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 Due to increase in energy prices at peak periods and increase in fuel cost, 

involving Distributed Generation (DG) and consumption management by 

Demand Response (DR) will be unavoidable options for optimal system 

operations. Also, with high penetration of DGs and DR programs into power 

system operation, the reliability criterion is taken into account as one of the 

most important concerns of system operators in management of power 

system. In this paper, a Reliability Constrained Unit Commitment (RCUC) at 

presence of time-based DR program and DGs integrated with conventional 

units is proposed and executed to reach a reliable and economic operation. 

Designated cost function has been minimized considering reliability 

constraint in prevailing UC formulation. The UC scheduling is accomplished 

in short-term so that the reliability is maintained in acceptable level. Because 

of complex nature of RCUC problem and full AC load flow constraints, the 

hybrid algorithm included Simulated Annealing (SA) and Binary Particle 

Swarm Optimization (BPSO) has been proposed to optimize the problem. 

Numerical results demonstrate the effectiveness of the proposed method and 

considerable efficacy of the time-based DR program in reducing operational 

costs by implementing it on IEEE-RTS79. 
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NOMENCLATURES 

 

  

1) Indices    

      Hours counters at DR and RCUC    The inertial of x
th

 particle 

  Units counter      Electricity price in a
th

 hour after DR 

($/MWh) 

    Bus indices in Load Flow equation       Electricity price in a
th

 hour before DR 

($/MWh) 

  State of COPT 3) Parameters  

  Particles counter in PSO      Cold start-up cost of unit n 

   Iteration    Load demand at time t 

2) Variables      Down rate of n
th

 unit per hour 

          Cost function of generation unit n        Self-elasticity 

       Cognitive and social learning rates        Cross elasticity of the demand between 

ab
th

 hours 
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     Customer demand in ath hour after 

DR (MWh) 
     Hot start-up cost of unit n 

      Customer demand in ath hour 

before DR (MWh) 
    Minimum up time 

      The best obtained value of 

objective function over PSO 

procedure 

    Minimum down time 

     Status of unit n at hour t    Number of buses 

      Active power loss of the system    Number of generators 

       Output active power of DG unit n 

at hour t 
    Number of DG units 

      Output active power of generator n 

at hour t 
      Total number of particles 

       The best previous position of the 

x
th

 particle 
    

         
    Maximum and minimum reactive power 

generation limit of unit n 

      The probability of worse answer 

accepting 
     

          
    Maximum and minimum reactive power 

generation DG limit of unit n 

      Power flow on ijth line      
    Maximum apparent power flow for ij

th
 line  

    Spinning reserve at hour t       Startup cost of unit n at hour t 

    
   

 Duration of continuously off state 

of unit n at hour t 
  Scheduling period 

    
   Duration of continuously on state 

of unit n at hour t 
   Initial temperature of SA 

   Voltage magnitude at busj    The step for reducing temperature 

  
   Velocity of x

th
 particle in it

th
 

iteration 
    Up rate of n

th
 unit per hour 

  
   Position of x

th
 particle in it

th
 

iteration 
  

       
    Maximum and minimum limits for voltage 

magnitude at bus j 

   New trial solution of particle      Value of lost load 

   Current trial solution of particle     ij
th

 array of admittance matrix 

   Voltage angle of bus j 𝜏 Searching intensifier parameter 

    Angle of ij
th

 array of admittance 

matrix 
  

       
    Upper and lower voltage angle limits of 

bus j 

 

 

