
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 4, August 2017, pp. 2192~2205

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i4.pp2192-2205 2192

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Functional Verification of Large-integers Circuits using a

Cosimulation-based Approach

Nejmeddine Alimi
1
, Younes Lahbib

2
, Mohsen Machhout

4
, Rached Tourki

5

1Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 El Manar Tunis, Tunisia
2National Engineering School of Carthage, University of Carthage, 2035 Charguia II Tunis, Tunisia

1,2,4,5Electronics and Micro-Electronics Laboratory (E. µ. E. L), Faculty of Sciences of Monastir, University of Monastir,

5000 Monastir, Tunisia

Article Info ABSTRACT

Article history:

Received Nov 28, 2016

Revised Apr 26, 2017

Accepted May 10, 2017

 Cryptography and computational algebra designs are complex systems based

on modular arithmetic and build on multi-level modules where bit-width is

generally larger than 64-bit. Because of their particularity, such designs pose

a real challenge for verification, in part because large-integer‘s functions are

not supported in actual hardware description languages (HDLs), therefore

limiting the HDL testbench utility. In another hand, high-level verification

approach proved its efficiency in the last decade over HDL testbench

technique by raising the latter at a higher abstraction level. In this work, we

propose a high-level platform to verify such designs, by leveraging the

capabilities of a popular tool (Matlab/Simulink) to meet the requirements of a

cycle accurate verification without bit-size restrictions and in multi-level

inside the design architecture. The proposed high-level platform is

augmented by an assertion-based verification to complete the verification

coverage. The platform experimental results of the testcase provided good

evidence of its performance and re-usability.

Keyword:

Assertion-based verification

Co-simulation

Cryptography

Hardware description language

High-level verification

Large-integer

Matlab/Simulink

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Nejmeddine Alimi,

Electronics and Micro-Electronics Laboratory (E. µ. E. L),

Faculty of Sciences of Monastir, University of Monastir,

Avenue de l'Environnement - 5000 Monastir, Tunisia.

Email: nejmeddine.alimi@fst.utm.tn

1. INTRODUCTION

Large-integer arithmetic is a set of operations like addition, multiplication, modular reduction, etc that

involves integers larger than the native word size of the general purpose processors, typically, 64-bit.

Depending on the target application requirements, integer operands may have 163-bit, 192 bit, 512-bit, 1024-

bit of length, and more. One place where large integers are used is cryptography, especially in the public-key

family like RSA [1] and Elliptic Curve Cryptography [2], [3].

Large integers are also used in complex

research, high performance computing (HPC) and computational algebra. Large integers operations know a

continuous development in mathematical algorithms [4-6]. Hardware-based implementations of such

algorithms have proved to be more efficient than equivalent software‘s programs in terms of speed and

resources usage. This is mainly due to exploring new design architectures [7-12]. Such designs are generally

written in hardware description languages (HDLs).

To verify that a design works as intended, two technologies are commonly used; Simulation-based

verification and formal verification. The simulation-based verification is the technique generally used for

complex designs. Formal verification, which consists in mathematically checking the functional correctness

of the design, is generally used to verify small designs and corner cases. However in the last decade, formal

verification tools have seen their capacity to verify more complex designs improved to some extent, in part,

because of its coupling with simulation (dynamic formal verification) and the standardization of some

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2193

assertion languages. The goal was to make a complementary technology to the simulated-based one so that

the overall verification methodology could be enhanced.

Regarding simulation-based verification, running testbench in an HDL simulator is the common

approach to verify hardware designs and HDL packages (e.g. VHDL, Verilog, etc.) provide a range of

functions intended to help writing testbenchs. But, to the best of our knowledge, among those packages as

well as functional verification frameworks (e.g. Specman, Jove, etc.), there is no dedicated Application

Programming Interface (API) supporting large-integers operations. A workaround consists on verifying

against equivalent program written at a high-level language. Such programs are run on softwares called

Computer Algebra Systems (CAS) that supports a non-limited precision like MAPLE, MATHEMATICA and

the GMP library. In addition to CAS, there exist a number of domain-specific libraries like Crypto++ and

MIRACL that supplement traditional high level programming languages with large-integer support to target

specific domains like cryptography. Although using CAS and specific libraries to verify HDL designs may

meet the functional verification purpose for very basic and unit-level designs, it remains insufficient for more

complex designs. In fact, because the verification flow is disjoined (DUV and CAS are not ran

simultaneously), the verifcation and interaction with the Design Under Verification (DUV) is limited. On the

other hand, the large-integer data to be used as stimuli to DUV and CAS has to be constant and stored

beforehand. Therefore, guided testbenchs techniques with dynamic updated stimuli cannot be applied.

