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 In the design of attitude control, rotational motion of the spacecraft is 

usually considered as a rotation of rigid body. Rotation matrix 

parameterization using quaternion can represent globally attitude of a 

rigid body rotational motions. However, the representation is not 

unique hence implies difficulties on the stability guarantee. This 

paper presents asymptotically stable analysis of a continuous scheme 

of quaternion-based control system that has saturation function. 

Simulations run show that the designed system applicable for a zero 

initial angular velocity case and a non-zero initial angular velocity 

case due to utilization of deadzone function as an element of the 

defined constraint in the stability analysis. 
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1. INTRODUCTION  

Design of a spacecraft or satellite attitude control by analyzing rotational motion of a rigid body 

remains become a challenging research field until recent years. Ashok et al proposed control moment gyros 

based attitude control system to achieve time-optimal maneuver for agile (rigid) satellite [1]. Chabot and 

Schaub presented a spherical actuator for satellite attitude control that covers modeling, simulation of attitude 

control of a rigid body system motion as well as comparison with a configuration of three reaction wheels 

[2]. in [3], Stevenson and Schaub used rigid body approach in the attitude control development prior to do 

testbed experiment of remote electrostatic charge control. Rezanezhad in [4] presented Takagi-Sugeno fuzzy-

based attitude controller in order to reduce thruster fuel consumption and increase longevity of satellite. 

Particle swarm optimization algorithm is used to reduce limit cycle on the fuzzy system. Pirouzmand in [5] 

proposed a model reference adaptive system-based robust model predictive controller for three degree of 

freedom satellite attitude control system. Whilst the controller gain is obtained through solving a convex 

optimization problem using linear matrix inequality approach.  

The kinematics of a rigid body rotational motion is represented by rotation matrix that is member of 

the special orthogonal three group,  3SO . Among parameterizations of the rotation matrix, a 

parameterization using quaternion is the only parameterization with four parameters. Hence, it can represent 

global attitude of a rigid body rotational motion. However, a physical attitude, which is represented in a 

unique rotation matrix value, is represented by two values in quaternion, i.e. a pair antipodal value. This fact 

implies difficulties on the stability guarantee of the quaternion based attitude control system [6].  
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 Many research efforts have been addressed on the design of quaternion based attitude control 

system: MacKunis et al in [7] developed an adaptive neural network based attitude controller for satellite that 

is actuated by control moment gyros, where external disturbance as well as disturbance of the control 

moment gyros’ tachometer are considered; Calvo et al. proposed an adaptive fuzzy controller for momentum 

wheel actuated satellite and its performance is compared with a custom PD controller  [8]; in [9], Septanto et 

al proposed a continuous scheme of quaternion based controller that employs augmented dynamic; to name a 

few. In [10], a continuous scheme of quaternion-based control system that has saturation function is also 

proposed with boundedness of solution guarantee. In this paper, the system has been further analyzed to have 

stronger guarantee, i.e. asymptotically stable. 

The organization of the paper is the following: mathematical preliminaries including modeling of 

the satellite dynamics and kinematic are presented in the next section. Section 3 presents the problem 

formulation and methodology. The main contribution of this paper will be presented in Section 4. Discussion 

and numerical simulations are also presented in Section 5. Section 6 provides the concluding remarks. 

 

 

2. BACKGROUND AND PRELIMINARIES 

2.1. Mathematical Preliminaries 

Some mathematical notations will be used in the rest of paper. R  is the set of all real numbers. 
n m

R is the set of all n m matrix that all of its entry are real numbers, where 
0

,n m


Z , Z is the set of all 

integer numbers and 
0

Z is the set of all positive integer numbers. Consider a matrix 
n m

R


R , hence 
T

R

denotes transpose of R  and R determinant of R . Matrix 
n n n n

I
 
R denotes the identity of n n matrix. 

Suppose there is a column matrix 
n

C R , hence C denotes 2-norm of C . Matrix 0
n m

denotes n m

matrix that all of its entry are zero.  

In this paper, a vector is defined as in (1). 

 
T

l

l
r r F

         (1)
 

 

where: r denotes the vector of r , 
l
F  is a columns matrix consists of three unit vector 

1
l̂ ,

2
l̂ and 

3
l̂  that are 

associated with the inertial reference frame, and
3l

r R  is a column matrix whose three components of r

that are expressed (decomposed) into the inertial reference frame, 
l
F .  

