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 Two-wheeled self-balancing robot is a popular model in control system 

experiments which is more widely known as inverted pendulum and cart 

model. This is a multi-input and multi-output system which is theoretical and 

has been applied in many systems in daily use. Anyway, most research just 

focus on balancing this model through try-on experiments or by using simple 

form of mathematical model. There were still few researches that focus on 

complete mathematic modeling and designing a mathematical model based 

controller for such system. This paper analyzed mathematical model of the 

system. Then, the authors successfully applied a Linear Quadratic Regulator 

(LQR) controller for this system. This controller was tested with different 

case of system condition. Controlling results was proved to work well and 

tested on different case of system condition through simulation on 

matlab/Simulink program. 
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1. INTRODUCTION 

The research on two-wheeled Self-balancing robot has gain momentum over the last decade due to 

its nonlinearity and unstable nature dynamic system. Motion of two-wheeled self-balancing robot is governed 

by under-actuated configuration, i.e., the number of control input is less than the number degrees of freedom 

to be stabilized which makes it difficult to apply the conventional robotic approach for controlling the system 

therefore, the two-wheeled self-balancing robot is a good platform for researchers to investigate the 

efficiency of various controllers in control system. The research on two-wheeled self-balancing robot is 

originally based on inverted pendulum and cart model. However, the two-wheeled self balancing robot 

system is no longer constrained to the guide rail but moves in its terrain while balancing the pendulum. Thus, 

it needs a good controller to control itself in upright position and desired heading angle without the needs 

from outside [1]. 

Various design of controllers and analysis technique had been proposed by numerous researchers to 

control the two-wheeled self-balancing robot such that the robot able to balance itself. In [2-4] a fuzzy logic 

based controller was designed and proven successful to control an inverted pendulum model. In [5], motion 

control of two-wheeled self-balancing robot was proposed using linear state-space model. In [6], dynamics 

was derived using a Newtonian approach and the control was design by the equations linearized around an 

operating point. In [7-9], and [10] a linear stabilizing Proportional Integral Derivative (PID) and Linear 

Quadratic Regulator (LQR) controller was derived by a planar model without considering robot’s heading 

angle. The above control law was designed by a planar model without considering robot’s heading angle 

therefore still cannot be implemented into a real system. In [11], a comparison between PID and LQR has 
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been presented while the heading angle of the robot was also studied in the dynamic equation that was 

derived using Lagrangian method. 

This paper concerns the two-wheeled self-balancing robot system as the research object, which uses 

the Newtonian mechanics equation method to derive the dynamic equation. The linear state-space model that 

approximates the nonlinear system in the region of operation than obtained by assuming the system operates 

only around an operating point and the signals involved are small signal. Based from the mathematical model 

of the system, LQR Controller is designed to control the system tilt angle and heading angle so that the 

system can be controlled to move to a desired position. Performance of control strategy with respect to the 

output tilt angle ( ) and heading angle ( ) are examined and presented by using matlab / Simulink program. 

 

 

2. RESEARCH METHOD  

2.1. Mathematical Modeling of the Robot 

The robot consists of 3 major parts, namely the wheels, platform, and the pendulum as the mass. 

The robot with its three degrees of freedom is able to linearly move which is characterized by position x, able 

to rotate around the z-axis (yaw) with associated angle ( ), and able to rotate around the y-axis (pitch) where 

the movement is described by angle ( ) as shown in Figure 1. The inputs of the system are the torques    and 

   which both are applied to the two wheels which located on the left side and right side of the robot. List of 

parameters for the two-wheeled self-balancing robot are shown in Table 1. These parameters are based on the 

project conducted by Li as stated by [12]. The objectives of the control schemes are to control the system’s 

model shown in Figure 1 to move to a desired position while keeping the robot’s tilt angle in the upright 

position. The controller must be able to stabilize the system with acceptable overshoot and settling time. 