Co-simulating DUV and its Reference Model requires an efficient communication between the high-

level testbench and the HDL simulator. In this context, some works have been done. For example, the

cosimulation of VHDL designs and a C-based testbench using the Foreign Language Interface (FLI) provided

by ModelSim simulator was proposed in [13]. Similar projects based on FLI and/or PLI (for Verilog) and

written in other high-level languages (e.g. Python) were proposed in [14] and [15]. However because such

languages are architecture limited size, large-integer support in not supported natively. In the other hand,

formal verification techniques for large-integer HDL were applied in simple cases in [16], [17]. Despite

their proved performance, those frameworks remain insufficient to verify large-integer HDL designs of

certain complexity in standalone. In another hand, some works on large-integers using Matlab/Simulink, the

powerful pair of numerical computing and simulation softwares, have been conducted in the design field. As

examples, in [18]–[20] authors speeded up hardware implementations of cryptographic designs by modelling

the schemes in Simulink and generating synthesizable HDL using dedicated tools like HDL coder. Examples

of working around the size restriction has been reported in [18],where authors divided the large operands into

smaller size to take advantage of hardware DSP‘s multiplication capabilities in the target FPGA. In the same

context, in [19], authors used specific multiplication algorithm with a property of splitting up operands into

small size words. While in [20], authors bounded the operand sizes to ordinary bit-length to optimize the

HDL code generation in order to achieve efficient throughput. In verification, Matlab was separately used to

verify ECC (Elliptic Curve Cryptography) designs in [21] and [22] but no details on the evaluation process

or the interfacing with the HDL design were given.

Three challenges are still to take for designs involving large-integers: how to support a hardware

design testbench without size restriction? How to perform verification for complex designs where operations

run at different levels, and how to set the verification structure to verify the full design? In this paper, which

is a revised and extended version of the work presented in [23], we try to draw a path for a solution to those

challenges by introducing a high-level simulation-based verification platform based on Matlab and Simulink.

Besides generating stimuli and monitoring the verification flow, large integer‘s transactions and processing

are supported within the proposed platform. The platform features a high level generation of testbench, a

cross-level and a cycle-accurate verification. Furthermore, Matlab‘s support for large-integer, using its

Variable Precision Integer Arithmetic (VPI) package, is exploited. To complete the verification of a given

design, the control logic part of a DUV is verified formally using the same HDL simulator.

The rest of the paper is organised as follows, section 2 details the proposed platform where the

verification structure, data transformation across stages and the process of settings and controlling the

platform are explained. In section 3, a detailed testcase is given to illustrate the working of the platform

followed by results and discussion. Finally, a conclusion with future works ends the paper.

2. THE PROPOSED PLATFORM

2.1. Overview

The design methodology of the platform follows the Simulation-based approach, where stimuli are

generated, applied to the DUV and responses are compared to the expected ones. Typical verification

framework based on high level design language includes a stimuli generator, a Reference model (also

referred to as Golden Model) which is usually written at a higher level of abstraction, and a comparator. We

abstract the functional description of the platform into three flows, i.e., control flow, data flow and

http://en.wikipedia.org/wiki/Numerical_analysis

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2194

verification flow, as shown in Figure 1. The Control flow controls the process of verification through the

platform. It fixes the settings; i.e. the parameters of the blocks constituting the platform, delay times,

sampling times, etc. Data flow represents the transformations that data undergoes, starting from the

generation of large-integer operands, passing through the input adapter, the DUV, the output adapter and,

finally, entering the comparison/checking blocks. The third flow, Verification flow, verifies the functional

correctness of the DUV. We chose to build the verification flow around two complementary simulation-

based verification approaches: testbench and assertion-based verification. We guide the testbench via a

verification structure with considerations of a coverage plan. When testbench is launched, outputs of DUV

and reference model are compared. Results are then transferred to a Scoreboard to be analyzed. We write

assertions in Property Specification Language (PSL) [24], standard assertion language, inside the DUV and

represent a precise description of the DUV‘s behavior. Note that we chose PSL for property description as

it‗s in widespread use in industry and compatible with many hardware description languages. PSL assertions

are checked by the HDL simulator during the simulation. The assertions verification results (pass/fail) are

also sent to the scoreboard to be analyzed and new stimuli are generated in the next testbench according to

the updated functional coverage.

Figure 1. Functional Description of the platform.

2.2. The Functional Verification Process

The purpose of the ―Functional‖ verification process is to verify that the DUV matches its

specification. This process should verify that the implemented functions behave correctly. The verification

technology used is the simulation-based verification, more precisely a cosimulation between

Matlab/Simulink and ModelSim, and simulated assertions written in PSL.

Globally, we followed a coverage-driven random-based verification approach. The level of

verification can be of unit/sub-unit or cores/blocks level and two simulation-based verification techniques are

used jointly, depending on the partition of DUV being verified. In fact, a common practice in the integrated

circuits design community is to divide designs into datapath and control logic (Figure 2). Because of their

differences, appropriate verification schemes can be applied to each. Datapath units which involve large-

integers processing can be verified using the Matlab/Simulink testbench where large-integers are supported

as will be detailed in the next section. Datapath usually consists of uniform arrays of cells, such as bits in a

register file, slices in an adder and so on. The remaining logic is regarded as control logic.

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2195

Figure 2. Datapath and control logic partition for verification

An advantage of using HDL cosimulation with Matlab/Simulink testbench is the possibility of

cross-level datapath verification, as will be more detailed later. This means that data‘s output of different

hierarchical level can be probed and compared in run-time against Matlab models. On the other hand, control

logic can be accurately specified by properties and assertions, and thus is verifiable using PSL. The DUV‘s

control logic is specified by a set of proprieties written in PSL assertions.

