
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 7, No. 4, August 2017, pp. 1867~1873 

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i4.pp1867-1873      1867 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Security Enhancement in Networked Embedded System 
 

 

Pradip Ram Selokar
1
, P. T. Karule

2
 

1Departement of Electronics and Communication, RCOEM, Nagpur, Maharashtra, India 
2Departement Electronics Engineering, YCCE, Nagpur, Maharashtra, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Feb 7, 2017 

Revised April 24, 2017 

Accepted Apr 10, 2017 

 

 In the developed system ARM9 is a master and Two ARM7s are slaves. The 

peripherals are being controlled by two ARM7 boards. The Peripherals are 

connected to the ARM7 through Complex Programmable Logic Device 

(CPLD). The CPLD is in turn connected to the ARM7 using Serial Peripheral 

Interface (SPI). The ARM7 boards collect the information from the 

peripherals and send it to the ARM9 board. The communication between 

ARM7 and ARM9 is via UART (Universal Asynchronous Receiver 

Transmitter) over CAN (Controller Area Network). The ARM9 board has got 

the software intelligence. The ARM9 behaves as a master and two ARM7 

boards behave as slaves. Being master ARM9 passes tokens to ARM7 which 

in turn returns (Acknowledges) the token. The ARM9 is further connected to 

Proxy via Ethernet. The proxy is further connected to the service platform 

(server) via Ethernet. So subsequently any decisions at any stage can be 

changed at server level. Further these commands can be passed on to ARM9 

which in turn controls the peripherals through ARM7. (a) The system which 

we have developed consists of ARM9 as a master, Two ARM7 as Slaves. 

The communication between ARM9-ARM7 is via UART over a CAN,  

(b) Each ARM7 further communicates serially (RS232) with the two 8051 

Microcontroller nodes, (c)Thus a networked Embedded System is developed 

wherein the serial data is brought over Ethernet. The ARM7 board, which is 

directly linked with the peripherals, can be modified of its functionality as 

and when required. The functionality of ARM7 can be modified by 

upgrading its firmware. To upgrade the firmware same communication link 

has been used. ARM7 receives the new firmware via same ARM9-ARM7 

communication link. The Flash Write operation is performed using the 

source code to write the new firmware. Bootloader application for the ARM7 

has been developed. The signature has been incorporated to assure 

authenticity of the new Firmware. Intel Hex File Format is used to parse the 

hex file. 

Keyword: 

Bootloader 

CAN – controller area network 

Flash Write 

Intel Hex file format 

Signature Authenticity 

UART – universal 

asynchronous receiver 

transmitter 

 

Copyright © 2017 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Pradip Ram Selokar,  

Department of Electronics and Communication Engineering 

Shri Ramdeobaba College of Enginering and Management,  

Nagpur, India. 

Email: pradip.selokar@gmail.com 

 

 

1. INTRODUCTION  

Security is a measure of how difficult it is to break into the object which the system protects. 

Embedded systems present significant security challenges due to their limited resources and power 

constraints. In addition to standard concerns regarding system performance and power consumption, security 

has become a leading issue for many embedded applications [1].  

In the developed system firmware upgrade is carried out using the data communication link. For the 

development purpose the ARM7 board has got the J-link interface. It is very easy to burn the hex file to the 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 4, August 2017 :  1867 – 1873 

1868 

Flash memory of ARM7. But finally when the entire firmware development is completed and the product is 

ready to be sold in market, such J-link interfaces will be removed. The ARM7 board will be mounted in a 

control panel. This control panel would be located at remote locations inside the building. If the system 

works fine, it is well and good. 

 Think of a situation, in future the customers complain about the bugs in the system. Will it be 

possible for the manufacturer to dismantle the entire assembly, take it back to the developer‟s site and modify 

the functionality? Obviously not! And also it would not be cost wise affordable to the manufacturer. 

 Hence it was a necessary requirement while developing the firmware for ARM7, to have the 

capability to receive the new firmware via same ARM7-ARM9 communication link and overwrite the old 

one. 

 When old firmware is to be overwritten, it means that the Flash write operation has to be performed 

using the source code (Which otherwise would have been performed by J-link). The key task in Firmware 

upgrade was Flash Write. 

