the tool, given that certain preconditions are met. Following Brown [1], learning
is performed by trial and error in an Inductive Logic Programming (ILP) setting [6]. Brown [1] carried out tool use
learning in a sensor-less simulation. This means that a robot has perfect knowledge of the world and uncertainties in
the sensors’ readings are eliminated. In this paper, we would present a complete robotic system for tool use learning
following a relational learning approach. This includes three components:

1. Developing a robot software architecture that consists of primitive and abstract layers and facilitates communi-
cation between them.

2. Creating a mechanism to detect objects and generating primitive behaviors for tool use.

3. Extending relational learning methods and conducting tool use learning experiments using a real robot.

In the following sections, we describe relevant previous work, the knowledge representation formalism used,
the software architecture, and the tool use learning mechanism. Finally, we perform several real world experiments
and draw conclusions.
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2. RELATED WORK
An intelligent robot is identified by its ability to make a decision and learn autonomously in an unstructured

environment. Machine learning techniques could be useful as they can compensate for the imperfect model of a robot
in a real world. For example, control of a robot manipulator can be improved by equipping a PD torque controller
with Adaptive Neuro-Fuzzy Inference System [7] or combining sliding mode control with genetic algorithm [8]. In a
behavior-based robotics approach, reinforcement learning can be used to learn the robot’s behavior [9].

Here we describe the previous work in tool use learning by a robot. Wood et al. [10] use a neural network to
learn appropriate posture of a Sony Aibo robot so it can reach an object by using a tool placed on its back. Stoytchev
[11] learns to select a correct tool via its affordances which are grounded in robot behaviors. However, its result can
not be generalized to other new tools. More recent work by Tikhanoff et al. [12]) combine exploratory behaviors and a
geometrical feature extraction to learn affordances and tool use. Mar et al. [13] extend their work by learning a grasp
configuration which influences the outcome of a tool use action.

The limitations of feature-based representations were mentioned above. Only recently have such representa-
tions been extended so that a robot can learn to grasp a tool [13]. An ILP system can overcome these limitations, as
it represents the tools and other objects in a relational representation [1, 2]. However, previous work has been done
previously in sensor-less simulation only. This means the complexities of acquiring perceptions, generating precise
movements, and dealing with world uncertainties, are avoided. We aim to develop a complete robotic system that
facilitates this learning in a real world.

3. REPRESENTING STATES AND ACTIONS
We maintain two representations of states and actions in primitive and abstract form. Primitive states are the

positions of all objects in the world that are captured by vision sensors using a mechanism described in section 4.2..
As we only use simple objects, they can be detected by their two-dimensional appearance only.

Abstract states are represented as expressions in first-order logic, to be more specific as Horn clauses. Primi-
tive states are translated to an abstract state by calling relevant Prolog programs with the primitive states as their bound
values. To be classified as a tool, an object must possess particular structural properties (e.g. a particular side where
a hook is attached to the handle) and spatial properties (e.g. a hook is touching the back side of a cube). We collect
these properties in a hypothesis, namely tool pose, which is shown below in simplified form.

t o o l p o s e ( Handle , Hook , Box , Tube ):−
a t t a c h e d e n d ( Handle , Hook , back ) , % a s t r u c t u r a l p r o p e r t y
a t t a c h e d s i d e ( Handle , Hook , S ide ) , % a s t r u c t u r a l p r o p e r t y
t o u c h i n g ( Hook , Box , back ) . % a s p a t i a l p r o p e r t y

We use an extended STRIPS action model [14] to describe an abstract action and how it affects the world. A
primitive goal that has to be achieved by a robot is added at the end of the model.

Action name
PRE : states that must be true so that an action can be performed
ADD : conditions that become true as a result of the action
DELETE : conditions that are no longer true following the action
CONSTRAINTS : the physical limits of actuators that constrain the action

This action model is also a planning operator. Thus, action learning does not happen in isolation, as it is a part of a
problem solving scenario. Every abstract action is linked to a set of primitive behaviors. This will be discussed later
in section 4.3.

4. ROBOTIC SYSTEM
In this section, we explain our software architecture, objects detection method, and behavior generation

mechanism.