The verification structure is the set of Matlab Function Blocks within the platform in charge of the

verification plan. Figure 3 represents the architecture of the ―Verification structure‖. The latter is divided in

two block sets, connected to form a loop with the rest of the platform. The first set is composed of stimuli

generation blocks while the second is composed of analysis blocks (―Comparator‖, a ―Checker‖ and a

―Scoreboard‖). Within the first, the Data output of the DUV (Z_DUV), is verified against the Reference

Model output (Z_Ref), the result of the comparison is transferred to the Scoreboard. According to the

feedback, the first set generates new stimuli corresponding to the next coverage step and/or to the next

property to be verified. The DUV is here a modular arithmetic operation. The objective is to ensure that DUV

matches its specification.

The functional verification approach is a white-box approach (i.e. the HDL design is known to the

verifier). Because of sampling time difference, control signals and data were assigned to separate blocks

(Figure 3). Both blocks are driven by a block called ―Testbench Scenario Update‖. The role of the latter is to

update control signals and data according to verification coverage.

Figure 3. The verification structure

Inside the Data block, a Random Number Generator (RNG) produces constrained random large-

integer data (X,Y operands) using a VPI seed value. An overview of the functioning of the platform‘s blocks

is given in Table 1. The comparator receives data from DUV and Reference Model, converts it to VPI data

type, makes the comparison, and finally transfers the result to the Scoreboard. Sub-DUV Checker checks the

functional correctness of internal operations of DUV. It receives the probed metadata from the DUV,

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2196

converts it to VPI data type, calculates the internal operation bit-wise as a reference operation, makes the

comparison and finally transfers the result to the Scoreboard. As illustrated in Figure 3, the comparator and

the Sub-DUV Checker update the scoreboard with results as long as the cosimulation is going on. The control

logic verification, not represented in Figure 3, is done with PSL assertions simulated in the HDL Simulator.

Table 1. Functioning of platform blocks

Phase Block Corresponding pseudo-code

S
ti

m
u

li
 p

re
p
ar

at
io

n
 a

n
d
 G

en
er

at
io

n

Test-

bench

Scenario

Update

new_seed=Compute_seed(feedback(i)) //constraint on seed to hit specific data interval

 Do{

 CRLI_1 = randint(vpi(new_seed)); (*) // CRLI = Constrained Random Large-Integer

 CRLI_2 = randint(vpi(new_seed));

 OK = Verify_seed (new_seed, CRLI_1,CRLI_2); } // to verify that RLI is constrained as desired

While (NOT (OK)) // RLIs do not match the desired interval.

Signals

Reset <= ‗1‘;

When T = T0, Reset <= ‗0‘; // T0 = n0 * CLK Cycles

When T = T1, Start_frames <= ‗1‘ // T1 = n1 * CLK Cycles

When T = T‘1, Start_frames <= ‗0‘; // T’1 = T1 + 1 CLK Cycle

Data
X<= VPI_to_binary_matrix(CRLI_1);

Y<= VPI_to_binary_matrix(CRLI_2);

Signals
When T = T2, Start <= ‗1‘ // T2 = n2 * CLK Cycles

When T = T‘2, Start <= ‗0‘; // T’2= T2 + 1 CLK Cycle

Reference Model

X_vpi<= binary_matrix_to_VPI(X); // inside the Reference Model

Y_vpi<= binary_matrix_to_VPI(Y); // inside the Reference Model

Z_Ref<= Reference_Model(X_vpi,Y_vpi); // inside the Reference Model

V
er

if
ic

at
io

n
 e

x
ec

u
ti

o
n

 a
n
d

 a
n

al
y

si
s

Compar-

ator
Compare_res <= (Z_DUV == Z_Ref)?

Sub-DUV

Checker

Op_i,…,Op_k<= binary_matrix_to_VPI(Probe_i,…,Probe_k); // Operands of a selected internal operation

are probed from DUV

Int_Matlab_output<= Internal_operation(Op_i,…,Op_k); // The equivalent Matlab operation is calculated.

Int_DUV_output<= binary_matrix_to_VPI(Probe_n); // The result of the internal operation is also probed

Check_res<=(Int_DUV_output ==Int_Matlab_output)? // results are compared

Property

assertions

(**)

…

psl assert_done_pulse : assert always({done} |->

 next {!done} abort !RST_N) @ (posedge CLK);-- signal DONE is a pulse of one clock cycle

…

Score-

board

Data_ coverage=Measure_coverage(Compare_res,Check_res,CRLI_(coverage_step),

Total_Assertions_coverage)

feedback(i+1)=Compute_new_testbench_scenario(Data_ coverage);

* randint() is a random and uniformly distributed VPI number.

** ―Property Assertions‖ is not a block of the platform; it runs in HDL simulator.

2.3. Large-integer Data Processing

Large-integers data processing is an important part of the platform. Processing is carried out in

Matlab, Simulink and simulated hardware. We assume that the platform, shown in Figure 4, verifies the

operation f: Z = f(X,Y), where: X, Y and Z are three large-integers. Control signals are reset and start. Done is

an output signal that indicates the end of the DUV‘s operation. Simulation control is handled by Simulink.