The token based communication protocol between one ARM9 (AT91SAM9260) board [2] and two 

ARM7 (AT91SAM7S256) boards has been developed. In this communication link the ARM9 acts as Master 

and two ARM7 act as Slaves. The main constrain for setting up this communication link was TIME. i.e. 

peripheral should get the quicker response from the server. Often the performance in embedded devices is 

limited by the firmware which runs over it. Traditionally systems on devices have been designed using 

ATMEL 89C51 Microcontroller, PIC Microcontroller etc. These microcontrollers support the communication 

using RS-232 or RS-485. Here the ARM Microcontrollers are used. The ARM microcontrollers are having 

fast execution speed (MIPS – million instructions per second), thereby meeting the basic constrain (TIME) of 

this control system.  
In the simplest form it can be explained as, half duplex communication has been established 

between server and peripherals. In one direction the data collected by peripherals is transmitted to server. In 

other direction the command from server is transmitted to the peripherals. Figure 1 gives the block 

diagrammatic view of the System. 

 

 

 
 

Figure 1. Block Diagram 

 

 

2. COMMUNICATION LINK 

2.1. UART (Universal Asynchronous Receiver Transmitter) 

The Universal Asynchronous Receiver Transceiver (UART) provides one full duplex universal 

asynchronous serial link. Data frame format is widely programmable (data length, parity, number of stop 

bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun 

error detection. The receiver timeout enables handling variable-length frames and the transmitter timeguard 

facilitates communications with slow remote devices. Multidrop communications are also supported through 

address bit handling in reception and transmission. The UART features three test modes: remote loopback, 

local loopback and automatic echo. 



IJECE  ISSN: 2088-8708  

 

Security Enhancement in Networked Embedded System (Pradip Ram Selokar) 

1869 

2.2. Receiver and Transmitter Control 

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit in the 

Control Register (US_CR). However, the receiver registers can be programmed before the receiver clock is 

enabled. After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the 

Control Register (US_CR). However, the transmitter registers can be programmed before being enabled. The 

Receiver and the Transmitter can be enabled together or independently. At any time, the software can 

perform a reset on the receiver or the transmitter of the UART by setting the corresponding bit, RSTRX and 

RSTTX respectively, in the Control Register (US_CR).  

 

2.3. Transmitter Timeguard  

The timeguard feature enables the USART interface with slow remote devices. The timeguard 

function enables the transmitter to insert an idle state on the TXD line between two characters. This idle state 

actually acts as a long stop bit. 

 

2.4. Receiver Timeout  

The Receiver Time-out provides support in handling variable-length frames. This feature detects an 

idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel Status 

Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an end of frame. 

 

2.5. CAN (Controller Area Network) 

CAN is a broadcast serial bus standard for connecting electronic control units (ECUs). Each node is 

able to send and receive messages, but not simultaneously: a message (consisting primarily of an ID – usually 

chosen to identify the message-type/sender – and up to eight message bytes) is transmitted serially onto the 

bus, one bit after another – this signal-pattern codes the message (in NRZ) and is sensed by all nodes. 

The devices that are connected by a CAN network are typically sensors, actuators and control 

devices. A CAN message never reaches these devices directly, but instead a host-processor and a CAN 

controller is needed between these devices and the bus. 

If the bus is free, any node may begin to transmit. If two or more nodes begin sending messages at 

the same time, the message with the more dominant ID (which has more dominant bits i.e. bit 0) will 

overwrite other nodes‟ less dominant IDs, so that eventually (after this arbitration on the ID) only the 

dominant message remains and is received by all nodes. 

 

 

3. COMMUNICATION PROTOCOL 

The communication between ARM7 and ARM9 is via UART (Universal Asynchronous Receiver 

Transmitter) over CAN (Controller Area Network). The ARM9 behaves as a master and two ARM7 boards 

behave as slaves. Being master ARM9 passes tokens to ARM7 which in turn returns (Acknowledges) the 

token. The ARM9 is further connected to Proxy via Ethernet. The proxy is further connected to the service 

platform (server) via Ethernet. In the simplest form it can be explained as, half duplex communication has 

been established between server and peripherals. In one direction the data collected by peripherals (User 

swipes the card at the reader connected to door and reader reads (extracts) the card number) is transmitted to 

server [3]. In other direction the command from server is transmitted to the peripherals (Based on the card 

number received server sends access granted/denied command to ARM7, which in turn takes the 

corresponding action (turn ON/OFF) on the Relay connected at the door to ultimately open/close the door). 