4.1. Software Architecture

We use a relational representation in the high-level layer to take advantage of the expressiveness of first-order
logic (FOL) clauses, especially Horn clauses, and equip a robot with useful symbolic techniques. We implement this
layer in SWI Prolog. Most modern Prolog implementations, including SWI, incorporate a constraint solver which
provide advanced numerical reasoning capabilities.
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1232 ISSN: 2088-8708

In the low-level layer, a robot operates in a world of continuous, noisy and uncertain measurements. Its
sensors return readings in numeric ranges, and its actuators operate based on numerical set points. As we aim to use
Robot Operating System (ROS1) as our middleware, we implement this layer in Python. The Baxter robot, from Re-
think Robotics, has its own ROS-Python API, a set of classes that provides wrappers around the ROS communication.

Another layer, namely the translator, is needed to map primitive to abstract states and to link an abstract
action to corresponding primitive behaviors. It is written in C++ which has an interface to SWI Prolog as the language
for the abstract layer. Communication to the primitive layer is done via ROS using a simple publish and subscribe
mechanism. Our robot software architecture is shown in Fig. 1a.

We give a simple illustration of action execution, namely find tool, which involves communication be-
tween layers. In the primitive layer, a cube and a tube are detected, their corners are acquired and published to-
gether by a ROS node, namely /translator, as a ROS topic, /pri states. The translator also has a ROS
node, /translator, that subscribes to that topic. Then it evaluates the status of the abstract state, in tube
(Cube,Tube), by calling the relevant Prolog predicate. In the abstract layer, in tube(Cube,Tube) is called.
If it is true, as it is the only the precondition of the find tool action, then the translator will publish it as the ROS
topic, /abs action that represents the currently active action. The primitive layer subscribes to this topic. If it
recognizes find tool as an active action, then it triggers the corresponding primitive behaviors. See Fig. 1b for
detail.
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Figure 1. Robot software architecture and its example

4.2. Object Detection

We detect all objects (i.e. different tools, a cube, and a tube) by their two-dimensional appearances only.
We use the Baxter camera to detect objects locally, while an external web camera provides the global world state.
We combine local and global images from both cameras to achieve our goal. The OpenCV library is used for object
detection.

In pre-processing, Gaussian smoothing is applied. Later, the edges of objects in an image are detected with
a Canny Edge detector, and their contours are found. Each contour is tested to check whether it has the properties of
a particular object. The contour properties include the number of edges, the area, the angle formed by two adjacent
parts, the convexity, and the perimeter. Tools are treated specially as they have more than one shape. After being
detected as a tool, the object’s type is determined, and its handle and hook(s) are acquired. All objects are represented

1http://www.ros.org
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by their minimum and maximum corner points in Cartesian coordinates (Xmin, Ymin, Xmax, Ymax ). The complete
mechanism is shown in Algorithm 1.

Algorithm 1 Objects detection

1: Capture an image
2: Perform Gaussian smoothing
3: Detect the edges of objects using Canny detector
4: Find the contours of the objects
5: for each contour do
6: Classify the contour
7: if The contour is either cube, tube, or tool then
8: Find its minimum & maximum corner points
9: return all minimum & maximum corner points

4.3. Behavior Generation

In our tool use application, a sequence of actions, or a plan, must be performed to achieve the goal, pulling
a cube from a narrow tube. Each action uses different strategies (inverse kinematics solving, visual servoing, gripper
activation, constraints solving) depending on whether the primitive goal is known or not, and whether the visual
information is needed or not. We show an example of the plan in Table 1.

Table 1. The actions sequence for pulling a cube from a narrow tube

No Action Technique Goal Visual
1 Find the tool Inverse Kinematics (IK) solving, visual servoing Known Yes
2 Grip the tool Close the gripper Known No
3 Position the tool Constraints solving, IK solving Unknown Yes
4 Pull the cube IK solving Known No
5 Move the tool away IK solving Known No
6 Ungrip the tool Open the gripper Known No