1. INTRODUCTION  

In restructured and competitive environment, it is necessary to supply the electrical demand in 

continuous, reliable and economic manner. Unit commitment is one of the available measures to reach the 

mentioned goal. In UC procedure, thermal generating units are scheduled to generate power at minimum 

operation cost so that all constraints of the system and spinning reserve requirements are satisfied. In power 

system operations, reliability is one of the most important challenges which cannot be neglected by the 

system operator. Huge investment costs in large power plant and the wasted power in the form of power 

losses have caused remarkable participation of Distributed Energy Resources (DERs) in power grid 

configuration. By rapid development of emerging new technologies, the reliability issues have highlighted 

more than before. A large number of investigations considering the variety type of UC problem have been 

performed. 
The state-transition formulation for the unit commitment (UC) problem is presented in [1] with new 

decision variables instead of generator’s on/off statuses. The integration of solar energy resources into the 

conventional unit commitment is proposed in [2] as an alternative energy resources using ant lion optimizer 

with consideration of uncertainties. In [3], the UC problem has been formulated by integrating wind power 

generators along with thermal power system using grey wolf optimization algorithm as the main optimization 

tool. Authors in [4] focused on solving efficiently unit commitment of the interconnected multi-site CHP 

system to coordinate heat and power production in each site using relaxed ON/OFF state based dynamic 

programming. A contingency-constrained UC is solved in [5] with considering a set of contingency 

probability distributions Instead of assigning a probability estimate for each contingency scenario. 

Considering the widespread variety of resources in microgrids, a multi objective UC is carried out in [6] to 

minimize the operation cost and CO2 emission. Authors in [7] propose an N-1 security constrained 

formulation for SCUC based on the line outage distribution Factors instead of the conventional method based 
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on Injection Sensitivity Factors. A reformulation of the scenario-based two-stage unit commitment problem 

under uncertainty is provided in [8]. A novel heuristic algorithm called the binary artificial sheep algorithm 

has been used to solve the UC problem in [9]. In [10] a novel branch-and-cut algorithm using atemporally 

decomposed bilevel separation aracle is proposed to solve very large scale UC problem. To guarantee system 

security and reliability, authors in [11] have been developed sufficient dispatchable generation and 

transmission capacities to improve system operational performance by optimizing schedules considering 

uncertainty of wind power. Authors in [12] have been recommended a robust RCUC at presence of multiple 

DERs for best resource allocation and reliability maintaining in a predefined range. Large number of studies 

regarding DERs management in smart grid has been carried out in recent years that some of them could be 

briefly surveyed as follows. 

A methodology to obtain the optimal location for the placement of multiple DG sources in a 

distribution network is proposed in [13] by evaluating a global multi-objective technical index using artificial 

immune system. The DR program is used to optimize the energy profile for commercial sector in [14] with 

reforming the Maximum Demand from peak zone to off-peak zone to reduce electricity cost using 

Evolutionary Algorithm. Authors in [15] present the utilization of demand response in the day-ahead 

operation of a micro-grid in the presence of renewable energy sources. Different DR programs modeling are 

proposed in [16] and [17] to increase in efficiency of energy consumption with minimum operational costs 

and desirable quality. 

To the best of our knowledge, the impact of time-based DR program in UC procedure has been 

rarely studied and investigated. So, in this paper, the RCUC is scheduled at presence of DGs and time-based 

DR program with full AC load flow constraints using a hybrid method. The main contribution of this paper 

includes incorporating the time-based DR program in UC problem and utilizing a hybrid method to optimize 

the RCUC Schedule. In order to illustrate the effectiveness of the proposed approach, it is applied to IEEE 

Reliability Test System (IEEE-RTS79). Finally, a comparison is done between the proposed optimization 

algorithm and some huristic algorithms. The remainder of this paper is structured as follows. Section 2 

briefly discusses the overture of DR programs. Reliability frameworks are presented in section 3. Section 4 

discusses the proposed optimization algorithm and the objective function formulation. Section 5 represents 

the numerical studies and analysis of obtained answers and Section 6 concludes the paper. 

