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 The objective of low-resolution face recognition is to identify faces from 

small size or poor quality images with varying pose, illumination, expression, 

etc. In this work, we propose a robust low face recognition technique based 

on one-dimensional Hidden Markov Models. Features of each facial image 

are extracted using three steps: firstly, both Gabor filters and Histogram of 

Oriented Gradients (HOG) descriptor are calculated. Secondly, the size of 

these features is reduced using the Linear Discriminant Analysis (LDA) 

method in order to remove redundant information. Finally, the reduced 

features are combined using Canonical Correlation Analysis (CCA) method. 

Unlike existing techniques using HMMs, in which authors consider each 

state to represent one facial region (eyes, nose, mouth, etc), the proposed 

system employs 1D-HMMs without any prior knowledge about the 

localization of interest regions in the facial image. Performance of the 

proposed method will be measured using the AR database. 
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1. INTRODUCTION  

Face recognition (FR) is the process of automatically identifying or verifying a person from his 

facial image. In real life application, such as, video surveillance cameras (placed in banks, supermarkets or 

in public streets), subjects are far from cameras, so face regions tend to be small. Machine face identification 

from this kind of images becomes an important scientific issue to solve. This issue is called low-resolution 

face recognition.  

Like classical face recognition systems, low-resolution face recognition procedure consists of 2 

major tasks: features extraction and classifier designing. Both have a significant impact on the reliability of 

recognition method. 

However, a low-resolution face recognition system needs to consider the particular problem of 

dimensional mismatch between probe (with low-resloution) and gallery (generally with high-resolution) 

images before extracting face features. This issue can be resolved by using three main ways: (1) Applying 

interpolation or super-resolution to the probe facial images, (2) projecting both probe and gallery facial 

images into an inter-resolution space or (3) downsampling all gallery images and then perform matching in 

low resolution. An overview of this methods is given in [1]. 

For the features extraction and classification tasks, various approaches have been proposed such as: 

RQCr color features with nearest neighbor classifier [2], Local Frequency Descriptor with nearest neighbor 

classifier [3] and Support Vector Data Description with support vector machines (SVM) classifier [4]. 
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In this paper, we use the cubic interpolation to increase the special resolution of LR images to deal 

with the dimensional mismatch problem. This choice is justified by the fact that it’s extremely fast and it can 

be applied on a single image unlike super-resolution techniques which use gallery set of LR or HR images. 

Regarding the facial features extraction, the proposed system extract facial features by fusing two local 

descriptors: Gabor wavelets [5], [6] and HOG descriptors [7]. Gabor wavelets (filters) are invariant to 

rotation, scale and translation. In addition, they are robust to image noise. Also, Histograms of Oriented 

Gradients (HOG) are robust against illumination variations [8]. Their complementary nature makes them 

good candidate for combination. Concerning the classification tasks, we use one dimensional Hidden Markov 

Model to deal with the classification task. Our approach differs from existing methods using HMMs in that it 

doesn’t need any prior knowledge about the localization of interest regions in the facial images. This 

advantage makes our approach fully automatic and robust even the presence of no frontal facial images. 

The following section gives a detailed description of the proposed system. Experimental results are 

presented in section 3. Finally, we conclude this paper in section 4. 

 

 

2. COMBINING GABOR AND HOG FEATURES FOR HIDDEN MARKOV MODEL 

RECOGNITION 
This section describes the components of our face recognition system in detail: Gabor and HOG 

features, LDA dimensionality reduction, feature fusion using the Canonical Correlation Analysis (CCA) 

method and Hidden Markov Model for recognition. The stages of processing are diagrammed in Figure 1. 

 

 

 
 

Figure 1. The overall of the proposed face recognition system. 

 

 

Features extraction: 

a. Gabor Features Representation: Gabor wavelet representation of face images derives desirable features 

gained by spatial frequency, spatial locality, and orientation selectivity. These discriminative features 

extracted from the Gabor filtered images could be robust to illumination and facial expression changes. A 

Gabor wavelet filter is a Gaussian kernel function modulated by a sinusoidal plane wave [5]: 
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Where     (   ) is the pixel with coordinate (x, y) in the image plan. u and v define orientation 

and scale of the Gabor kernels. ‖ ‖ denotes the norm operator. 

A large number of local features can be generated by varying parameters associated with the 

position, scale, and orientation of the filters. For example, the magnitude response of the convolution of an 

image with 40 banks of Gabor kernels (8 orientations and 5 scales) is 40 magnitude maps in the same size as 

the original image, as illustrated in the Figure 2. 
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Figure 2. An example of the Gabor magnitude output: (a) the initial image (b) the magnitude output of the 

filtering operation with a bank of 40 Gabor filters. 

 

 

b. Histogram of Oriented Gradients Features (HOG): The HOG descriptor is a local statistic of the 

orientations of the image gradients. It is characterized by its invariance to rotation and illumination changes. 