The co-simulation stage (stage 5 in Figure 4) contains the Reference Model and the DUV. The

Reference Model is the DUV‘s equivalent model written in Matlab inside a Matlab Function block. The

DUV is represented by the HDL Cosimulation block. The DUV‘s simulator (ModelSim) is launched and

linked to Simulink using a Matlab code based on a TCL script. When communication is established, the

simulator functions as the server and Simulink as a client. The HDL simulator responds to simulation

requests it receives from the Simulink Client. The communication between the HDL Simulator and Simulink

is done through the HDL Verifier™ tool. The maximum length of integer data types supported by HDL

Cosimulation Block in Simulink is 128-bits. To work around this limitation, the DUV was masked in an

HDL wrapper that stacks the received data frames into a logic vector that matches the input data size of the

DUV and vice-versa for the output data. Two kinds of adapters were used in the platform (Frontend and

Backend adapters). The first one adapts data and control signals received in Matlab/Simulink formats to

DUV supported formats. Within this stage, each data matrix is converted into a sequence of scalars using the

Simulink‘s block ―Unbuffer‖. The Unbuffer unbuffers an M-by-N input into a 1-by-N output (Figure 5(a)).

That is, inputs are unbuffered row-wise so that each matrix row becomes an independent time-sample in the

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2197

output. As example, a 192-bit data fits into a 24-by-8 matrix, and the Unbuffer Block will unbuffer the 24-

by-8 input into an 8-bit length vector. Then, each data is converted to standard logic vector via the ―Data

Type Conversion‖ block. The Backend adapter adapts data and signals from DUV to the Comparator and

Checker blocks. In this stage, the HDL block output data is re-buffered into a decimal matrix using a

Simulink block ―Delay Line‖. The latter performs the reverse task of the ―Unbuffer Block‖, rebuffering a

sequence of Mi-by-N matrix inputs into a sequence of Mo-by-N matrix outputs (Figure 5(b)).

Figure 4. Block diagram of the proposed verification platform

Figure 5. The adapters

An attention should be given to the reading time of the ―Delay Line‖ output so that the data matrix

can be read entirely. In fact, the DUV wrapper, detailed in a latter paragraph, was designed to send each of

Z_DUV frames at every clock‘s positive edge starting from instant when the output signal ―done‖ is on and

according to the ―Delay Line‖ Block functioning, the entire matrix representing Z_DUV can be read by the

Comparator Block at time T calculated in formula 2:

T=Time(done=1)+Nbr_of_Z_frames*T(Z_sample_period) (2)

Unbuffer

N

M ...
N N

M

DUV Input

 (HW)

 Data Type

Conversion

Delay

 Line
 ...

N N

Mi = 1

DUV ouput

 (HW)

N

Mo

(a) The Front end Adapt er

(b) The Backend Adapt er

Data m at rix

Data fram es

Data fram es

Data m at rix

Unbuffer

 Data Type

Conversion

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2198

Where: Time(done=1) is the time when done is set to ‗1‘, Nbrof Z frames is the total number of Z frames outputted

from HDL Block, and T (Z sample period) is the sampling time of Z.

The Figure 6 illustrates the communication between Simulink and the DUV via the wrapper. As

shown, Inputs (reset, start_frames, start, X, Y) are stimuli from Matlab/Simulink, while Outputs (Done,

Z_DUV, Probe1… Probe n) are results sent back to Matlab/Simulink for comparison and internal checking.

The start_frames is an extra input to the DUV Wrapper to control the reception of frames from Data block.

The role of the Wrapper is to handle a cycle-accurate transfer of data between Simulink and the

DUV without modifying the latter‘s description. The wrapper , written in VHDL, is based on an Input

converter and two Output converters. One dedicated to DUV‘s result, the other to internal signals (Figure 7).

Figure 6. UML sequence diagram of Simulink – HDL block communication

Figure 7. The HDL Cosimulation block data flow

As illustrated in Figure 8(a), The ―Input Converter‖ module receives data (X,Y) from

Matlab/Simulink, stacks the w-bit length frames (fi) into Standard logic vector. The m-bit matching the size

of the expected DUV input data size (f0 to fk frames) are extracted (―unpadding‖ operation). When the

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2199

―Output Converter‖ module receives the result, bits are added to the logic vector to bring it to the required

size (fk+1 to fn frames) (―padding‖ operation). Then, the logic vector is sent in w-bit frames to the next stage

(Figure 8(b)). Similarly, the ―Debug Converter‖ module brings DUV‘s internal signals to the next stage.

Figure 8. The DUV‘s Wrapper units.

2.4. Platform Control, Settings and Execution

An essential side of the platform is the control and settings. Platform control consists in controlling

the execution of the testbench by scheduling the stimuli to the DUV/Reference Model and the outgoing

signals/data to be verified. The challenge here is to synchronize the Matlab/Simulink blocks, which are

inherently untimed, with an RTL-level design running in an event-based simulator (ModelSim). The Platform

Control process is abstracted in the timed finite state machine (TFSM) represented in Figure 9.