 

 

2. DR PROGRAM AND ECONOMIC MODEL OF DEMAND 

DR programs are divided into some main categories and some sub-categories based on Federal 

Energy Regulatory Commission (FERC) classification [18]. In this work, Time-Of-Use (TOU) method that is 

one of the time-based programs is employed. TOU can shift some of the unnecessary demand from peak load 

period to low load period. This offset is because of customer’s demand sensitivity with respect to electricity 

price changes at different periods. A conservative model of load has been extracted as response of elastic 

demand against the price signals expounded in [19]. The mentioned economic model (power model) is 

composed from two concepts, single period and multi period loads which are so called “self-elasticity” and 

“cross elasticity”, respectively. The loads with self-elasticity cannot shift from one period to another (e.g. 

lighting loads) while the loads with cross elasticity can shift from one period to others. In this paper, to avoid 

restatement of modeling procedure, final economic models of each concept (self and cross elasticity) of 

responsive loads are given in (1) and (2), respectively. 
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Each load point comprises a combination of two mentioned type of loads in the power system.  

So, composite period elastic load model which is presented in (3) is employed to implement the TOU 

program, in this paper. 
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3. RELIABILITY EVALUATION 
3.1. Availability of generating units 

In operation phase, the probability of generation unit supplying ability or inability is based on the 

Lead Time (LT). At this time interval, the surplus units can not commit or replace with committed units in 

increasing load states or lose some power production. The probability of state which the generating unit fails 

in LT interval is recognized as Outage Replacement Rate (ORR) of each unit. In reliability analysis, each 

generating unit could be either available or unavailable as a two state model represented in Figure 1.  

 

 

 
 

Figure 1. Two state model of each generating unit 
 

 

If the failure and repair rate is distributed as exponential functions, the probability of unavailability of each 

unit will be given as (4). 

 

      
 

   
 

 

   
                 (4) 

 

Where, λ and μ are the failure and repair rate of any generating unit, respectively. Neglecting the repairing 

procedure in operating phase, (4) is modified as (5). 

 

                     (5) 

 

3.2. Calculation of reliability indices 

Two of the most important indices in reliability studies are loss of load probability (LOLP) and 

Expected Energy Not Supplied (EENS). The LOLP is the system risk index and the EENS expresses the 

expected energy that will not be served by power system in corresponding period. In this paper, to calculate 

the reliability indices the concept of the convolution of the capacity outage probability table (COPT) 

expounded in [20] is applied. The aforementioned indices are calculated through COPT as (6)-(9). In (6)-(8), 

      and       are total capacity remaining in service of state k of COPT and the corresponding probability 

respectively. 
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4. METHODOLOGY 
The UC is one of the most difficult optimizing problems and lots of constraints must be considered. 

The main purpose of this scheduling is minimizing the operation cost during dispatch period. Considering the 

complication of UC problem, involving the evolutional methods in unit scheduling is unavoidable especially 

when reliability constraints and AC load flow constraints are addressed. 

 

4.1. Simulated annealing 

Simulated Annealing (SA) proposed by Metropolis at 1957 in order to handle optimization problems 

with a large searching space [21]. SA at a common form has been presented based on the similarity between 

the cooling molten metal and solving the combinatorial optimization problems. If the temperature of the 

molten metal is gradually reduced, all atoms can regulate themselves in their lowest energy level. This 

algorithm can accept worse answers to escape from local optimum trapping in different situations. It is 

started with an initial stochastic state and by a transition from one state to another (neighboring state) 
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gradually minimizes the cost function. In each trial, the current answer is compared with previous 

configuration answer as (10). 

 

                      (10) 

The value of ∆E can be either positive, negative or zero. If the new obtained solution is better than the current 

one (negative value of ∆E), it will be accepted and otherwise (zero or positive value of ∆E) the acceptance is 

performed based on a probability given by Boltzmann distribution as follows: 
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4.2. Binary particle swarm optimization 

Binary Particle Swarm Optimization (BPSO) is an intelligent population-based algorithm which can 

search the discrete space to solve optimization problems. Decision variables in this method are “0” or “1” bits 

of a binary string. Several version of this algorithm based on the problem modality has been extended. An 

improved version of binary PSO algorithm has been utilized in this paper expounded in [22]. In any iteration 

the position of particle is updated as follows: 
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Equation (14) shows the velocity updating procedure at it
th

 iteration based on the previous iteration. 

