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 This paper presents, an optimal basic speed controller for switched reluctance 

motor (SRM) based on ant colony optimization (ACO) with the presence of 

good accuracies and performances. The control mechanism consists of 

proportional-integral (PI) speed controller in the outer loop and hysteresis 

current controller in the inner loop for the three phases, 6/4 switched 

reluctance motor. Because of nonlinear characteristics of a SRM, ACO 

algorithm is employed to tune coefficients of PI speed controller by 

minimizing the time domain objective function. Simulations of ACO based 

control of SRM are carried out using MATLAB /SIMULINK software. The 

behavior of the proposed ACO has been estimated with the classical Ziegler- 

Nichols (ZN) method in order to prove the proposed approach is able to 

improve the parameters of PI chosen by ZN method. Simulations results 

confirm the better behavior of the optimized PI controller based on ACO 

compared with optimized PI controller based on classical Ziegler-Nichols 

method. 
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1. INTRODUCTION  

The inherent simplicity, ruggedness and low cost of a SRM make it a viable machine for various 

general purpose adjustable speed drive applications [1], [2]. It has no permanent magnet (PM) or winding on 

the rotor. This structure not only reduces the cost of the SRM but also offers high speed operation capability 

for this motor. The performance of SRMs has been enhanced greatly due to advances in power electronics 

and computer science. It requires only simple converter circuit with reduced number of switches due to 

unidirectional current requirements. In addition, the inverter of the SRM drive has a reliable topology. The 

stator windings are connected in series with the upper and lower switches of the inverter. This topology can 

prevent the shoot through fault that exists in the induction and permanent motor drive inverter [3]. These 

advantages make this type of motors economically alternative to PMBLDC motor, squirrel cage induction 

motor and DC series motor [4], [5].  

The SRM can be operated in the four quadrants and it is very much suitable for hazardous areas 

requiring high performances such a in electric vehicle propulsion, automotive starter-generators, aero-space 

applications. Nevertheless, it suffers some drawbacks such as; high torque ripple and significant acoustic 

noise as well as speed oscillations. Currently, much research is being done on SRM Control and torque 

constraint in order to make it compete with fully controlled DC and DC drives. In order to resolve these 

problems, it used essentially two primary approaches: one method is to improve the magnetic design of the 
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motor, while the other method is to use sophisticated control mechanism. Machine designers are able to 

resolve these problems and achieve high dynamic performances by changing the stator and rotor poles 

structures, but only at the expensive of motor performance. The control Approach is based on the selection of 

an optimal combination of operating parameters, which include power supply voltage, turn on and turn off 

angles, size of hysteresis band, current level and shaft load. So, the design of a suitable controller to achieve 

Performance must take account of this non-linearity. The nonlinear characteristics of a SRM make it 

difficult to control. Design and tuning classic control theory are based on equations and model of the system 

while SRM modeling is a complex task.  

The introduction of artificial intelligence (AI) has brought a new era into the industrial drive. 

Various heuristic controls based on AI have shown a good perspective of strengthening robustness and 

adaptive nature in constant torque variable speed or variable torque constant speed converter application [6]. 

Therefore, the superior performance of artificial intelligence (AI) based controllers urged power system and 

power electronic engineers to replace conventional speed control circuit with intelligent speed controllers. 

The simple and popular current compensating techniques can be implemented using both classical and 

intelligent controllers. It is noticed from literature survey that many approaches have been proposed for speed 

control of SRM. In the last few years, fuzzy logic control (FLC), has received much attention in the control 

applications, artificial neural network (ANN), neuro- fuzzy controller (NFC), robust controller have been 

employed to solve the problem of speed control of SRM. Moreover, various heuristic optimization techniques 

for tuning the PI controller has been reported in literature. 

Particle Swarm Optimization (PSO) is a population based optimization algorithm, encouraged by 

social behavior of bird flocking or fish schooling [7]. Genetic Algorithm (GA) is illustrated in for optimal 

design of speed control of SRM. The GA has found application in the area of the automatic tuning process 

for conventional and intelligent controllers. Same research has been conducted using genetic algorithms to 

help on-line or off line control systems. In a novel heuristic optimization algorithm named gravitational 

search algorithm also called GSA is proposed, Bacteria Foraging [8], differential evolution (DE) and  

BAT [9] have attracted the attention in designing controller and speed control of various motors. 