The HOG feature divides the image into many cells, in each of them a histogram counts the occurrences of 

pixels orientations given by their gradients. The final HOG descriptor is then built with combination of these 

histograms [7]. Figure 3 shows an example of facial image with extracted HOG descriptor. 

 

 

 
 

Figure 3. An example of HOG descriptor from a facial image: (a) Facial image, (b) Facial image with HOG 

descriptor. 

 

 

c. Feature Reduction: The dimensions of Gabor and HOG feature vectors are too high, which is far too 

extensive for efficient processing and storage. To overcome this issue, many techniques are proposed in the 

literature: Principal Component Analysis (PCA) [9], Independent Component Analysis (ICA) [10], Linear 

Discriminant Analysis (LDA) [11-13]. In this paper, the employed dimensionality reduction technique is the 

Linear Discriminant Analysis (LDA). It aims at finding a feature representation by which the within-class 

distance is minimized and the between-class distance is maximized [14]. In order to avoid singularity issues, 

when computing the inverse of the within-class scatter matrix, the LDA reduction method is implemented in 

the Principal Component Analysis (PCA) subspace as suggested in [15]. 

d. Feature fusion using canonical correlation analysis: In this stage, we combine the two reduced feature 

vectors to obtain a single one, which is more discriminative than using only one feature modality. This is 

achieved by using a feature fusion technique based on Canonical Correlation Analysis (CCA) [16]. Canonical 

correlation analysis has been widely used to analyze associations between two sets of variables. 

Given two column vectors   (       )  and    (       )   of random variables with finite second 

moments, one may define  the  cross-covariance         (   )  to be the     matrix whose (   ) entry 

is the covariance     (     ). 
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Canonical-correlation analysis attempt to find vectors   and   such that the random variables    U and      

maximize the correlation ρ =     (    ,     ) =     (     )        and     are defined by [8]: 
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Where,        (   ),        (   ),         
   and         

   

After some steps of calculation, the solution is therefore:  

1)   is the eigenvector with the maximum eigenvalue for the matrix    
         

  
  .  

2)   is the eigenvector with the maximum eigenvalue for the matrix     
         

  
  . 

 

e. Feature classification: An HMM, which was developed by Baum and Petrie [17], is a probabilistic 

model in which the system is assumed to be a Markov process with hidden states. HMM is used for 

representing probability distribution over sequences of observations. The following key elements characterize 

an HMM: 

a.   the number of states of the model. 

b.   is an     state transition matrix that gives the state transition probabilities between   states. 

c.   is an     emission probability matrix while being in a particular state. 

d.   is a       matrix, called initial state probability matrix, and it gives the probability of being 

in a particular state at the start of the process. 

As mentioned above, a left to right 1D Hidden Markov Model is used in our system to achieve the 

recognition task. The Figure 4 shows an example of a Left-Right 1D-HMM with N states. 

 

 

 
 

Figure 4. An example of a Left-Right 1D-HMM with N states. 

 

 

In our system, the number of states N depends to the dataset subject number. The entry state 1 and 

the exit state N are non-emitting. The transition matrix   will have   rows and   columns. Finally we 

assume that each observation probability distribution is represented with single Gaussian distributions. All 

these parameters will be estimated during the training step using an iterative procedure, known as Baum-

Welch algorithm [18]. Also, each subject will be represented with one model. Finally, the recognition step is 

achieved using the Viterbi algorithm [18] to find the highest likelihood score between features in the testing 

sets and models obtained in the training step. 

 

 

3. EXPERIMENTAL RESULTS 

The experiment was designed with the aim of validating the effectiveness of the proposed system. 

We performed experiments using the cropped AR face database [19]. The AR face database contains over 

3,200 frontal color face images of 126 subjects (26 different images for each person), including different 

facial expressions, with various occlusions and under different lighting conditions. Most of the pictures were 

recorded in two sessions (separated by two weeks).  All images were taken by the same camera under tightly 

controlled conditions of illumination and viewpoint. For our experiments, like in the work of [19], in the first 

time, 100 different subjects (50 males and 50 females) were randomly selected from this database, then, all 

selected images were segmented using an oval-shaped mask and finally all color images are transformed into 

gray images. Figure 5 shows some sample images of one subject extracted from the obtained face database. 
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Figure 5. Images of one subject in the AR face database. 

 

 

In this experiments, we investigate the face recognition as a function of the image resolution. 

Instead of taking images from faces which have different distances to the camera, we have tried to simulate 

the effect of lowering the resolution. From original pictures with the resolution of         pixels, all of 

pictures have been downsampled 2, 4, 8, 16 and even 32 times. It corresponds to resolutions      , 

       ,        ,       , and     respectively. Since extracting features from facial with lowest 

resolution would lead to serious quantization errors, we decided to upscale all images to the same resolution. 