 

3.1. UART Initialization 

a. The ttyS4 port (UART3) of ARM9 is opened using the file operation. The file descriptor is used to 

access this port. 

b. While initializing UART following settings are done through the source code, 

1) Baud Rate: 115200 

2) Data bits: 8 bits 

3) Parity: None 

4) Stop Bit: 1 bit 

5) Hardware flow Control: No 

c. The UART0 of ARM7 is accessed using its base address (AT91_BASE_US0) and similar settings are 

done through the source code. 

d. A communication link between these two ports (ttyS4 of ARM9 and UART0 of ARM7 is set up. The 

physical medium is CAN bus. 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 4, August 2017 :  1867 – 1873 

1870 

This is how ARM7–ARM9 physical communication link was setup. Initially there wasn‟t any prescribed 

communication packet format. The very first attempt to send data over this communication link was done by 

transmitting just the single character (1 byte) from ARM7 to ARM9 using „putchar‟ function in C. This byte 

was received on the ARM9 side using „getchar‟ function in C. This was successful. Later on communication 

with single byte but both transmitting and receiving was tried successfully over this communication link. At 

this stage a functional communication link was established. Now the next task was to decide the format of the 

communication packet. Table 1 lists the prescribed packet format for the ARM7–ARM9 communication. 

 

 

Table 1. ARM7–ARM9 Communication – Prescribed Packet Format 
2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte  1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes 

Start of 

packet 

Address 

of board 

Sequence 

Number 

Number 
of 

Bytes 

Packet 

Type 
DATA 

Sensor 

Status 

Relay 

Status 
Checksum ACK/NACK 

End of 

Packet 

0,1 2 3,4 5 6 
Max 256 
Bytes 

N-6 N-5 N-4 N-3 
N-2, 
N-1 

 

 

3.2. Checksum 
For both, the data received in the packet and the data to be transmitted in the packet the 8 bits 

checksum is calculated on both the sides ARM7 and ARM9. The logic used for calculating the checksum is 

XORing the data in the packet byte by byte. 

Based on the checksum criterion the integrity of the data received in the packet is checked i.e. the 

data is said to be error free if the received checksum (Checksum field in the packet) and the calculated 

checksum are matching. The data is added to the receive queue only if its integrity is validated [4]. 

 

3.3. ACK/NACK 

If the integrity of the received data is validated on the basis of checksum, the 

ACKNOWLEDGEMENT (ACK) is sent back by piggybacking in the next packet, otherwise NO_ 

ACKNOWLEDGEMENT (NACK) is sent. Whenever NACK is received the packet is resend. 

The packet resending is performed for maximum of three times. If the problem still persists an event 

is send to the proxy letting it know about the problem in ARM7–ARM9 communication link. In turn the 

server will come to know about the communication problem. 

For resending of the data, whenever packet is sent its copy is written in the BACKUP SEND 

QUEUE. If NACK is received for the last sent packet, the same packet is read from the BACKUP SEND 

QUEUE and resend. However if the ACK is received for the last sent packet, the BACKUP SEND QUEUE 

is read and it is freed [5]. 

 

 

4. FIRMWARE UPGRADE OF ARM7 

The ARM7 board, which is directly linked with the peripherals at the door, can be modified of its 

functionality as and when required. And to modify the functionality, the board need not be dismantled from 

the control panel assembly mounted in a remote location within the building. 

How is this possible? The answer to this question lies in this paper. This paper explains in detail the 

Firmware Upgrade Procedure of ARM7 board using the same ARM7-ARM9 communication link. The main 

emphasis is given on the Flash write operation, Intel hex file format and signature for the new firmware [6]. 

 

4.1. Bootloader 

Bootloader is a piece of code that runs before any main application is running. Since it is usually the 

first software to run after power up or reset, it is highly processor and board specific. The bootloader 

performs the necessary initializations. The bootloader application uses the same token based communication 

protocol to communicate with ARM9. It is different from the main application in the sense that it does not 

perform any other functionality except for Flash write operation. Following steps explain in detail the 

development of bootloader application. Bootloader is located at Flash address 0x0000. The 18.943 KB of 

Flash memory has been assigned for Bootloader (0x0000 – 0x4FFF). Rest of the Flash memory has been 

divided into two Regions, each of size 120.832 KB. The Region a (Master Region) is between 0x5000 – 

0x227FF. The Region B (Secondary Region) is between 0x22800 – 0x3FFFF. 