New evolutionary algorithms know as Ant Colony Optimization (ACO) algorithm is proposed in 

this paper to design a robust speed control of SRM. This algorithm is a member of the ant colony algorithms 

family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. The original idea 

has since diversified to solve a wider class of numerical problems, and as a result, several problems have 

emerged, drawing on various aspects of the behavior of ants. ACO has been successfully employed to 

optimization problems in power system, the feature of this technique is different from other methods since it 

can be implemented easily and flexibly for many problems. 

Hence, in this work, as the new contribution, ACO is utilized to find optimal values for proportional 

(Kp) and integral (Ki) for speed controller by minimizing the time domain objective function representing the 

error between reference speed and actual one, the system performance is improved. Simulation results assure 

the effectiveness and ability of the proposed controller in providing good speed tracking system with 

minimum overshoot/undershoot and minimal settling time. Also, the results show that the ACO based 

controller can better improve SRM performance for tuning controller than Ziegler-Nichols (ZN). 

 

 

2.    MODELING AND CONTROL OF SRM DRIVE 

2.1. Principles of Performance and Modeling of SRM Drive 

The principle of operation of the switched reluctance motor (SRM) is based on the tendency of the 

electromagnetic system to be located in stable equilibrium point with the minimum magnetic reluctance. The 

excitation is switched sequentially from phase to to phase as the rotor moves. The electromagnetic torque in 

SRM is produced by exploiting the rotor position-dependent reluctance of the magnetic path associated with 

each phase. When one of the stator winding is excited, the nearest rotor ploes are aligned with the excited 

stator poles and thus a reluctance torque is produced which tends to align the stator and rotor poles. The total 

torque is the sum of the torques generated by each phase. Nonlinear characteristics of SRM are due to the 

nonlinearity of the characteristics of flux-linkage.  

The mathematical modeling explaining the dynamics of 6/4 SRM consists of electrical equation for 

each phase and the equation governing the mechanical systems [10]. Stator phase voltage is the input to SRM 

model. The electrical circuit for each phase is connected to electronic power converter (e.g., an asymmetrical 

DC-DC converter) and is associated with nonlinear inductance due to the saliency present in stator and rotor. 

Mutual coupling between the stator phases is assumed to be negligible. The nonlinear magnetic 

characteristics associated with SRM because of saturation and changeable air gap with rotor position causes 

the magnetic flux linkage a nonlinear function of stator current (i) and rotor (𝜃). The voltage equation phase 

is given by: 
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With i = {1, 2, 3}  

Where R is the resistance per phase and 𝜓 is the flux linkage per phase and it is given by  
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2.2. Objective Function Computation  

The optimal choice of the proportional gain, integral gain of speed controller, minimization of 

Integral Squared Error (ISE) of speed ripple which computed from the outer loop can be considered as an 

objective for both conventional and AI tuning technique. Accordingly, this objective function expression 

(ISE) is given by: 
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Where e= wreference-wactual. 

Based on this ISEspeed  optimiztion problem can be stated as : minimize ISEspeed subjected to : 

 

 ,   

 

This paper focuses on optimal tuning of PI controller for speed tracking of SRM using two methods 

which are the conventional Ziegler-Nichols method and the intelligence methods such as the ACO method. 

Ranges of PI controller are Kp [0.3-0.8 ] and Ki [10 - 20 ]. The aim of the optimization process is to search 

for the optimum controller parameters setting that minimize the difference between reference speed and 

actual one. 

 

2.3. Design of Speed Controller 

In PID controller, the derivative of the error is not used which is a PI (proportional-integral) 

controller. Speed controller designed for this work is a standard PI controller. It is a control feedback 

mechanism used in various industrial control systems. The PI controller attempts to minimize the error which 

is the difference between measured variable and desired value by adjusting the process inputs. The output of 

speed controller (outer loop) is the current command for the current controller (inner loop). The combination 

of proportional and integral terms is used to increase the speed of the response and to eliminate the steady 

state error. 

 

2.3.1. Proportional Term 

The output response of proportional term is equal to the current value of error. The proportional 

factor is adjusted by multiplying the error value by a proportional gain which is denoted by Kp. 

The proportional factor is written by 

 

 pout KP          (4) 

 

2.3.2. Integral Term 

The integral term is proportional to both the magnitude and duration of the error. In PID controller, 

the integral term is the sum of instantaneous error over time which gives the accumulated value and it has 

been corrected previously. The control action of integrator is to provide low frequency compensation [11].  

