
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 6, No. 4, August 2016, pp. 1929 – 1938
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i4.9991 1929

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

Software Reliability Prediction using Fuzzy Min-Max
Algorithm and Recurrent Neural Network Approach

Manmath Kumar Bhuyan*, Durga Prasad Mohapatra**, and Srinivas Sethi***

*Computer Science Engineering and Application, Sarang, Utkal University, Vanivihar, India
**Computer Science Engineering, National Institute of Technology, Rorkela, India

***Computer Science Engineering and Application, IGIT, Sarang, India

Article Info

Article history:
Received Dec 23, 2015
Revised May 23, 2016
Accepted Jun 8, 2016

Keyword:
Fuzzy Min-Max
K-Means
Software Reliability Prediction
Recurrent Neural Network
Back-propagation

ABSTRACT

Fuzzy Logic (FL) together with Recurrent Neural Network (RNN) is used to predict the
software reliability. Fuzzy Min-Max algorithm is used to optimize the number of the k-
gaussian nodes in the hidden layer and delayed input neurons. The optimized recurrent
neural network is used to dynamically reconfigure in real-time as actual software failure.
In this work, an enhanced fuzzy min-max algorithm together with recurrent neural network
based machine learning technique is explored and a comparative analysis is performed for
the modeling of reliability prediction in software systems. The model has been applied on
data sets collected across several standard software projects during system testing phase with
fault removal. The performance of our proposed approach has been tested using distributed
system application failure data set.

Copyright c© 2016 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Manmath Kumar Bhuyan
Utkal University
Vanivihar, Bhubaneswar
Phone: 09437931445
Email: manmathr@gmail.com

1. INTRODUCTION
Software reliability prediction in software systems plays a key part for any software organization to produce

quality and reliable software. The key part of software quality is it’s reliability. So predicting software reliability plays
a key part for producing good quality software. As per IEEE Standard Glossary of Software Engineering, a definition
of software reliability is the probability of the failure free operation of a computer program for a specified period
of time in a specified environment [1, 2, 3, 4]. Computational Intelligence (CI) can offer promising approaches to
software reliability prediction and modeling, because they require only failure history as input without any assumption
[5].

As per IEEE Standard Glossary of Software Engineering, a definition of software reliability is the probability
of the failure free operation of a computer program for a specified period of time in a specified environment [1, 2, 3, 4].
The time duration between successive failures or the cumulative failure time is a vital factor of software reliability
[6, 7]. CI can offer promising approaches to software reliability prediction and modeling, because they require only
failure history as input without any assumption. In reply to this, neuro-fuzzy approach has been applied to software
reliability assessment. Fuzzy Min-Max algorithm is used to optimize the neural network architecture after every
occurrence of software failure time data.

The main contribution of this paper is to propose hybrid model of fuzzy logic and neural network to handle
dynamic data set of software reliability between number of observed failure along with successive software failures.
We propose an adaptive software reliability prediction model fuzzy min-max with recurrent neural network (FMM-
RNN) approach based on multiple-delayed-input single-output architecture. We structured the data set relationship
between failure sequence number and failure time data. Optimization technique is used to model the inter-relationship
among software failure time data. In addition, we made a comparative study about the performance of some well-
known existing software reliability prediction models against our approach model. Neuro-Fuzzy system is used in

Journal Homepage: http://iaesjournal.com/online/index.php/IJECE

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

1930 ISSN: 2088-8708

predicting the software reliability from the aspects of prediction ability for short-term prediction.
The paper is organized as follows: Section 2. describes the related work proposed so far in reliability predic-

tion. Section 3.1. presents our proposed model fuzzy min-max with recurrent neural network (FMMRNN) architecture.
The basic terminologies, application, architecture development is discussed in Section 3.. Section 4. focus on compu-
tation of measure criterion of the propose model and observations are presented. In Section 5., the concluding remarks
and future work are included.

2. BACKGROUND OF RELATED WORK
Karunanithi et al. [8] first propose a neural network for software reliability prediction. The authors [9, 10,

11, 12] developed a connectionist model for reliability prediction. Raj Kiran et al. [13, 14] implemented the use
of wavelet neural networks (WNN) and employed wavelets as transfer function to predict software reliability. Pai
et al. [15] used support vector machines and simulated annealing algorithms for reliability forecasting. They used
lagged data in their analysis by dividing the 101 observations such as: 33 observations for training, 8 observations for
validation, 60 observations for test. Since it is not a standard method of splitting the data set for experimentation. [16]
used neural network approach for software defect prediction and pointed out that the approach is poor at at predicting
number of software defects, but qualitatively good at classifying program modules. Sitte [17], analyzed two methods
(i.e. Neural Networks (NN) and 2) parametric recalibration models) for reliability prediction.