It should be noted here that parameter    plays an important role in the algorithm progress. In primary 

iterations, the value of inertial probability    is high and the algorithm explores the search space. Gradually, 

by increasing the number of iterations and decreasing the    value, the exploration is converted to exploit 

the search space with small changes in variables. 

 

4.3. Optimization procedure 

In spite of the excellent capabilities of PSO algorithms in exploring the feasible region and fast 

convergence, there is a considerable probability for trapping in local optimums in algorithm. This defect has 

been somewhat eliminated with SA method by defining a probability for accepting the worse solutions. If 

this advantage is synthesized into PSO structure, the loosing information on local optimums is decelerated 

while the performance is increased. In this regard, an improved version of binary PSO algorithm 

recommended in [22] is taken into consideration as main algorithm. The BPSO is updated in two stages that 

so called “personal best update” and “Global best update”. In this paper, the personal best update procedure 

of each particle is done based on SA algorithm at any iteration. As, if new obtained solution of particle at it
th

 

iteration was better than of its current personal best then the solution is accepted as personal best (personal 

best updating) and otherwise the acceptance of solution as personal best is done based on probability given 

by (10). Also, the global best is normally updated at any iteration and it is considered as final solution at last 

iteration eventually. This combination assures the acceleration in convergence and increases the ability in 

deep search process. In this paper, a hybrid SA and BPSO is proposed for combining capabilities of these 

methods and eliminating their weaknesses. The flowchart of the proposed hybrid algorithm is illustrated in 

Figure 2. 
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Figure 2. Flow chart of the proposed algorithm 

 

 

4.4. Objective function and constraints 

Some of involved constraints in RCUC implementing are presented in this section. Fuel cost of each 

thermal unit is a second order function of its generated power which is expressed as follows: 

 

                                (17) 

 

In (17),   ,    and    are fuel cost coefficients. The objective function of UC problem in the presence of DG 

units and DR program with the aim of decreasing operation and reliability cost is formulated as (18).  

The mentioned objective function consists of two terms. The first term represents fuel cost of conventional 

and DG units together with starting up cost to meet the demand. The hourly cost of EENS has been shown in 

second term. The developed objective function in (18) is subjected to some constraints as follows:  
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Equation (19) is the reliability constraint and its cost is obtained by (20). The power balance and spinning 

reserve constraints are represented in (21) and (22). The constraints (23)-(28) ensure the proper operation of 

generation units considering the power flow limits. Startup cost can be evaluated based on (29) and also it 

can be considered as a constant value for each generation unit. Constraints on minimum up time, minimum 

down time and ramp rates of generation units are given through (30)-(33), respectively. Network security 

constraints are represented in (34) and (35). 
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4. NUMERICAL STUDY 
The RCUC incorporated with DGs and DR implementation is carried out over the  

IEEE-RTS79 [23]. It is assumed that three 25 MW small scale gas turbines as DGs are located in 3, 9, and 10 

buses. The hourly AC optimal power flow (ACOPF) is performed utilizing MATPOWER toolbox in 

MATLAB software to distribute the generated power considering the network constraints [24].  

The MATPOWER toolbox employs MATLAB Interior Point Solver (MIPS) for ACOPF. The specifications 

of DGs for operation cost and reliability assessment is extracted from [14]. Also, the common information 

related to conventional units in UC problem (e.g. starting up and shutting down costs, ramp rate and etc.) 

have been extracted from [25]. The minimum spinning reserve requirement is assumed to be 10% of hourly 

demand. DR programs are also investigated based on TOU model which is one of the time-based DR 

programs. In order to implement TOU program, a typical load curve has been extracted from [19] and were 

normalized based on peak hour load (2670MW) in this case study. The load curve is divided into three 

intervals: low load period (02:00 to 09:00), off-peak period (10:00 to 19:00) and peak period (20:00 to 

01:00). The elasticity of the loads is shown in Table 1 which is originally taken from [19]. 