Integral factor is written by 

 

 dtKI iout          (5) 

 

The integral term is used to increase the speed of the process towards the reference value and to 

eliminate the error which occurs in pure proportional controller. The proportional controller and the integral 

controller of the speed controller are connected in parallel. 
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The PI controller output is given by 

 

 dtKK ip          (6) 

 

Where Δ is the error or deviation of measured value from reference speed. The transfer function of PI speed 

controller in S-domain can be written as: 
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In the above equation Kp_speed and KI_speed are the proportional gain and integral gain respectively of 

PI speed controller. The PI controller has been preferred to be used in industrial applications. The controller 

has simplicity, lowest cost, zero steady state error, ease of implementation, good speed response, robustness. 

It is extensively used in AC and DC drives where speed control is required. In this paper we will discuss two 

methods for tuning values of PI controller; they are the conventional Ziegler-Nichols method and the 

intelligence method such as the ACO method. 

 

 

3.     METHODS OF TUNING THE PI-CONTROLLER  

3.1.  Ziegler-Nichols Method 

Up to now, tuning a PI (Proportional-Integral) controller for automatic control systems has often 

been performed by trial and error, including using classical methods such as Ziegler-Nichols, Iterative 

Feedback Tuning (IFT) methods, and many others. As we know, the Ziegler Nichols classical method 

provides parameter values obtained from the critical gian Kc of the system. The critical gain of a system is 

obtained by increasing the proportional gain unit the system starts oscillating [12]. From this critical gain, the 

other parameters of the PI controller are obtained according to the table I in the appendix. However the 

problem of tuning PI-controllers has remained an active research area. Furthermore with changes in system 

dynamics and variations in operating points PI-Controllers should be returned on a regular basis. This has 

triggered extensive research on the possibilities and potential of the so-called adaptive PI-controllers. Loosely 

defined, adaptive PI-controllers avoid time-consuming manual tuning by providing optimal PI-controller 

setting automatically as the system dynamics or operating points [13].  

 

3.2. Design and Implementation of ACO Based Controller 

In this work, an optimal speed controller for SRM based on ACO is presented. Control mechanism 

parameters such as proportional and integral gain have been optimized by using ACO. Block diagram of 

SRM with ACO based controller is shown in Figure 1. Ant colony optimization (ACO) was introduced as a 

novel nature-inspired metaheuristic by Marco Dorigo et al. [14]. ACO is method for solving optimization 

problems which were inspired from nature based on a real ant colony. The first algorithm was aiming to 

search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and 

source of food. In the nature world, ants (initially) wander randomly, and upon finding food return to their 

colony while laying down pheromone trails. 

 

 

 
 

Figure 1. Block diagram of SRM with ACO based controller 

 

 

Real ants are able to find the shortest path using only the pheromone trails deposited by other ants. 

The pheromone quantity depends on the length of the path and the quality of the discovered food source [15]. 

An ant chooses an exact path in connection with the intensity of the pheromone. Over time, however, the 

pheromone trail starts to evaporate, thus reducing its attractive strength. The pheromone trail on paths leading 
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to rich food sources close to the nest will be more frequented and will therefore grow faster. In this way, the 

best solution has more intensive pheromone and higher probability to be chosen. The pheromone 

consistencies of all paths are updated only after the ant finished its tour from the first node to the last node. 

The amount of pheromone will be high if artificial ants finished its tour with a good path and vice versa. 

 

 

4.     SIMULATION RESULTS AND DISCUSSION 

In this section, we presented the numerical results to demonstrate the superiority of the proposed 

ACO algorithm over the Ziegler-Nichols (Z-N) method [16]. The non-linear 6/4 SRM model represented in 

Figure 2. The SRM is fed in this simulation using the asymmetrical power converter in which, each leg 

consist of two IGBTs and two freewheeling diodes. Thus the phase currents are independently controlled by 

an hysteresis current controller which engender the IGBTs drive signals by comparing the measured currents 

with the references. The IGBTs switching frequency is determined using the hysteresis bandwidth for a 

previous optimal study fixed at ΔI=± 0.1A. The firing angles; turn-on and turn-off angles are kept constant at 

0 deg and 30 deg, and demagnetizing angle (ϴd) (i.e.,the angle where the phase current decays to zero when 

negative voltage is applied directly after turning-off) is kept at 60 deg. 