An early reliability prediction approach at design phase is proposed by Mohanta et al. [18]. The fault is
estimated using product metrics collected during design phase of the components. Then these product metrics are
used for reliability prediction. Adnan et al. [19] and Cai et al.[20] determined the number of input neurons and the
number of neurons in hidden layers were determined using a pre-specified range of values (i.e. 20, 30, 40, and 50
input neurons selected in Cai et al. [20], while 1, 2, 3, and 4 input neurons were selected in Adnan et al. [19] and Cai
et al.[20] used genetic algorithm as an optimization search scheme to determine the optimal or near optimal network
architecture. Tian and Noor [6] predicted software reliability using RNN. Su et al. [21] build a dynamic weighted
combinational model using NN. Lo [22] designed a model examines several conventional software reliability growth
models.

3. PROPOSED MODEL FMMRNN RELIABILITY PREDICTION
In this section, we discuss about our proposed model FMMRNN architecture and its applicability in software

reliability prediction. Fuzzy Min-Max is a specific type of neuro-fuzzy that has high efficiency rather than other com-
putational methods [23]. The FMMRNN architecture comprises of two steps 1) Network optimization, 2) Reliability
prediction. The complete architecture frame work of our propose model is shown in Fig. 1. The model receive the
failure data as input then Fuzzy Min-Max algorithm is use to optimizing the neural network architecture. The Fuzzy
Min-Max algorithm optimization process determines the optimal or near-optimal numbers of ‘k’ hidden neurons and
initializes the k-centers. On the basis of numbers of neurons in the hidden layer, the network is framed. The cumula-
tive execution time is taken as input and the number of cumulative failures is taken as output to the networks. As this
is a supervised learning, so the network is trained with input and output data proved to the model. This information is
then used to dynamically reconfigure the neural network architecture for predicting the next-step failure d̂i+1.

Optimization Using

Fuzzy
 Min
-Max

Algorithm

No of Hidden

Neurons

Output Data

Error Deviation Between

Actual and Predicted Output

Input Data

Failure Data Set

K
-Means

Algorithm

Find numbers of the

k
-center

Compute the Various

Measurement Criterion

(
AE
,
RMSE
,
NRMSE
 ,

MAE)

Initialization of

K
-Means

Algorithm

Recurrent Neural Network

Training

Figure 1. A simple architecture of FMMRNN model

IJECE Vol. 6, No. 4, August 2016: 1929 – 1938

IJECE ISSN: 2088-8708 1931

3.1. Recurrent Neural Network

The RNN is based on standard feed-forward neural networks. RNN is a dynamic network as it is a network
with output feedback [24].

OUT

PUT

STATE/

HIDDEN

STATE/

HIDDEN

(
t
-1)

STATE/

HIDDEN

(
t
-2)

INPUT

(
t
-1)

STATE/

HIDDEN

(
t
-3)

INPUT

(
t
-2)

Weights
 W

Weights V

Weights U
Weights U
Weights U

Weights V
 Weights V

INPUT

Copy (delayed to

previous state)

Copy (delayed to

previous state)

Copy (delayed to

previous state)

Figure 2. An graphical presentation of unfolding network associated with recurrent back-propagation through time
learning.

Fig. 2 shows the RNN with back-propagation through time learning that consists of cycles with its states.
In FMMRNN model, the hidden layers are recursive relationship in nature. In recurrent network an extra layer of
neurons which copy the current activations in memory (i.e. in the hidden layer neurons)and move forward. Later on,
it delays these values for one time instant [25], feed them back as additional inputs into the hidden layer neurons as
shown in Fig. 2. As a result of this, each node1 sends activation along a recurrent connection, has at least τ number(s)
of copies. In the supervised learning, an error deviation is the Euclidean distance between the predicted output of the
network and actual output. That error deviation is propagated through time [26]. Each time the error is calculated and
the weights are folded back and added with error to compute the new updated weights using network training method.

yk(t) = f2(netk(t)), (1)

where, netk(t) =

m∑
j

yj(t)wkj + θk

Here, f2 is an activation function between the hidden and output nodes.
In this paper, we consider yi as the output (predicted failure) with activation function f(.) and wij as the

weight from node j to node i associated with this link. Here the input nodes xi receive external inputs (i.e. the failure
number). The desired state of unit i denoted as di corresponding to xi. The accumulated cost function (i.e. the Summed
Square Error (SSE)) ‘L’ in Equation 2 measures the deviation (i.e. difference between the actual and desired values)
of the network outputs yi(t) from the desired functions di(t) from t = t0 to t = t1 for all copies of the output nodes.