An abstract action is directly linked to corresponding primitive actions. For simplicity, we only consider
movement in two-dimensional Cartesian coordinates. A primitive goal is a target location in that coordinate system.
When a goal is known, we use an inverse kinematics (IK) solver to compute the angles of all joints and move the arm
towards that goal. However, if it is unknown, we use a constraint solver to create a numerical goal from abstract states
which are the preconditions of an abstract action model (see Fig. 2a). To perform an accurate tool picking action,
we use a simple version of image-based visual servoing [15], where an error signal is determined directly in terms
of image feature parameters. We locate the robot arm in a position where a chosen tool is located in the center of an
image captured by Baxter’s wrist camera, so the arm can move downward perpendicularly to take the tool. See Fig.
2b for the detail.
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Controller
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(a) Constraints solving to get a primitive goal
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(b) A visual servoing process

Figure 2. behaviors generation
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5. TOOL USE LEARNING
In this section, we describe relational tool use learning [1, 2]. The robot must learn a tool action model

that describes the properties of a tool and other objects in the world that enable a robot to use a tool successfully.
Specifically, the robot learns a tool pose predicate, which describes the structural and spatial conditions that must
be met for the tool to be used. We maintain a version space of hypotheses, following Mitchell [16]. A version space is
bounded by the most general hypothesis (hg) and the most specific hypothesis (hs). As we explain below, the version
space is used to determine what experiments the robot should perform to generalize or specialize the tool action model.

Initially, a robot may not have a complete action model for a tool, so it cannot construct a plan. After a tutor
gives a tool use example, the robot segments the observed behavior into discrete actions, matches them to actions
already in its background knowledge, and constructs a new action if there is no match for a particular behavior. This
construction may not be sufficient to describe the tool action in a general enough form that it can be applied in different
situations. Therefore, trial and error learning is performed to refine the initial action model.

Trial and error involved performing experiments in which a different tool is selected or its pose is changed to
test the current hypothesis for the tool action. In tool selection, an object that has properties that are most similar to a
previously useful tool is chosen. More specifically, we test whether an object satisfies all primary structural properties,
stored in hg , and most of the secondary ones, stored in hs, given its primitive states.

Having a correct tool is useless when it is located in an incorrect position before it trying to pull the target
object. We select the pose by solving the constraints of the spatial literals in the tool pose predicate. We check whether
the spatial constraints of an object can be solved or not. The unsolved constraints are ignored, and the final result is
used as the numerical goal for the robot.

After a tool use learning experiment is performed, its result, whether successful or not, is passed to the ILP
learner so the hypothesis can be refined. Our learning is derived from Golem [17], an ILP algorithm. Refinement of hs

is done by finding the constrained Least General Generalization (LGG) of a positive examples pair, and hg is refined
by performing the negative-based reduction. The learning algorithm is a modification of Haber [2] and is shown in
Algorithm 2.

Algorithm 2 Tool use learning

1: input: new action model M , hg = true, hs = preconditions of M ,N trials, K consecutive success
2: while success < K or index < N do
3: e = generate experiment(hs, hg)
4: tool = select tool(hs, hg) // select a tool with highest rank
5: for each ei in e do
6: pose = select pose(ei) // performing constraint solving on preconditions of the relevant action model
7: if pose = null then
8: break
9: success = execute exp(tool, pose) // performing a tool use experiment

10: if success then
11: label pose positive
12: increment cons success
13: hs = generalise hs // via Least General Generalisation
14: else
15: label pose negative
16: cons success← 0
17: hg = specialise hg // via negative based reduction
18: add ei to training data
19: increment index

6. RESULTS AND DISCUSSIONS
The Baxter research robot is used in this experiment (see Fig. 3a). The objects in the scene include a cube, a

tube, and five objects of a different shape that potential tools. We also have another set of tool candidates whose hooks
are narrower than their handles (see Fig. 3b). We use Baxter’s wrist camera for visual servoing. We add an external
web camera facing the tube to provide the global state. We divide the experiments into two stages. Initially, we
evaluate the performance of our object detection algorithm and action execution. Later, we conduct tool use learning
experiments.
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Figure 3. Experimental scene

6.1. Object Detection and Execution Experiments

The contours of all objects (cube, tube, and tools) are detected, using Baxter’s wrist camera, and their min-
imum and maximum points are acquired. These are marked with colored dots in the object corners in Fig. 4. Even
when the tool is held by the gripper, our algorithm is still able to detect the object. However, the vision system may
fail in a low-light environment. It also assumes that all objects are aligned perpendicular to each other and the camera.