 

 

 
 

Figure 2. Matlab/Simulink for SRM drive system 

 

 

The closed loop PI speed controller with the process was tuned for the values Kp and Kd were 

shown in Figure 1. To get a better insight to the performance of SRM control, time domain simulations are 

performed. Table 1 illustrates the optimal PI parameters KP and Ki also summarizes the performance indexes 

in time domain, including the settling time, rise time, under shoot and steady state error. These performances 

indexes were obtained from the classical approach based Z-N PI method and a meta-heuristic approach based 

on the ACO-PI algorithm. It can be seen that the time domain characteristics for ACO are smaller than Z-N 

method. Hence, compared with Z-N, ACO greatly improves the time domain characteristics of SRM. 

 

 

Table 1. Comparison between conventional PI (Ziegler Nichols : ZN) and ACO-PI controller 
 Kp Ki Settling time (s) Rise time (s) Under shoot Steady state error 

ZN 0.568 12 0.0271 0.0174 - 1.94 rad/s 

ACO 0.686 14.2 0.0166 0.0125 - 1.1 rad/s 

 



Int J Elec& Comp Eng ISSN: 2088-8708  

A Novel Technique for Tuning PI-Controller in SRM Drive for Transportation Systems (Mohamed Yaich) 

4277 

Figures 3 and 4 shows the inductance profile of all the three phases and the rotor position of SRM 

drives with corresponding time in seconds. The inductance is repeated at every 90° and each phase is 

separated by 30° as shown in Figure 3. The rotor position is identified continuously and modulated for a 

complete mechanical rotation (360° or 6.2828 rad) as shown in Figure 4. 

 

 

 
 

Figure 3. Inductance profile for 3 phase SRM  

 

 

 
 

 Figure 4. Rotor position in degree Vs time in second 

 

 

The 3-phase current profile, total torque and tracking of speed with the reference speed 

corresponding to the optimal parameter for a minimum objective function given in table 1 using Z-N method 

and ACO algorithm are shown in Figures 5 and 6 respectively. It can be seen from the Figures 3-6 that 

optimal parameters obtained by ACO based controller provides better performance by reducing the torque 

dip between two phases, improving the phase current profile and better tracking of speed as compared to 

Ziegler Nichols method. The time required for speed tracking by Z-N based speed controller is 0.0271s. 

Whereas it required 0.0166 s for tracking of speed with the reference speed by ACO based controller 

respectively as reported in Table1. Hence, the proposed ACO is capable of providing sufficient speed 

tracking compared with ZN. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Performance analysis of speed control of 3-phase SRM based on Z-N method 

(a) 3 phase currents in Amps (b) Total torque in Nm (c) Speed in rad/s 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. Performance analysis of speed control of 3-phase SRM based on  ACO method  

(a) 3 phase currents in Amps (b) Total torque in Nm (c) Speed in rad/s  
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5.     CONCLUSION  

This study presents an innovative meta-heuristic method to automated PI tuning for speed control of 

switched reluctance motor (SRM) 6/4 poles using ant colony algorithm. The design problem of the proposed 

controller is formulated as an optimization problem and ACO is employed to search for optimal parameters 

of PI controller. By minimizing the time domain objective function in which the difference between the 

reference and actual speed are involved. The tested dynamic model with the peoposed new strategy of 

optimization has improved a better robust control action compared with conventional PI controller with less 

percentage of torque ripples. Simulation results demonstrate that the new tuning methods using Artificial 

Intelligence (AI) have a better control system performance compared with classic approach. 

 

 

APPENDIX 

The parameters of studied system used in simulation are as shown below: 

(a) SRM Parameters: 

Phase number 3; Number of stator poles 6; 30° pole arc ; Number of rotor pole 4; pole arc 30°; 

Maximum inductance 60 mH(unsaturated); Minimum inductance 8mH; Phase resistance R=1.30Ω; Moment 

of inertia J=0.0013 Kg/m2; Friction F=0.0183 Nm/s; Inverter Voltage V=150 v. 

(b) Ziegler Nichols Tuning Rule parameter values: 

 

 
Control Type Kp Ki Kd 

P 0.50 Kc - - 

PI 0.45Kc 1.2Kp/Pc - 

PID 0.60Kc 2.0Kp/Pc KpPc/8 

 

 

(c) ACO parameters: 

Nodes number n=10; Ants number m=5; maximum number of iteration tmax=5; maximum distance 

for every ant’s tour dmax= 49; Parameter, that determines the relative importance of pheromone vs distance  

β=0.2; searching defined coefficient ρ=0.6; Pheromone disintegration parameter α=0.1; algorithm parameter 

qa =0.6; Initial pheromone level τ0= 0.1. 
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