L =
1

2

n∑
k=1

(dk(t)− yk(t))2 =
1

2

n∑
k=1

L2
k (2)

Where Lk =

{
dk − yk , kth output node

0 , otherwise

Here, n is the total no of output nodes and is an index over the training sequence dk(t), yk(t) (these are the desired
and predicted output functions of time respectively).

The change in weights ∆W and ∆V are calculated as

∆W (h) = γmW (h− 1) + γgLkf
′(h)yk (3)

∆V (h) = γmV (h− 1) + γgLkg
′(h)xk (4)

where γm, γgε [0,1] are the constant parameters. The last step in the training process is the updation of net weights
using Equations 3 & 4, which is given below: The training process aim is to update the net weights using Equations 5
and 6.

W (new) = W (old) + ∆W (5)
V (new) = V (old) + ∆V (6)

The aim of this weight updation is to minimize the error deviation between the desired output and actual output.
1In this paper the term unit, node and neuron are used interchangeably.

Software Reliability Prediction using Fuzzy Min-Max Algorithm ... (Manmath Kumar Bhuyan)

1932 ISSN: 2088-8708

3.2. FMMRNN Training

This section gives a brief discussion about RNN training using back-propagation learning rule. We can
interpret number of failures as a function of cumulative execution time xi. Both cumulative execution time and
number of failures are normalize in the range 0 to 1. Suppose f is the function of xi, it can be written as f(xi) = di.
The normalized values of the input to the network such as f(x1), f(x2)...f(xi) are used to predict the d̂i+1. In other
way, we can forecast d̂i+1 by using {x1, d1}, {x2, d2}, ...{xi, di}, where di+1 is target value is known as short term
prediction or 1-step ahead prediction or next-step prediction. In this study, we assume that the logistic function binary
sigmoidal F (x) = 1/(1 + e−λx) is used for each neuron, where λ is the steepness parameter. The range of this
transfer function varies from 0.0 to 1.0. The logistic transfer function is used to reduce the computational burden
during training. The cross-validation process splits the entire representative data set into two sets: a) a training data
set, used to train the network, b) a test data set used to validate the output of the model. We split the data set as follows:
80% for training and 20% for testing.

The training process is continued and the weights are updated until the last hidden layer state is reached. In
the first epoch, the weights are typically initialized to a small random value. On next onwards a set of weights are
chosen at random and the weights are adjusted in proportion to their contribution to error [27].

We employed MATLAB Version 7.10.0 environment for prediction purpose. The weights are initialized with
small random value before first epoch starts. After then, the weights are adjusted randomly. The error tolerance
for back-propagation algorithm is Emin=0.005. The network model FMMRNN is trained with initial weights and
continues until the stopping criteria gets satisfied and the best weights are recorded for next-step-prediction of the
reliability.

4. EXPERIMENTAL RESULTS AND OBSERVATIONS
In our reliability prediction experiment, we considered the failure data during system testing phase of dis-

tributed system application having defect severities 2 and 3 [28] as provided in Table 1. As per our experimental

Table 1. Defect severities level

Sl.
no.

Severities
level

Type Description Need of solution

1 0 No impact Can tolerate No need
2 1 Minor Can tolerate Solution eventually
3 2 Major Can tolerate Solution needed
4 3 Critical Intolerable Solution urgently

needed

requirements, we have taken a) Failure Number, b) Time Between Failures (TBF) for our analysis. Below, we present,
the list of some prediction parameters used in our approach.

• The Average Error (AE), how adequately a model determines all over the system testing phase [29]. AE, mea-
sures how well a model predicts throughout the testing phase [30]. Average Error(%):AEi = (|(Fi−Di)/Di|)∗
100

• The Root Mean Square Error (RMSE), is used to determine how far on average the error (i.e. between
actual and target value) is from 0. The lower is RMSE, the higher is prediction accuracy. Mathematically,
RMSE =

[√∑n
1 (Fi −Di)

2
]
/n

Normalized Mean Square Error (NRMSE)=
[√∑n

1 (Fi −Di)
2
]
/
∑n

1 Fi
2

• Mean Absolute Error (MAE) is an average of an absolute error that computes how close predictions are to
the final result. The MAE and RMSE are used together to analyze the variation in the errors on data set.
MAE = [

∑n
1 |(Fi −Di)|] /n

Here, Fi denotes the predicted output and Di denotes the desire output of ith node. In our experiment, we consider
data set(DS) [31] for prediction and analysis purpose.