 

 

Table 1. The Elasticity of Loads for DR Implementing 
 Peak Off-Peak Low-Peak 

Peak - 0.2 0.016 0.012 
Off-Peak 0.006 - 0.2 0.01 

Low-Peak 0.008 0.01 - 0.2 

 

 

Two scenarios are discussed in numerical studies. In the first scenario, operation without DGs and DR 

program is presented. Then, the new load curve is obtained by TOU implementing on main load curve at any 

bus using first scenario Local Marginal Prices (LMPs). In the second scenario, DGs and conventional units 

are committed in RCUC at presence of new load curve all over the network. The base prices at each load bus 

are equal to average LMPs for 24 hours derived from OPF in the first scenario. The ratio of electricity prices 

has been considered one half of base prices in low load period, equal to base prices in off-peak and equal to 

one and a half times of the base prices at peak period [26]. Participation potential for DR implementation is 

assumed to be 20% at any load point. The acceptable level of reliability is a predefined percentage of 

consumption energy which the maximum allowable value has been considered to be 0.1% of daily consumed 
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energy in this study. The reliability evaluating is based on HL-I. The reliability constraint is applied to each 

feasible solution of particles as follows: 

If EENSTot<Emax, the cost of reliability is calculated based on average of all buses LMPs at any hour. 

If EENSTot>Emax, the trial solution provides an undesired level of reliability and a fixed large penalty 

is allocated to reliability cost in the second term of the cost function. 

Final solution is chosen through several trials considering the stochastic inherent behavior of 

evolutionary algorithm. Parameters setting of proposed algorithm have been determined based on trials which 

are presented in Table 2. The optimal operation of DG units and demand variations due to TOU 

implementation are presented in Figure 3.  

 

 

Table 2. Setting Parameters for Proposed Algorithm 

                              𝜏 

0.05 0.95 200 40 0.98 10 0.2 

 

 

As it can be seen in Figure 3, the price signals from TOU can considerably alter the demand and 

reduce the peak demand by 186 MW. The hourly DGs participation is obtained by proposed hybrid algorithm 

decision beside other conventional units. With increase in load at peak period, DGs participation is increased 

and injected power by small non-expensive units affects the most significant operational indices. Hence, an 

extensive numerical comparison has been presented in Table 3 while the lead time was fixed at 4 h. With 

increase in power injections by DGs, de-committing expensive generators and altering demand profile, relief 

of transmission capacity and decrease of operational costs could be achieved simultaneously. The TOU 

implementation can render some demand from peak load period to low load period to prevent load shedding 

and system voltage collapse when the power system reliability is jeopardized. The initial load forecasting and 

the load curve after applying TOU have been shown in Figure 4. The optimal unit commitment scheduling 

results for both scenario are shown in Table 4 and Table 5. 

 

 

 
 

Figure 3. The injected power by DGs and the change demand due to TOU for LT = 4 h 

 

 

 
 

Figure 4. Load curve before and after TOU implementing 
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Table 4. Optimal Unit Commitment Schedule Results without DG & DR 
Unit/ 
hour 

1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

U1 & U2                         

U3                         
U4                         

U5 & U6                         

U7                         
U8                         

U9                         

U10                         
U11                         

U12                         

U13                         
U14                         

U15 ~ 

U19 

                        

U20 ~ 

U23 

                        

U24                         
U25                         

U26                         

 

 

Table 5. Optimal Unit Commitment Schedule Results with DG & DR 
Unit/hou

r 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

U1 ~ U2                         

U3                         
U4                         

U5 ~ U6                         

U7                         
U8                         

U9                         

U10                         
U11                         

U12                         

U13                         
U14                         

U15 ~ 

U19 

                        

U20 ~ 

U26 

                        

DG1                         
DG2                         

DG3                         

 

 

Achieving a better level of reliability requires the commitment of more units and this increases the 

RCUC cost in dispatch period. However results of Table 3 shows that a better reliability index can be 

obtained with lower operational costs by optimal scheduling of generation units. The improvement of 

considered reliability index (EENS) demonstrates the applicability and usefulness of combining the DGs and 

DR program and proposed algorithm. Lead time is another parameter that affects the reliability indices. The 

LOLP index for different amount of lead time has been presented in Figure 5. This index indicates the 

probability of state that the available generation along with spinning reserve is not able to meet the system 

load and satisfy the constraints.  