Figure 9. The finite state machine of the Platform Control

Because Matlab Function Block, and Matlab language in general, is untimed, the timing and the

delivery of the data is controlled by the HDL simulator (when Matlab Function Block is located after the

DUV) and/or by the Block‘s sampling time setting (when Matlab Function Block is located forward). Using a

Simulink Digital Clock, the stimuli (control signals and data) are generated in specific simulation times. The

transition delay times between the TFSM states are presented in Table 2.

Platform settings are the settings of parameters related to each block of the platform. That is, the

Simulink blocks parameters (Unbuffer, Delay Line, etc.) and the sampling times for Matlab function blocks

(Verification structure blocs). A graphical user interface (GUI) was developed to facilitate this task.

In addition to the choice of Simulink blocks and algorithms inside Matlab Function blocks, the

functioning of the platform relies on the timing settings. In fact, for each block, a sample time needs to be

specified. In Simulink, the sample time of a block is a parameter that indicates when, during simulation, the

block is active and if appropriate, updates its internal state. For HDL cosimulation Block, a sample time has

X

Y

X

Y

m

m

Recept ion Unpadding
Clk

reset

start_frame

done

Z

w

Z

w

w

m

Transm issionPadding

+...
f0

+

fk

w w

+...+

fn

w

+...
f0

+

fk

w w

+...+

fn

w

+...
fk

+

fn

w w

+...
f0

+

w

(a) The input convert er

(b) The out put convert er

Data vectors

Data frames

Data vector

Data frames

...
f0f1fk

m

...
f0f1fk

m

...
f0f1fk

m

Start data

generat ion

process

Start test

 bench

 param s

update

reset

reset = 0

reset = 1

start_fram es = 1

sim _t im e = T0 sim _t im e = T1

Start data

generat ion

process

- finished

start_fram es = 0

sim _t im e = T1' sim _t im e = T2

Start

Large-int

operat ion

start = 1

sim _t im e = T2'

Large-int

operat ion

start = 0

Start test

 bench

 params

 update

- finished

Update = 1
Update = 0

sim _t im e = Tp

wait T1 wait T1'

wait T0

wait T2

wait T2'

wait Tp wait Tf

Comparison

&

verificat ion

wait Td

init

Process results

 & display

idle

sim _t im e = Tf
sim _t im e = Td

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2200

to be set for each input/output. Sample times of platform blocks were set to HDL clock period except the

―reference model‖ whom the execution depends on the triggering signal received from the Stimuli Generator

Block. The sample time of Data block can be calculated using formula 5 derived from formula 4:

UBO_Sample_Time = UBI_Sample_Time / Data Matrix_rows_Nbr (4)

Where UBO is ―Unbuffered Block Output‖

UBI_sample_time = DUV_clk_period * Data Matrix_rows_Nbr (5)

Where UBI is ―Unbuffered Block Input‖

As UBI is connected to Data block, the value of Data block‘s sample time is the same as that of

UBI. Because the Unbuffer only accepts fixed-size input, output of Data sub-block cannot be set to variable

size type. Therefore, data bit-size (operands) has to be set manually by user for different operands bit-size. In

practice, Sample time can be set automatically by working around the restriction of the Unbuffer. To do so,

the size of all data transferred between blocks in the platform are chosen as a constant that holds all standard

sizes of finite-field commonly used in Public-key Cryptography (for instance, 1024). Therefore, the Number

of data matrix rows is also a constant (fixed size-input) and the Sample Time of UBI, becomes only DUV‘s

Clock dependent. The choice of a unique size simplifies the transmission/reception of data inside each block

and only bits corresponding to operands real size (e.g. 192-bit) are used. This task is done by the Wrapper as

it brings operands to the required size by the padding and unpadding processes previously detailed. User has

to place the VHDL design code(s) inside a specific folder for co-simulation, adjust wrapper‘s parameters to

the size of the HDL design operands and connect wrapper‘s probes (outputs) to desired DUV‘s internal

signals. The Output Data Adapter, represented by the Simulink block ―Delay Line‖, executes the reverse task

of the Unbuffer Block. That is, it transforms a sequence of data frames into a matrix.

When verification is launched, PSL assertions test results are processed in Matlab workspace. Then,

results are carried to Scoreboard along comparator and checker results. The Scoreboard computes the new

verification coverage and generates a feedback summarizing the coverage. According to the feedback, a new

testbench scenario and parameters targeting the uncovered assertions and/or datapath logic not yet verified

are set. Then, the next testbench will be ready to run.