 

 

 
 

Figure 1. A model of two-wheeled self-balancing robot 

 

 

Table 1. List of parameters of two-wheeled self-balancing robot 
Symbol Parameter  Unit 

Fl , Fr Interacting forces between the left and right wheels and the platform N 
Hl , Hr Friction forces acting on the left and right wheels N 

       Torques provided by wheel actuators acting on the left and right wheels N/m 

       Rotational angles of the left and the right wheels rad 

xl, xr Displacements of the left and right wheels along the x-axis m 

  Tilt angle of the robot rad 

  Heading angle of the robot with respect to the z-axis rad 

MW Mass of the each wheel Kg 

IW Moment of inertia of the wheel about the y-axis Kg.m2 

r Radius of the wheel m 

m Mass of the pendulum Kg 

g Gravity acceleration m/s2 

  Distance from the platform to the center of mass of the pendulum along the z-axis m 

d Distance between the left and right wheels along the y-axis m 

M Mass of the platform Kg 
IM Moment of inertia of the platform about the y-axis Kg.m2 

IP Moment of inertia of the platform and pendulum about the z-axis Kg.m2 

FP Interacting forces between the pendulum and the platform on the x-axis N 
MP Interacting moment between the pendulum and the platform about the y-axis N/m 

V The forward velocity of the robot m/s 

  The rotation velocity of the robot rad / s 
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With assumption that there is no slip between the wheels and the ground, by applying Newton’s law 

for the linear and rotational motion based [13] and [14], balancing forces and moment acting on the left 

wheel results in the following equations of motion: 

 

∑       ̈  (     )     (1) 

 

∑       ̈          (2) 

 

Similiarly, for the right wheel we have: 

 

∑       ̈  (     )     (3) 

 

∑       ̈          (4) 

  

Balancing forces acting on the pendulum on the x-axis direction and moments between the 

pendulum and the platform about the y-axis results in: 

 

             ̈      ̈       ̇
         (5) 

 

   ̈              (6) 
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     ̈          (8) 

 

Balancing the moments acting on the platform and pendulum about the z-axis gives: 

 

    ̈    (     )    (9) 

 

The relationship between the displacements of the wheel along the x-axis and the rotational angle of 

the wheel about the y-axis is: 

 

      
     

 
     (10) 

 

On the other hand, the relationship between the heading angle ( ) of the robot about the z-axis and the 

displacement of the wheel along the x-axis is: 

 

  
     

 
    (11) 

 

By subtracting (1) and (2) from (3) and (4) respectively then substituting it to (11) result in: 
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By adding (1) and (2) with (3) and (4) respectively then substituting it to (10), we have: 
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Adding (16) and (17) we have: 

 

(
  

  
   )     ̈  

     

 
 (     )   (18) 

 

By substituting (18) to (5) and (6) we obtain: 
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 (19) 

 

By substituting (7) to (8) result in: 

 

(       )  ̈            ̈               (20) 

 

From the above derivation, we can obtain the dynamics equation of motion of the two-wheeled self-

balancing robot as (15), (19), and (20). Assuming that the robot only around a small operating point, the 

dynamic model of the robot is then linearized around the point  ̇                    . Equation 

(19), and (20) then became: 
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 (21) 

(       )  ̈       ̈           (22) 

 

By defining the following 5-dimensional vector of state variable: 
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Using (15), (21), and (22) the linearized two-wheeled self-balancing robot model can be expressed 

in the following state-space form: 
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where: 
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From the state-space model described above, there are a number of dynamic parameters in the 

system which will result in variation of the state matrices. In order to simplify the problem and give a clear 

physical meaning to the state matrix and input matrix to design a controller, the value of parameters of the 

system was shown in Table 2. 

 

 

Table 2. Specifications of the two-wheeled self-balancing robot 

Symbol Value Unit 

MW 1 Kg 

IW 0.0313 Kg.m2 

r 0.25 m 

m 70 Kg 

g 9.8 m/s2 

  1 m 

d 0.5 m 

M 5 Kg 

IM 0.0385 Kg.m2 

IP 1.8569 Kg.m2 

 

 

Based on the value in Table 2, it is easy to have a linear state-space equation as:  
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2.2. LQR Controller Design and Simulation 

LQR is a method in modern control theory that uses state-space approach to analyze such a system. 