The number of hidden layers is one and the numbers of neurons present in the hidden layer calculated by
optimization process are recorded from 10 to 50. Table 5 represent the result of the model during validation. After the
proposed network model is successfully trained with 80% data, then the network undergoes for next-step predictions

IJECE Vol. 6, No. 4, August 2016: 1929 – 1938

IJECE ISSN: 2088-8708 1933

Table 2. Some Data Sets Used For Reliability Prediction [28] & [31]

Project
Code

Project Name Number of
Failures

Development Phases

DS1 Real Time Command & Control System 136 System Test Operations
DS2 Military 101 System Test
DS3 Commercial System 73 Subsystem Test
DS4 Real Time Command & Control System 54 System Test Operations
DS5 Real Time Command & Control System 53 System Test Operations
DS6 Military 41 System Test
DS7 Real Time Command & Control System 38 System Test Operations
DS8 Military 38 System Test
DS9 Real Time 36 System Test
DS10 Distributed System [31] 191 System Test

and validation using rest 20% test data. The MAE and RMSE are used together to analyze the variation in the errors
on data set. The values of various parameters such as AE, RMSE, and NRMSE of our experiment are listed in Table
5. We observed that the network model produce best result at 45 numbers of neurons in the hidden layer. Fig. 3 and 4
summarize in terms of AE and 6 in terms of RMSE.

Figure 3. Next-step prediction on training data.

Figure 4. Next-step prediction on test data.

The best results found for data set for short-term prediction (STP) are as follows: the values of AE, RMSE,
NRMSE, and MAE are 3.0019, 0.00438, 0.0261, and 0.0331 respectively. The STP for measurement unit AE on
training is shown in Fig. 3 (i.e. the desired output and predicted output) and deviation between actual and forecasted
value. Figure 4 show the prediction graph of actual data and predicted result for data set DS10. The corresponding
deviation between the actual and computed output is shown in Figure 5. The figure shows how close predictions are
to the predicted results.

The accuracy of AE, we found in this experiment has been greatly improved and is consistent than some
well-known methods that are arrived at Table 6. The performance of the network during training is presented in Fig 6
in terms of RMSE during training. It is drawn in the form of number of epochs vs error rate in terms of RMSE during
training. It shows how the error rate decreases with number epochs during training the network.

Software Reliability Prediction using Fuzzy Min-Max Algorithm ... (Manmath Kumar Bhuyan)

1934 ISSN: 2088-8708

Table 3. Data set by Iyer and Lee [31] for DBS10

Failure
No

C E Time Failure
No

C E Time Failure
No

C E Time Failure
No

C E Time

1 9.9898 49 472.18 97 1048.3 145 1661.8
2 18.747 50 483.2 98 1062 146 1669.4
3 28.962 51 494.25 99 1075.8 147 1677.5
4 40.719 52 505.39 100 1089.6 148 1686.3
5 52.872 53 516.55 101 1103.3 149 1695.5
6 61.037 54 527.7 102 1117.1 150 1705.1
7 70.447 55 539.81 103 1130.9 151 1715
8 80.03 56 551.94 104 1145.4 152 1727.8
9 88.819 57 563.97 105 1159.9 153 1740.6
10 100.3 58 576.01 106 1174.5 154 1753.5
11 110.31 59 588.08 107 1189 155 1766.3
12 117.3 60 600.39 108 1203.5 156 1779.1
13 124.36 61 612.71 109 1218.3 157 1792.4
14 130.85 62 625.03 110 1233.3 158 1806.6
15 137.48 63 637.37 111 1248.2 159 1820.8
16 143.67 64 650.49 112 1263.1 160 1835.1
17 149.64 65 664.14 113 1278 161 1847.8
18 154.47 66 677.97 114 1284.3 162 1861.5
19 164.37 67 691.79 115 1296.5 163 1875.7
20 177.25 68 705.63 116 1309.4 164 1890.3
21 183.9 69 719.47 117 1322.4 165 1904.9
22 191.83 70 733.31 118 1336.2 166 1916.9
23 200.02 71 747.19 119 1349.9 167 1930.2
24 208.79 72 761.09 120 1363.9 168 1943.5
25 218.06 73 775 121 1377.8 169 1957.9
26 227.6 74 788.92 122 1383 170 1972.3
27 237.5 75 802.83 123 1388.2 171 1986.7
28 247.47 76 816.77 124 1396.9 172 2001.3
29 257.56 77 830.72 125 1409.4 173 2015.8
30 267.7 78 844.69 126 1422.5 174 2025.7
31 280.18 79 858.68 127 1436.2 175 2038.1
32 292.96 80 872.67 128 1449.8 176 2050.9
33 305.79 81 879.07 129 1463.7 177 2062.3
34 319.6 82 885.46 130 1478.2 178 2075.6
35 328.15 83 889.07 131 1485.7 179 2088.9
36 336.82 84 902.73 132 1496.8 180 2102.8
37 345.49 85 916.75 133 1509.7 181 2113.5
38 354.17 86 930.94 134 1522.8 182 2124.3
39 362.81 87 945.24 135 1536.9 183 2135.6
40 369.61 88 959.53 136 1551.3 184 2147.4
41 379.51 89 973.83 137 1565.9 185 2160.1
42 391.11 90 988.13 138 1580.5 186 2172.8
43 403.37 91 993.81 139 1595.2 187 2186
44 417.38 92 1001.5 140 1609.8 188 2199.1
45 431.38 93 1009.5 141 1620.8 189 2212.3
46 445.39 94 1017.5 142 1628.6 190 2225.5
47 453.99 95 1025.9 143 1639.5 191 2238.7
48 462.8 96 1034.6 144 1650.7