Table 2. Time Periods of the TFSM

Delay time symbol Significance Value

T0 Time to wait before starting a new test T0 = n0 * CLK Cycles

T1 Time to wait before Starting Data generation process T1 = n1 * CLK Cycles

T2 Time to wait before Starting Data generation process T2 = n2 * CLK Cycles

Td Time to wait before Done = 1 Td = nd * CLK Cycles

Tf Time to wait before Feedback is ready Tf = nf * CLK Cycles

Tp Time to wait before Testbench Parameters are updated Tp = nd * CLK Cycles

Tx‘ One clock cycle after Tx Tx‘ = Tx + CLK Cycle

2.5. Verification Platform with FPGA in-the-loop

Another aspect of reusability of the proposed platform is the possibility to switch from HDL

cosimulation to real hardware testing while keeping the same verification platform. This option was tested

with the ―Hardware-in-the-loop‖ (HIL) option provided by Simulink for FPGA boards equipped with Gigabit

Ethernet port (an Altera DE2-115 board with Cyclone IV EP4CE115 FPGA was used). This way enables

controlling and verifying a design (a modular multiplier, more details in section 3) running on FPGA from

the Matlab/Simulink platform with the design‘s real execution time (Figure 10). However, this came at a cost

as that internal verification (Sub-DUV Probing) becomes inaccessible due to the FPGA development‘s tool

restrictions on design‘s coding style and wrapping.

To conclude this section, Table 3 gives a comparison between the present work and similar works

from literature. The Table shows that the proposed platform while sharing some features with other works

(supported HDL, cosimulation, etc.), stands out with more powerful HVL, unrestricted large-integer support

and adaptability to HIL.

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2201

Figure 10. Verification Platform with FPGA-in-the-loop

Table 3. Comparison with similar verification platforms
Verification

environment

HW Verification

Language (HVL)

Supported

HDL

Interfacing with

Simulator

Cosimulation with

VHDL simulator

Large-integer

support

DUV in

Hardware

[13] C VHDL FLI Yes Limited No

[14] Python VHDL/Verilog FLI/VPI Yes Limited No

[15] Python Verilog VPI No Limited No

[25] Python Verilog VPI No Limited No

[26] Ruby Verilog VPI No Limited No

This Work Matlab/Simulink VHDL/Verilog
HDL Verifier®

+ Wrapper
Yes Unlimited Yes (HIL)

VPI : Verilog Procedural Interface, FLI : Foreign Language Interface,

PLI : Procedural Language Interface , HIL : Hardware-in-the-loop.

3. CASE STUDY & RESULTS

 As case study of the platform, we consider the operation Z = f(X,Y) , where X, Y and Z are three

large-integers. Control signals are reset and start, while Done is an output indicating the end of the operation.

The goal is to evaluate the cost of the bit-size, the number of assertions and the internal signal probing on the

platform.

3.1. Large-integer Arithmetic Background

Large-integer arithmetic has a variety of applications in cryptography. Among these, AES, RSA and

ECC. As illustrated in the Figure 11, ECC schemes are based on Point operations, primarily on the point

multiplication and also on the operations on which it point multiplication relies, i.e. point addition and

doubling. In turn, those point operations are made on finite-fields arithmetic, a particular field of large-

integers. This implies that finite-field arithmetic are determinant to design an efficient elliptic curve

cryptosystem. Finite-field arithmetic is the arithmetic of integers modulo a large prime p. Arithmetic in a

finite-field is different from standard integer arithmetic and all operations performed in the finite-field result

in an element within that field. Three kinds of fields that are used for efficient implementation of ECC

systems are prime fields (Fp), binary fields (F2
m
), and optimal extension fields (Fp

m
). Those fields were

extensively studied and this has resulted in numerous algorithms. Finite-field arithmetic is a practical

example of large-integer arithmetic usage and is the cornerstone of cryptographic schemes such as ECC.

http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Arithmetic

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2202

Figure 11. Hierarchy of required underlying operations

3.2. The DUV

A hardware implementation of a Finite-field multiplication algorithm called the ―Double, add, and

reduce‖ (DAR) multiplier [27] was used as a DUV. The DAR multiplier is based on the Interleaving

Multiplication Algorithm [28]. Given a k-bit natural x and a natural y the product z = x . y can be computed

as follows formula 6:

x.y = (xk-1 2
k-1

+ xk-2 2
k-2

+ … +x0 2
0
).y (6)

The latter can also be expressed as in formula 7:

x.y = (… ((0.2+ xk-1 y)2+ xk-2 y)2+…+ x1y)2+x0y (7)

If all operations (addition and doubling) are executed mod m, the result is product = x .y mod m.

The corresponding (left to right) algorithm, written in ADA syntax, is presented in Listing 1. The function

―mod_m_addition(x, y, m, k)‖ computes x + y mod m ; x, y, and m being k-bit numbers, according to the

binary mod m Addition. This unit of the datapath represents an internal large-integer operation. In the design,

operands were set to recommended sizes (192, 384, 512, 1024) for cryptographic use by the NIST [29].

Listing 1 Double, add, and reduce (DAR) algorithm.

p := 0 ;

for i in 0 .. k-1 loop

 p := mod_m_addition(p, p, m, k);

 if x(k-i-1) = 1 then

 p := mod_m_addition(p, y, m, k);

 end if;

end loop;

product := p;

The datapath and a part of control logic corresponding to the hardware description of Algorithm 1

are shown in Figure 12. The DUV is an ideal case for the platform testing with internal large-integer

operation and a distinct control units and datapath. In practice, in addition to the functional validation

(comparing DUV against reference model), each partition modules were verified. For datapath, ―Mod m

Adder‖ module was the target of internal checking while the control logic units were verified with PSL

assertions.