Besides superscript 
l
(subscript 

l
) that are associated with the inertial reference frame, this paper 

uses superscript
b
 (subscript

b
) and superscript

d
 (subscript

d
) associated with the satellite’s fixed body frame 

and satellite’s desired frame, respectively. For brevity, the satellite’s fixed body frame, the inertial reference 

frame and the satellite’s desired frame may be written as body frame, inertial frame and desired frame, 

respectively. 

 

2.2. Dynamic and Kinematics of Spacecraft 

In this paper, motion of a satellite is regarded as a rigid body motion. Dynamic of a rigid satellite is 

given by Euler Equation, [11]. The dynamic of a satellite that is expressed in 
b
F  is represented in (2). 

 
b b b b b

bl bl bl bl bl
JJ J


           

      (2) 

 

where the symmetric positive definite matrix
3 3

J


R is the satellite inertia moment about its center of mass 

that is located in the origin of 
b
F , (kg.m

2
); 

3b

bl
 R is the angular velocity vector of 

b
F with respect to 

l
F

which is decomposed in 
b
F , (rad.s

-1
); and 

3
 R  is the total external control torque about its center of mass 

that is located in the origin of 
b
F , (N.m)  

b

bl
  denotes a skew-symmetric matrix of 

b

bl
 , i.e. the column 
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matrix of vector 
bl

  that is expressed in 
b
F , where 

1 2 3

T
b b b b

bl bl bl bl
       and 

3 2

3 1

2 1

0

0

0

b b

bl bl

b b b

bl bl bl

b b

bl bl



 

  

 



 



 
 
 
  

. In addition, 
b

bl
  denotes first derivative of 

b

bl
  with respect to time. 

 

Satellite attitude representation in (unit) quaternion that denotes the attitude of the satellite body 

frame 
b
F with respect to the inertial frame 

l
F  is given by 

T
T

bl blbl
q      , where 

bl
 R , 

3

bl
 R  and 

2
1

T

bl bl bl
    . In addition, all attitude representations in quaternion regarded in this paper, including 

bl
q

, are member of the unit sphere order 3,  3 4

0 1 2 3
:

T

S a a a a R 2 2 2 2

0 2 2 3
1a a a a     .  

Now, consider a kinematics Equation represented in quaternion given by (3)-(5). 

 
T

T

bd bd bd
q              (3)

 

 

Where 

1

2

T b

bd bd bd
   

         (4) 

 

 
1

2

b

bd bd bd bd
I


    

        (5)

 

 

Note that
bd

q  represents the attitude
b
F with respect to

d
F , 

bd
q  is also regarded as the attitude error between the 

satellite body frame
b
F  and the satellite desired or target frame

d
F . Since the information from an attitude 

sensor is with respect to the inertial frame
l
F , i.e. 

bl
q  and the target attitude is also with respect to

l
F ,  i.e.

dl
q , 

hence the attitude error 
bd

q is obtained form quaternion multiplication between
bl

q  and 
dl

q as given in (6). 

 
1

bd dl bl ld bl
q q q q q


   

        (6)
 

 

where
1

dl ld
q q


  is the inverse of 

dl
q . Note that since the attitude is considered as a unit quaternion, where the 

quaternion norm
2

1
T

dl dl dldl
q      , then quaternion inverse,

*

1 dl

dl

dl

q
q

q


 , is equal to the quaternion 

conjugate, 
*

T
T

dl dldl
q      . 

 

 

3. PROBLEM DEFINITION AND METHODOLOGY 

Consider the spacecraft (2) and the controller   (7) proposed in [11], where  
bd
  

3 3
: R R

denotes saturation function with saturation level 0  . The saturation function is defined element-wise 

 bdi
 ,  1, 2,3i , 

1 2 3

T

bd bd bd bd
       , in particular given  

by (8). For convenience consideration,  
bd X
  . Deadzone function 

X
  is defined as 

X bd X
   , 

hence   b

bd bd X bl
k L       . In addition, the controller   (7). 
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  b

bd bd X bd bd
k L         , k R , 

3 3
L


R      (7) 

 