baxter_cam: cube detection web_cam: cube detection baxter_cam: tube detection web_cam: tube detection

baxter_cam: tools detection web_cam: tools detection 1 web_cam: tools detection 2 web_cam: selected tool detection

Figure 4. Objects detection in images captured by the Baxter hand camera and the web camera

We also evaluate the capability of the Baxter to move accurately to accomplish a tool use task based on the
actions sequence in Table 1. In Fig. 5 we illustrate these actions: find tool action which uses visual servoing,
grip tool action, which activates the robot’s gripper, and position tool actions, which tries to satisfy a prim-
itive goal given by a constraint solver. From these trials, it was determined that the Baxter can move smoothly to
complete the task. We observe that most errors are caused by the perception system, not the action mechanism.

find_tool grip_tool position_tool

Figure 5. Sample of the robot’s actions

6.2. Learning Experiments

In this experiment, we use five different candidate tools with narrow and wide hooks. The cube, as a target
object, is located at a particular position inside the tube, which is changed after the Baxter can withdraw it from the
tube successfully. We adopt an initial action model which was created by Brown ([1]). Learning by trial and error is
then performed to refine the tool pose hypothesis. We stop learning if the robot accomplishes the task three times
consecutively. The complete learning sequence is shown in Fig. 6.

We need at least ten examples to learn to perform this task. However, more experiments may be needed if
any errors occur (e.g. a change in lighting or an invalid move produced by the IK solver). The first positive example
is given by a teacher. In the second example, the robot attempts to imitate the tool and location of the first one, but
it fails as the cube location is changed. In the third example, the robot finds that the attachment side of the hook
should be the same as the location of the cube inside the tube. Later on, the robot still makes mistakes as it tends to
choose a tool with a narrow hook. This narrower property is eliminated from hs in the generalization process in
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example 2: - example 3: + example 4: - example 5: -example 1: +

example 7: - example 8: + example 9: + example 10: +example 6: +

Figure 6. Tool use learning experiments in a real world

the eighth example. Finally, learning is completed in the tenth example, as it performs three consecutive successful
experiments. The final hypothesis is shorter (hs is reduced from 14 literals to 11 literals) and more general than the
initial hypothesis.

6.3. Discussions

Our result is similar to the previous relational learning approach [1], they learn tool-use in 12 experiments,
as we use the relatively same mechanism. However, we perform our experiment on a real robot, while the former only
do it on a sensor-less simulation. This includes bridging the gap between low-level layer (in ROS environment) and
high-level layer (in SWI Prolog). We also build objects detection system that has to deal with the noisy environment.
Previous work did not do any detections, as it acquires perfect data from a simulator.

Compared to the line of work in feature-based representation, such as work of Tikhanoff et al. [12], our
approach can learn faster (theirs needs at least 120 trials in various learning stages) as we can easily incorporate
human expertise in the background knowledge. Our experiment scenario is also more complicated, as we locate the
target object inside a tube. We exploit the ability of the relational representation to represent a complex relationship
between objects compactly. We also learn the tool-pose, where the tool should be located to be able to pull the tool
successfully, while it is predefined in their work.

There are limitations in our work, especially in the perception system which can only handle 2D images and
not robust in changing environments. In this area, previous work [12, 13] is better than ours. Despite these limitations,
the experiment demonstrates that the learning system is capable of relational tool use learning in the real world. In
other work of us, we also use a physics simulator to assist a real robot performs tool use learning [18].

7. CONCLUSIONS AND FUTURE WORK
We have developed a complete robot system for relational tool use learning in the real world. The primitive,

translator and abstract layers have been built, along with with their interfaces. We have also implemented a system
to detect objects and generate primitive behaviors by inverse kinematics, a constraint solver and a visual servoing
mechanism. Finally, we have extended a tool use learning system, which has been tested in experiments in the real
world. For a relatively simple tool use scenario, the robot at needs at least ten examples to learn the tool’s properties.

In the future, we want our robot to do tool creation when the available tools cannot be used to solve the
current problem. Those tools can then be tested in the simulator, to save time and materials, and manufactured by
using a 3D printer. The development of a more robust perception and a more accurate movement systems will improve
our system performance. The system will be tested on a wider variety of tool use scenarios, with different tools and
different tasks.
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