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2203

Figure 12. The DAR multiplier (DUV)

3.3. Tests, Results and Discussion

The DAR multiplier was verified with the platform on an 32-bit Intel Pentium Dual-Core processor

(2,5 GHz, 2GB RAM, 2MB cache memory). The goal is to measure the cost over time of the bit-size, the

number of assertions and the number of probes. A campaign of tests was carried out for each parameter.

 Detailed execution times of the platform as a function of operands sizes were measured using

Simulink's Profiler. The results are presented in Figure 13. The latter shows that the total recorded time

increases quite linearly with operands size but is still acceptable for an operation on 1024-bit. For the four

bit-sizes, the "HDL co-simulation block" occupies a small portion of the execution time (between 2.81 % and

5.18%) and remains rather constant. As can be seen in the same figure, the total recorded time is dominated

by the initialization in average sizes (192 and 384). This aspect decreases in larger sizes in favor of the group

of blocks " data, Scoreboard, and testbench Updater" reaching ≈40% of the total recorded time for 1024-bit

size. This can be explained by the fact that the time used to the guided generation, adaptation and

transmission of data stimuli increases with bit-size. It should be noted that in order to get a correct measure of

bit-size cost, data across the platform was transmitted/received in the exact bit-size without using the

padding/unpadding operations and related automated settings.

Figure 13. Execution time (in sec) of platforms‘ blocks

In order to evaluate the impact of the PSL assertions on the execution time of the platform,

measurements of the latter function of the number of PSL assertions were made and the results, for the 4

sizes, were plotted in Figure 14. To reach a high number of assertions, the assertions of the testcase were

replicated. As shown in the in the four curves, the number of PSL assertions checked during co-simulation is

fairly stable for assertions below 40 PSL assertions. From 40 assertions, the execution time increases

linearly but with a low slope for the 4 curves (0.0052 <αi <0.0381; i = 192; 384; 512; 1024). It can be

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2192 – 2205

2204

concluded that the PSL assertions increase the execution time but the more the number gets larger (> 100),

the more the impact on time is limited. It should be noted that the ―steep slope‖ aspect of the curve is due to

the high steps taken, on the horizontal axis, from the 200
th

 assertion.

To evaluate the impact of the number of Probes on the execution time, measurements of the

platform time for a fixed DUV bit-size (1024 bit) function of the number of probes were made and the results

are shown in Figure 15. In this test, the outputs of the "HDL co-simulation" block, the number of sub-blocks

of the "Backend Adapter" stage and the inputs of the "Checker" were adjusted to match the corresponding

number of probes. According to results, when the number of probes increases, the execution time increases

linearly but with a low slope (α ≈ 0.4). It can be said that the number of probes increases the execution time

of the verification process but does not penalize it especially because a small number of probes is generally

needed for verification.

Analysis of the three tests campaign results indicates that the parameters (bit-size, number of

assertions and number of probes) has only a moderate impact on the execution time of the verification

platform, thus justifying its efficiency.

Figure 14. Platform's execution time (in sec) as a

function of PSL assertions

Figure 15. Execution Time (in sec) as a function of

number of probes

4. CONCLUSION

In this paper, we have presented a novel platform intended to verify hardware large-integer based

designs, the first one based on Matlab/Simulink to the best of our knowledge. We demonstrated that the

proposed platform holds a number of interesting aspects for the task of verification. First, this is run time and

cycle-accurate verification. Second, flexibility, where minor adjustments in Matlab/Simulink blocks

parameters, different bit-length can be verified with a moderate impact on execution time. Besides, testbench

scenarios are adjustable to meet desired verification coverage where datapath and control logic can be

verified simultaneously and in different level of the design hierarchy. Third, reusability: In this paper, we

developed testcase on finite-field arithmetic but we also tested the platform to verify a scalar multiplication

(Figure 11) this proves that the platform is adapted to more complex systems like cryptographic primitives.

Future work will involve improvements like reducing synchronisation and data transfer overhead,

limiting the complexity of the wrapping module, and enabling internal verification in HIL. Furthermore, an

interesting area of application of the platform that would need further efforts is the verification of designs

under development, with possibility of replacing unachieved blocks with equivalent Matlab/Simulink

models. Another extension of the platform, in the field of cryptanalysis, could be using Matlab‘s data

processing features to verify design robustness to side-channel and fault injection attacks in HIL.

REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman, ―A method for obtaining digital signatures and public-key

cryptosystems,‖ Communications of the ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[2] Victor S. Miller, ―Use of Elliptic Curves in Cryptography,‖ in Advances in Cryptology — CRYPTO ’85

Proceedings, 1986, vol. 218.

[3] N. Koblitz, ―Elliptic curve cryptosystems,‖ Mathematics of Computation, vol. 48, no. 177, pp. 203–203, Jan. 1987.

[4] Y. Kong, S. Asif, and M. A. U. Khan, ―Modular multiplication using the core function in the residue number

system,‖ Applicable Algebra in Engineering, Communication and Computing, Jul. 2015.