       
1 2 3

T

bd bd bd bd
          ,  

,

,

,

bdi

bd bd bdi i i

bdi

  

    

  



    

  





   (8)

 

 

The designed attitude control system is for the case of constant attitude tracking, i.e.
b T d

dl bd dl
R    

0
d

db dl
R   , where 

bd
R is the rotation matrix that represents the attitude error between the satellite body frame 

b
F  and the satellite desired or target frame 

d
F . Rotation matrix 

bd
R  is a member of special orthogonal group 

order 3, i.e.    3 3 3 3
3 : , 1

T

bd
R SO R RR I R

 
    R . In [11], there is relation between rotation matrix

bd
R and quaternion

bd
q  as given by Equation (9). 

 

 2 2 2
2 2

T T

bd bd bd bd bd bd bd bd
R I


      


   

     (9)
 

 

Definition 1  Let
3 3 6

E S  R R  is the set of all solutions of a control system. Let E is the set that 

consists of all non-equilibrium solution 
0

E  such that
0

E E E  , where 
0 0

E E . If the following 

statements are satisfied: 

a. y E  ,    0, 0V y V y   

b.  
0
, 0y E V y    

c. 
0

E is the largest invariant set in   : 0y E V y     

then 
0

E  is the locally asymptotically stable set. 

Remarks 1. The stability notion in Definition 1 is not a standard stability in the sense of Lyapunov which 

is used to guarantee stability of a point. Instead, LaSalle’s invariance principle theorem in conjunction with 

Lyapunov function properties is used to guarantee stability of the set. One may said that LaSalle’s theorem 

extends Lyapunov’s theorem since, naturally, it can be used for the system that has an equilibrium set [12]. 

The main objective of this paper is to find necessary conditions of the system that consists of the 

rigid spacecraft (2) and the controller (9) such that asymptotic stability guarantee as in Definition 1 is 

achieved. Through Lyapunov stability method, conditions of the attitude control system parameters will be 

resulted. In addition, some numerical simulations are done to illustrate its performance. 

 

 

4. MAIN RESULT 

Theorem 1 Consider the quaternion-based spacecraft attitude control system consists of &2), (7) and 

Definition 1, where  ,
b

bd bl
y q  . The set   3 3

0
, :

T
T b

bd bd bd bl
E q S        R

3 3
0 , 1, 0

b

bd bd bl
       that consists of two equilibrium points of the system is locally asymptotically 

stable and it satisfies the following properties 

a. There exist positive k  and symmetric definite positive matrix L  such that fulfills the inequality 

 
min

0k L  , where  
min

L  is minimum Eigen value of L  

b. The saturation limit    fulfills 
1

0
3

   

c. There exist initial condition     0 , 0
b

bd bl
q t t E     such that constraint (10) is fulfilled 

 

   
2 2

0, 0
b

bl X
t t t    

       (10)
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Proof: 

Consider the Lyapunov function candidate given in Equation (11)  to show set stability of 
0

E . 

 

1

2

T b T b

bd bd bl bl
V k J    

        (11)

 

 

where 0V  , for all 0k  . Note that, instead of 
bd

q , only 
bd
  is appeared in (11) since 

bd
  is inherently in 

bd
 . Furthermore, the time derivative of V  is given by (12). 

 

 
    T b b b T b b b

bd bd bd bd bd bl bl bl bd bd X bl
V k J k L

 
                

  (12)
 

 

From the facts that 
3

0
d

dl
   and 0

T b T b

bd bd bl bl 
     , hence (13) is satisfied. 

 
b T b T b

bl X bl bl
V k L    

        (13)
 

 

If L is a symmetric definite positive matrix, then (14) is fulfilled. 

 

 
2

min

b b

bl X bl
V k L    

       (14)
 

Note that the constraint (10) implies 0V  , if  
min

0k L  . 

Let     3 3
, : , 0

b b

bd bl bd bl
q S V q     R . Then 0V  , if 0

b

bl
  . In addition, since 

constraint (10) is hold, 0
b

bl
   implies 0

X
  . Note that 0

b

bl
  

3
0

b

bl
   and 0

X
  

3
0

X
  . Substituting these values to the system (2) and (7) it would result 0

bd
  . Therefore, 

0
E  .■ 

Remarks 2 In according to Proposition 1 in [10], the attitude control system is locally Lipschitz in 

  3 3
,

T
T b

bd bd bd bl
q S       R . Hence, a prerequisite condition for Lyapunov theorem utilization is 

fulfilled. 