Using state-space methods, it is relatively simple to work with a multi-input multi-output system. Assuming 

all state variables are available for feedback, the system described in previous section can be stabilized using 

full state feedback [15]. The schematic of this type of control system for a two-wheeled self balancing robot 

is shown in Figure 2. 

Referring to [16] For the Linear Time Invariant (LTI) system, the LQR control theory involves 

choosing a control law: 

 

 ( )      ( ) (34) 

 

which stabilizes the origin while minimizing the quadratic cost function which can be presented: 

 

   ∫ ( ( )   ( )   ( )   ( ))  
 

 
 (35) 

 

where   is a symmetric positive definite or positive semi-definite matrix, R is a symmetric positive definite 

matrix and   is unconstrained. The final control law can be derived as: 

 

           ( )      ( ) (36) 
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Figure 2. The LQR control scheme for two-wheeled self-balancing robot 

 

 

where a symmetric positive definite matrix   is a solution to the following equation: 

 

                        (37) 

 

In designing LQR controller, LQR function in matlab m-file can be used to determine the value of 

the vector K which determines the feedback control law. This is done by choosing two parameter values, 

matrix   and  . The objective of controlling the two-wheeled self-balancing robot system is to minimize 

robot’s pitch angle ( ) while control the heading angle ( ) toward the reference angle, so designate    and 

   as two main control variables and     and     is given larger weights. After tuning the value of matrix   

and matrix   using the trial and error method, we found the following state weighting matrix and input 

weighting matrix to be appropriate: 
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Using (38) and (37), the control gains in (36) are found to be:  
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3. RESULTS AND ANALYSIS  

In this section, the simulation results of the proposed controller, which is performed on the model of 

a two-wheeled self-balancing robot are presented. In order to design and stimulate the LQR Controller for 

system, matlab/simulink simulation tool is used. Performance characteristics of the controller are also 

discussed in details in this section. 

Two wheeled self balancing robot system with LQR controller method produced two output 

responses, robot’s pitch angle ( ) and the heading angle ( ). In this research, the initial value of pitch angle 

( ) of the balancing robot was set to – 1 rad to simulate the performance of the controller. It means that the 

initial condition of the robot is very unstable. On the other hand, the initial state of the heading angle ( ) was 

set to 0 rad and given a unit step as the reference signal.  

Figure 3 shows the response of two-wheeled self-balancing robot pitch angle ( ) in normal 

condition while Figure 4 shows the responses of two-wheeled self-balancing robot heading angle ( ) in 

normal condition. In the Figure, the response for the pitch angle ( ) and heading angle ( ) is represented by 

straight line or red color line and the reference for the system response is represented by dotted line or blue  
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color line. From the figure, it can be seen that the LQR controller are capable to control the pitch angle and 

heading angle of the robot to the desired value. The settling time for the pitch angle to reach balance state in 

2.23 sec while the steady-state error is 0.0086 rad. Meanwhile, the settling time for the heading angle to 

reach the steady-state value is 2.76 sec while the steady-state error is 0 rad. The control effort of the system’s 

response is as shown in Figure 5. The torques applied to the left and the right wheel show a slight difference. 

This is due to the desired value of the system’s heading angle = 1 rad and the system try to follow the 

reference signal.  

 

 

  
 

Figure 3. Two-wheeled self-balancing robot pitch 

angle response in normal condition 

 

Figure 4. Two-wheeled self-balancing robot 

heading angle response in normal condition 

 

 

Figure 6 shows the response of two-wheeled self-balancing robot pitch angle ( ) with the 

pendulum’s mass being decreased to 40 Kg. From the figure it can be seen that the LQR controller are 

capable to control and balance the pitch angle despite the change in the pendulum’s mass. It show that the 

result has got similar pattern and not much different from the normal condition system. Almost no significant 

differences were apparent from controller’s performance in normal condition with decreased mass condition 

as shown by Figures 3 and Figure 6.  