[5] M. T. Hamood and S. Boussakta, ―Efficient algorithms for computing the new Mersenne number transform,‖

IJECE ISSN: 2088-8708

Functional Verification of Large-integers Circuits using a Cosimulation-based Approach (Nejmeddine Alimi)

2205

Digital Signal Processing, vol. 25, pp. 280–288, Feb. 2014.

[6] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede, ―Novel RNS Parameter Selection for Fast Modular

Multiplication,‖ IEEE Transactions on Computers, vol. 63, no. 8, pp. 2099–2105, Aug. 2014.

[7] T. Wu, S. Li, and L. Liu, ―Fast RSA decryption through high-radix scalable Montgomery modular multipliers,‖

Science China Information Sciences, vol. 58, no. 6, pp. 1–16, Mar. 2015.

[8] S. Antão and L. Sousa, ―A Flexible Architecture for Modular Arithmetic Hardware Accelerators based on RNS,‖

Journal of Signal Processing Systems, vol. 76, no. 3, pp. 249–259, 2014.

[9] K. Jarvinen, V. Dimitrov, and R. Azarderakhsh, ―A Generalization of Addition Chains and Fast Inversions in

Binary Fields,‖ IEEE Transactions on Computers, vol. 64, no. 9, pp. 2421–2432, Sep. 2015.

[10] G. D. Sutter, J. Deschamps, and J. L. Imana, ―Efficient Elliptic Curve Point Multiplication Using Digit-Serial

Binary Field Operations,‖ IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 217–225, Jan. 2013.

[11] S. Suma and V. Sridhar, ―Design of Multiplier for Medical Image Compression Using Urdhava Tiryakbhyam

Sutra,‖ International Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 3, pp. 1140–1151, 2016.

[12] G. Arepalli and S. B. Erukula, ―Secure Multicast Routing Protocol in Manets Using Efficient ECGDH Algorithm,‖

International Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 4, pp. 1857–1865, 2016.

[13] A. Pool, ―Using ModelSim Foreign Language Interface for C – VHDL Co-Simulation and for Simulator Control on

Linux x86 Platform,‖ 2014.

[14] Potential Ventures, ―cocotb : COroutine based COsimulation TestBench environment for verifying VHDL/Verilog

RTL,‖ 2014.

[15] B. Smith, T. Loftus, J. Greene, and X. Wu, ―PyHVL, a verifcation tool,‖ 2007.

[16] F. Farahmandi and B. Alizadeh, ―Groebner basis based formal verification of large arithmetic circuits using

Gaussian elimination and cone-based polynomial extraction,‖ Microprocessors and Microsystems, vol. 39, no. 2,

pp. 83–96, Mar. 2015.

[17] T. Pruss, P. Kalla, and F. Enescu, ―Efficient Symbolic Computation for Word-Level Abstraction From

Combinational Circuits for Verification Over Finite Fields,‖ IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, no. 7, pp. 1206–1218, Jul. 2016.

[18] C. Siggaard, ―Using MatLab to aid the implementation of a fast RSA processor on a Xilinx FPGA,‖ in Nordic

MathWorks User Conference, 2008.

[19] D. B. Cousins, K. Rohloff, C. Peikert, and R. Schantz, ―An update on SIPHER (Scalable Implementation of

Primitives for Homomorphic EncRyption) — FPGA implementation using Simulink,‖ in 2012 IEEE Conference on

High Performance Extreme Computing, 2012, pp. 1–5.

[20] D. Cousins, J. Golusky, K. Rohloff, and D. Sumorok, ―An FPGA Co-Processor Implementation of Homomorphic

Encryption,‖ in 2014 IEEE High Performance Extreme Computing Conference, 2014.

[21] P. C. Realpe, V. Trujillo-Olaya, and J. Velasco-Medina, ―Design of elliptic curve cryptoprocessors over GF(2^163)

using the Gaussian normal basis,‖ Ingeniería e Investigación, vol. 34, no. 2, pp. 55–65, Jul. 2014.

[22] A. Kaleel Rahuman and G. Athisha, ―Reconfigurable Architecture for Elliptic Curve Cryptography Using FPGA,‖

Mathematical Problems in Engineering, vol. 2013, pp. 1–8, 2013.

[23] N. Alimi, Y. Lahbib, M. Machhout, and R. Tourki, ―Simulation-based verification of large-integer arithmetic

circuits,‖ in 2016 1st IEEE International Verification and Security Workshop, IVSW 2016, 2016, pp. 19–24.

[24] Accellera, ―Property Specification Language Reference Manual.‖ 2004.

[25] Decaluwe and Jan, ―MyHDL: a Python-based hardware description language,‖ Linux Journal, no. 127, p. 5, 2004.

[26] S. N. Kurapati, ―Specification-driven functional verification with Verilog PLI & VPI and SystemVerilog DPI,‖

2007.

[27] J.-P. Deschamps, Hardware Implementation of Finite-Field Arithmetic. McGraw Hill Professional, 2009.

[28] F. Rodriguez-Henriquez, N. A. Saqib, A. D. Pérez, and C. K. Koc, Cryptographic Algorithms on Reconfigurable

Hardware. Springer Science & Business Media, 2007.

[29] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, ―NIST Special Publication 800-57, Recommendation for

Key Management Part 1: General (Revision 3),‖ 2012.