Table 2 gives the details of memory partitions. Now there are two cases for bootloader to handle 

 

 



IJECE  ISSN: 2088-8708  

 

Security Enhancement in Networked Embedded System (Pradip Ram Selokar) 

1871 

Table 2. ARM7 – Flash Memory Partition 
Bootloader Start 

Address 
0x0000 

Bootloader End 

Address 

0x4FFF 

Region „A‟ (Master 

Reg) Start Address 

0x5000 

Region „A‟ End 
Address 

0x227FF 

Region „B‟ (Secondary 

Reg) Start Address 

0x22800 

Region „B‟ End 

Address 

0x3FFFF 

Main Application Start 
Address 

Reg A Start 
Address 

Region Size 0x1D800 Bytes 

(120.832 KB) 

 

 

The Firmware Upgrade command is received from ARM9. On receiving this command ARM7 is 

reset using software reset. On reset, execution goes to Flash start address 0x0000 where bootloader is 

located.Bootloader waits for 10 Seconds to receive new firmware bytes, otherwise jumps back to Region A. 

The message 0x01 is displayed on 7-Seg Display on ARM7 indicating availability of application firmware in 

Region A. 

If it receives the new firmware bytes, the receiving are line by line (one line is of 16 bytes in parsed 

hex file). The memory page of these bytes is formed according to the addresses received (Each page is of 256 

Bytes = Flash Page Size).  

After completion of one page ARM9 sends the WRITE command to ARM7. On receiving this 

command that page is written to flash memory in Region B. This procedure goes on till the entire firmware is 

received and written to Region B. 

Once complete new firmware is available in Region B, its signature is verified. If signature 

verification validates then new firmware is copied to Region A from Region B, replacing the old firmware. If 

signature verification fails, message is sent to ARM9, and Old firmware in Region A is not replaced by this 

new firmware in Region B. 

After finishing the copying of new firmware from Region B to Region A, ARM7 sends back FW 

UPGRADE SUCCESS message to ARM9 and jumps to main application from bootloader (to Region A 

where new firmware is available now). 

 

4.2. Flash Write Operation 

The Flash memory is written in a page-by-page fashion [7]. The write is carried out by storing data 

for an entire page into a temporary page buffer prior to writing the Flash. Which Flash address to write to is 

decided by the content of the parsed Intel hex file. A flash page has to be erased before it can be programmed 

with the data stored in the temporary buffer. The write operation uses the following procedure when writing a 

Flash page: 

a. Fill temporary page buffer 

b. Erase Flash page 

c. Write Flash page 

As one can see of this sequence there is a possibility for loss of data if a reset or power failure 

should occur immediately after a page erase. Loss of data can be avoided by taking necessary precautions in 

software, involving buffering in nonvolatile memory [8]. Figure 2 gives the logic of flash write operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 4, August 2017 :  1867 – 1873 

1872 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart – Flash Write Procedure 

 

 

4.3. Signature Authensity for Security Enhancement 

The signature [9] has been incorporated to assure that the firmware is issued from the authentic 

manufacturer. While developing the main application the predefined signature has been written in a 

predefined memory address at a compile time itself. To write at compile time following are the steps. 

Use of compiler directive, “# pragma location = „SECTION_NAME‟ ” has been made to reserve the 

predefined memory location for signature. 

The signature data is written in the above section by declaring the signature data array immediately 

following the “# pragma location” directive. 

The location address for the section „SECTION_NAME‟ has been defined in the 

at91SAM7S256_FLASH.icf file. This predefined memory location is locked permanently with the 

predefined signature characters written on it. This region is never overwritten. 