Remarks 3 The stability analysis presented in this paper is no claim of global stability. In addition, 

global stability claim in [13] is incorrect since there are equilibrium points other than 
0

E , i.e. 

  3 3
, :

T
T b

bd bd bd bl
q S       R 3 3

0 , 0
b

bl bd bd X
     . Note that this fact is an implication of 

the chosen saturation limit   that fulfills 
1

0
3

  . 

 

 

5. DISCUSSION AND NUMERICAL EXAMPLES 

The result presented in the previous section provides advancement into two directions. First, its 

asymptotic stability guarantee presents a stronger stability guarantee than the stability guarantee presented  

in [10], i.e. boundedness of solution guarantee. Second, this result corrects the global stability claim in [13], 

as stated in Remarks 3.  

In addition to the theoretical result, the attitude control system’s performance will be illustrated via 

simulations that are run through three scenarios presented in Table 1 and the rest arbitrary-chosen parameters 

are given in Table 2. Simulation results are represented in Figure 1and Figure 2. 

The simulation of Scenario 1 is run with non-zero initial of angular velocity
b

bl
 . Whilst in  

Scenario 2, the simulation is run with zero initial of angular velocity
b

bl
 . Figure 1(a), Figure 1(b) and  

Figure 2(b) verify that the designed controllers satisfy the Theorem 1. In particular for Scenario 2, it is very 



IJECE  ISSN: 2088-8708  

 

Asymptotic Stability of Quaternion-based Attitude Control System with …. (Harry Septanto) 

1999 

interesting and shows that utilization of the deadzone function 
X

  in the defined constraint (10) provides its 

advantage to allow the attitude control system to start in a non-zero angular velocity. A graphic in relating to 

the angular velocity 
b

bl
  trend is shown in Figure 2(a). In addition, it is also interesting to observe the 

unwinding phenomenon existence. Hence, euler angle trends from the Scenario 1 is compared to the one 

form Scenario 3. Note that all parameters of Scenario 1 and Scenario 3 are same, except the desired attitude 

dl
q  value where both actually represent a same physical condition. The Euler angle trends outlined in  

Figure 2(c) show that the designed system is regulated without demonstrating the unwinding phenomenon.  

 

 

Table 1. Parameters of the Three Scenarios 

  
T

dl
q   0

b T

bl
  

Scenario 1  0 1 0 0   0.5 0.5 0.5  

Scenario 2  0 1 0 0   0 0 0  

Scenario 3  0 1 0 0   0.5 0.5 0.5  

 

 

Table 2. Parameters of Simulations 
 

1.49 0.054 0.0442

0.054 1.51 0

0.0442 0 1.56

J 

 
 
 
  

, 0.5k  , 
3 3

L I


 , 0.57   

   0 0.5 0.5 0.5 0.5
T

bl
q     

 

 

 

 
 

(a) 

 

(b) 

 

Figure 1. (a) Lyapunov Function and (b) Time Derivative of Lyapunov Function; Dashed line (--), dash-

dotted line (-.) and solid line (-) represent Scenario 1, Scenario 2 and Scenario 3, respectively. 
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(a) 

 

(b) 

 

(c) 

 

Figure 2. (a) 2-Norm of angular velocity, (b) constraint in Equation (10) and (c) Euler angle; Dashed line (--), 

dash-dotted line (-.) and solid line (-) represent Scenario 1, Scenario 2 and Scenario 3, respectively 

 

 

6. CONCLUDING REMARKS 

Proposed stability analysis for a continuous scheme of quaternion-based control system that 

employs saturation function has been presented. This analysis results that the designed system has 

asymptotically stability guarantee. To verify and observe a designed attitude control system, three scenarios 

of simulation are run. Simulations run show that the designed system applicable for a zero initial angular 

velocity case as well as a non-zero initial angular velocity case. The deadzone function 
X

  utilization in the 

defined constraint shows its benefit such that the designed system is also allowed for a condition that has 

non-zero initial angular velocity. 
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