 

 

Table 3. Comparison between Several Operational Parameters (LT=4 h) 
Operational Parameters With DG & DR Without DG & DR 

Total cost of RCUC ($) 963,145.97 1,043,806.94 

Start Up Cost ($) 23,000 28,500 

Cost of conventional units ($)  913,768.28 1,011,038.87 
Cost of DGs ($) 25,309.53 0 

Cost of reliability ($) 1,068.16 4,268.07 

Operation Cost reducing due to TOU ($) 52,351.44 0 
Transmission Network Congestion at peak hour (MW) 3,413.73 3,607.4 

Active power Loss (MW) 846.01 830.64 

Load Factor (%) 91.57 84.61 
EENS (MWh/day) 24.09 28.31 
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Figure 5 depicts that the lead time can affect the solution of UC problem. The change in lead time 

results in change of generating unit unavailability and this issue causes an increase or decrease in number of 

committed units to provide the same reliability level. In order to demonstrate the effect of lead time 

variations, Figure 6 and Figure 7 illustrate the total committed capacity of each load curve shown in Figure 4 

while the lead time is varied from 4 to 8 h. It can be seen that the required spinning reserve grows with 

increase in committed capacity to achieve the same desired level of reliability. 

 

 

  
 

Figure 5. LOLP at each hour over the dispatch period 

 

Figure 6. Expected initial load and total committed 

capacity at each hour for two values of lead time 

 

 

To validate the computational efficiency of the proposed hybrid method, the same formulation is 

solved using binary real coded firefly (BRCFF) algorithm and novel adaptive quantum-inspired binary 

gravitational search (QBGSA) algorithm. The considered algorithms have the ability for search in large space 

with fast convergence rate. A more detailed description of this algorithms, including formulating and 

flowchart of optimizing procedure can be found in [27] and [28]. Figure 8 depicts comparison between 

proposed optimization method, QBGSA, BPSO and BRCFF based on RCUC formulation to assess how 

searching the space of problem. High gap between convergence points of algorithms reveal the powerfulness 

of the proposed method against other ones. Considering the obtained results proposed algoritm provides the 

best optimal solution in terms of computation speed and accuracy compared with others. The objective of this 

comparison is to select the most appropriate optimization technique for solving the UC problem in future 

research. 

 

 

  
 

Figure 7. Load curve after TOU and total committed 

capacity at each hour for two values of lead time 

 

Figure 8. Convergence characteristics of proposed 

method, QBGSA, BPSO and BRCFF (LT=4 h) 

 

 

5. CONCLUSION 

In this paper, a new approach which is a combination of two heuristic algorithms was presented to 

solve the UC problem at presence of DGs and DR programs with reliability and AC power flow constraints. 

The enforcement of reliability constraint determines the specific level of generation and committed capacity 
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to maintain the reliability in acceptable range. Numerical and graphical results prove the powerfulness of 

proposed hybrid algorithm and illustrate that the time-based DR program integrated with small non-

expensive DG units is able to lead to a more reliable and further economic operational condition. Remarkable 

improvement of reliability indices and operational efficiency simultaneously will be achievable by accurate 

hourly DG allocating at presence of DR program with negligible cost. Considering the large number of 

accomplished work in context of UC scheduling, there is a need for further investigation in this area. 

Accordingly, employing the several types of DR programs by exactly modeling the participated customer’s 

behavior can lead to more realistic results. 
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