Whenever there is a need of firmware upgrade, it is first received to the secondary region of the 

memory. Then the signature bytes are compared with the predefined signature. If it matches then only the old 

Y

ES 

Y

ES 

N

O 

Y

ES 
N

O 

N

O 

ST

AR

Is input 

address 

valid write 

Disable all the interrupts 

Flash 

recovery 

Clear flash recovery status 

variable 

Fill flash temporary 

buffer 

Erase & write new data to 

flash recovery buffer 

Store flash page address 

Write buffer full to flash 

recovery status variable 

Fill flash temporary 

buffer 

Erase & write new data to 

flash page 

Enable all the interrupts 

Flash 

recovery 

Clear flash 

recovery 

status 

variable 

Return Return 



IJECE  ISSN: 2088-8708  

 

Security Enhancement in Networked Embedded System (Pradip Ram Selokar) 

1873 

firmware is overwritten with the new one otherwise it is discarded. This ensures the security of the firmware 

preventing it from getting corrupted from external sources. 

 

 

5. CONCLUSION AND COMPARISON 

The new firmware is overwritten to the ARM7 through source code using the same communication 

link through which the data communication is carried out. This eliminates the need of dismantling the 

hardware from the remote location for the purpose of firmware up gradation.  

In the past people have people have suggested firmware upgrate to an embedded system through J-

Link/J-Trace. This method of upgradation requires dismantling of the hardware from remote location and 

taking it to the developer‟s site. This would be a costlier option.  

Also Signature takes care of Authenticity. So due care has been taken to overwrite the old firmware 

with the new authentic one thereby enhancing the security of the networked embedded system developed. 

The technique of Firmware upgrade presented in this paper will make the hardware multifunctional against 

the application specific. Also the same hardware can be modified of its functionality in future as per the need 

and new peripherals. 

In the past people have people have suggested security based on error control codes. In this paper 

we have suggested signature based security which is more efficient as the security code is known only to the 

authentic manufacturer. 

 

 

REFERENCES 
[1] Norfadzlia Mohd Yusof, Aiman Zakwan Jidin, Lim Mei Sze, “Web Based Home Security, Automation System”, 

International Journal of Reconfigurable and Embedded Systems IJRES, 2016; 5(2); 92-98. 

[2] Vinayak Pandit K., Sanket Dessai, Shilpa Chaudhari, “Development of BSP for ARM9 Evaluation Board”, 

International Journal of Reconfigurable and Embedded Systems IJRES. 2015; 4(3); 161-172. 
[3] Mike Meyerstein, Inhyok Cha, Yogendra Shah, “Security Aspects of Smart Cards vs. Embedded Security in 

Machine-to-Machine (M2M) Advanced Mobile Network Application”, Security and Privacy in Mobile Information 

and Communication Systems, First International ICST Conference, MobiSec 2009, Turin, Italy, Revised Selected 

Papers – Springerlink. (June 3-5, 2009) 

[4] Ou Qingvu, Huang Kai, Wu Xiaoping, “Research on the Embedded Security Architecture Based on the Control 

Flow Security”, IEEE Computer Society: Second International Workshop on Computer Science and Engineering 

(2009). 

[5] Chandrasekaran, S. Rajendran, J. Annamalai, “Data Driven Security Alarm Model for Embedded Applications”, 

Computing, Communication and Networking, ICCCn 2008, International Conference – IEEE xplore digital library 

(2008). 

[6] Guy Gogniat, Tilman Wolf, et al., “Reconfigurable Hardware for High-Security/high-Performance Embedded 

Systems: The SAFES Perspective”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, February 

2008; 16(2).   

[7] Ted Huffmire, Brett Botherton and others. Managing Security in FPGA based embedded Systems. IEEE CS digital 

Library. November-December 2008; 25(6). 

[8] R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, W. Burleson, “A Security Approach for off-chip Memory in 

Embedded Microprocessor Systems”, Elsevier Journal of Microelectronics and Microprocessors, 2000. 

[9] T. Eisenbarth, T. Guneysu, C. Paar, A.-R. Sadeghi, D. Schellekens, M. Wolf, “Reconfigurable Trusted Computing 

in Hardware”, In Proceedings of the ACM Workshop on Scalable Trusted Computing. (November 2007) 

[10]  R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, A. Martinez, “A Parallelized way to Provide data 

Encryption and Integrity Checking on a Processor-Memory bus”, In Proceedings of theIEEE/ ACMInternational 

Design Automation Conference (July 2006). 

 

 
 

 