After downscaling, we scaled the image up to original size (i.e        ) for face recognition using a cubic 

interpolation [20]. The results can be seen in Figure 6.  

 

 

 
 

Figure 6. Samples for downsampled face image: (a) the original face image       . (b) downsampling the 

image in a by a factor of 1/2 to the size      . (c) by factor of 1/4 to the size      . (d) by factor of 1/8 

to the size        . (e) by factor of 1/16 to the size       . (f) by factor of 1/32 to the size    . 

 

 

The experimental results presented in this section are divided into three parts. The aim of the first set 

of experiments is to see whether the system converges quickly or not. Recognition rates given at different 

epochs are plotted in Fgure 7 showing that the system converges at the end of the second epoch. 

In second experiment, we make a comparison between the combined Gabor+HOG descriptor with 

isolated descriptors Gabor, HOG and LBP (Local Binary Patterns) for different resolution. We notice that the 

features size of all those descriptors is reduced using LDA method. The comparison results are shown in 

Table 1. 

From this table, we notice that the results obtained by the combined Gabor+HOG features 

outperform those obtained using separated Gabor, HOG and LBP descriptors in AR database for all facial 

image resolution. 

Finally, as shown in Table 2, Table 3, Table 4 and Table 5, we calculated recognition rate according 

to the size of training image set and the resolution obtained by the 1D-HMM classifier and other three 
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classifiers: Support Vector Machine (SVM) with Radial Basic Function (RDF) Kernel, AdaBoost and 

Decision Tree Classifiers. From these tables, we can see that the accuracies obtained by the 1D-HMM 

classifier, in general, outperform the SVM, AdaBoost and Decision Tree Classifiers. 

 

 

 
 

Figure 7. Recognition Rate vs. The number of training epochs. 

 

 

Table 1. Best face recognition rates using different descriptors with different image resolution 
 
Descriptors 

                                      Experimental Datasets 

                                   

LBP 12.03% 50% 77.26% 92.23% 91.35% 95.43% 
HOG 22.45% 55.14% 88.5% 98.89% 99.81% 99.81% 

Gabor 13.36% 53.23% 59.37% 94.95% 99.44% 100% 

Gabor+HOG 27.64% 65.49% 89.05% 99.63% 100% 100% 

 

 

Table 2. Face recognition rates of four classifiers with different Image resolution using 5 training images 
 

Classifiers 

                                      Experimental Datasets 

                                   

SVM 0.07% 11% 45.48% 77.45% 84.83% 92.03% 

AdaBoost 0.024% 3.3% 3.8% 3.5% 2.9% 3.5% 
Decision Tree 0.05% 7.2% 11% 12.92% 15.9% 10.2% 

1D-HMM 12.05% 19.53% 45.87% 85.03% 90.28% 93.49% 

 

 

Table 3. Face recognition rates of four classifiers with different Image resolution using 10 training images. 
 
Classifiers 

                                      Experimental Datasets 

                                   

SVM 0.13% 20.8% 52.42% 90.3% 97.19% 98.72% 
AdaBoost 0.03% 3.4% 6.1% 5.22% 9.18% 4.6% 

Decision Tree 0.07% 10.58% 9.7% 16.45% 11.2% 16.83% 

1D-HMM 17.86% 32% 62.37% 95.03% 98.01% 98.85% 

 

 

Table 4. Face recognition rates of four classifiers with different Image resolution using 15 training images 
 

Classifiers 

                                      Experimental Datasets 

                                   

SVM 18.9% 37.1% 73.84% 99.44% 100% 100% 

AdaBoost 5.19% 5.7% 3.33% 7.2% 6.67% 5.9% 
Decision Tree 5.5% 11.13% 17.6% 14.65% 20% 23% 

1D-HMM 20.59% 46.75% 80.71% 99.63% 100% 100% 

  

 

Table 5. Face recognition rates of four classifiers with different Image resolution using 20 training images 
 

Classifiers 

                                      Experimental Datasets 

                                   

SVM 10% 31.29% 75.85% 100% 100% 100% 

AdaBoost 2% 5.4% 6.46% 5.4% 8.1% 5.1% 

Decision Tree 6.12% 9.18% 18.02% 19.38% 18.36% 17.6% 
1D-HMM 16% 48.64% 90.48% 100% 100% 100% 
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4. CONCLUSION  

A low face recognition system based on 1D-HMMs was presented in this paper. First, the system 

extract facial features using Gabor and HOG descriptors. Then it combines them using CCA fusion technique 

to obtain one feature vector after dimensionality reduction step using LDA method. 

The standard database AR is used to evaluate the proposed system. The obtained recognition rates 

by the combined features and 1D-HMMs classifier outperform these obtained by isolated descriptors and 

some classical classifiers for all facial image resolutions. 

Our future research will be focused on using the proposed system in real time context in order to 

integrate it in video surveillance cameras security application. 
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