 

 

  
 

Figure 5. Control effort of two-wheeled self-

balancing robot in normal condition 

 

Figure 6. Two-wheeled self-balancing robot pitch 

angle response with decreased mass of the 

pendulum = 40 Kg 

 

 

Meanwhile, Figure 7. shows the response of two-wheeled self-balancing robot pitch angle ( ) with 

the pendulum’s mass being increased to 110 Kg. From the figure it can be seen  that the system’s response 

became a little bit quicker while changes in the steady-state error is relatively small and can be ignored. 

When the pendulum’s mass were being increased, there is a significance increase in system’s maximum 
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overshoot and steady-state error but overall, the performance of the controller was still acceptable because it 

can still maintain it’s upright position. The performance of the controller in Figure 7 gives the conclusion that 

the performance of LQR controllers is limited to a certain range of pendulum’s mass from the normal 

conditions. If the pendulum mass is increased to a certain point, it is possible that the controller will fail to 

control the system so that the robot will fall. Therefore, when designing LQR controllers it should also take 

into account the range of pendulum’s mass in which the system will operate most. 

The disturbance rejection performance of the controller is shown in Figure 8. An impulse 

disturbance is applied at around 5 sec to the robot while it is stabilizing. It can be observed that the robot is 

able to reject this disturbance and regains its balance position in a short amount of time. A greater control 

effort is used by the robot to overcome the disturbance force as shown in Figure 9. 

 

 

  
 

Figure 7. Two-wheeled self-balancing robot pitch 

angle response with increased mass of the 

pendulum = 110 Kg 

 

Figure 8. Two-wheeled self-balancing robot pitch 

angle response with disturbance applied to the 

body pitch angle 

 

 

 
Figure 9. Control effort of two-wheeled self-balancing robot during disturbance rejection 

 

 

Table 3 shows the summary of the performance characteristics of the two-wheeled self-balancing 

robot in various conditions. Based on the data tabulated in Table 3, it can be seen that the responses of the 

self-balancing robot pitch angle and heading angle have acceptable overshoot and undershoot.  

From this research it can be seen that LQR controllers can be implemented to control the two-

wheeled self-balancing robot system and provide quite good results. In this research, we also tested the 

controller on various state of the system which has not been shown so clearly in previous research. From the 

simulation, it can be seen that although the controller is capable of controlling the system despite being 

subjected to a change in mass or disturbance to the body pitch angle, there is a tolerable limit of mass change 
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or pitch angle change. Therefore, when designing the controller, the values of the system parameters should 

be considered sothat the controller can work well under ideal or non ideal conditions. 

 

 

Table 3. Specifications of the two-wheeled self-balancing robot 

System’s condition 
Pitch angle ( ) Heading angle ( ) 

    (s)     (rad)     (s)     (rad) 

Normal condition 2.23 0.0086 2.76 0 

Increased pendulum’s 

mass 
7.04 0.0144 - - 

Decreased pendulum’s 

mass 0.52 0.0057 - - 

 

 

4. CONCLUSION  

In this paper, the design and implementation of LQR controller for stabilizing a two-wheeled self-

balancing robot is presented. The performance of LQR is simulated and analyzed with matlab/simulink 

program. Based on the results and the analysis, a conclusion has been made that the LQR controller are 

capable of controlling the two-wheeled self-balancing robot’s pitch angle and heading angle and yields 

acceptable and good results without falling. In normal condition the system can be engaged to balance itself 

and give transient response characteristics settling time = 2.23 sec and steady-state error = 0.0086 rad for tilt 

angle response and settling time = 2.76 sec and steady-state error = 0 rad for heading angle response. When 

the pendulum’s mass is being increased by 30 Kg, the system give transient response characteristics settling 

time = 7.04 sec and steady-state error = 0.0144 rad for tilt angle and when the pendulum’s mass is being 

decreased by 30 Kg the system give transient response characteristics settling time = 0.52 sec and steady-

state error = 0.0057 rad for tilt angle. However, more experiment needs to be performed to evaluate the 

robustness of the system. Nonlinear controller is fully recommended for balancing the two-wheeled self-

balancing robot as it will upgrade the robustness of the system. 
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