Table 4. Training Result of Data Set DS10

Neurons
in each
layer

AE RMSE NRMSE MAE

1,8,1 4.6714 0.02321 0.0544 0.0423
1,23,1 4.4113 0.0178 0.0432 0.0328
1,30,1 3.6215 0.0021 0.0159 0.0331
1,38,1 3.7614 0.0113 0.017 0.0333
1,40,1 3.4311 0.0093 0.01501 0.0351
1,46,1 4.6715 0.00572 0.0261 0.0331
1,47,1 3.0017 0.00433 0.0262 0.0489
1,49,1 3.9912 0.01989 0.0493 0.0416

IJECE Vol. 6, No. 4, August 2016: 1929 – 1938

IJECE ISSN: 2088-8708 1935

Table 5. Selection for number of neurons in hidden.

Neurons
in each
layer

AE RMSE NRMSE MAE

1,8,1 4.6714 0.02321 0.0544 0.0423
1,10,1 4.8714 0.00798 0.0534 0.0423
1,23,1 4.4113 0.0178 0.0432 0.0328
1,25,1 4.5113 0.00547 0.0441 0.0328
1,38,1 3.7614 0.0113 0.0317 0.0333
1,45,1 3.0019 0.00438 0.0261 0.0331
1,49,1 3.9912 0.01989 0.0493 0.0416
1,50,1 5.6312 0.00993 0.0493 0.0446

Figure 5. Eror Deviation of Next-step prediction on test data.

4.1. Observations

The comparative data are shown in Table 6 for the given data set with various models. It is also observed that
the training results shows better accuracy than the prediction result.

The next-step prediction in Table 6 shows that our proposed model has less NRMSE value i.e 0.0261 and
AE is 3.0019. Beside, the measurement criteria NRMSE is also found minimum than the various reliability prediction
models [13, 14, 32] and RMSE value with [10, 33, 34].

Model quality is observed if its predictions are close to the ideal line passing through the zero error [8]. Fig.
3, 4 ans 5 show the prediction closeness between the actual value and prediction value.

Some observations on software reliability prediction using our proposed feed forward neural network model
are listed below:

• The training results of the proposed model are better than the prediction result of the corresponding trained
neural network. It means that producing good result at approximating does not certainly good at forecasting.

• Unlike statistical techniques, no unrealistic assumption is made in recurrent neural network approach.

• As we in the category of black-box model approach, so some useful information is ignored.

Table 6. A comparison with different model

Approach Model Measure
Parame-
ter

Value

Mohanty et al. [32] NRMSE 0.07292
FMMRNN(Proposed) NRMSE 0.0261
Su et al. [21] AE 3.24
FMMRNN(Proposed) AE 3.0019

Software Reliability Prediction using Fuzzy Min-Max Algorithm ... (Manmath Kumar Bhuyan)

1936 ISSN: 2088-8708

Figure 6. Performance result during training.

• Our model is a generic model that can work in any stabilize smooth trend data set and in any environment.

.

4.2. Threats to Validity

Below we discuss the possible threats to the validity of our work.

• Arbitrary data set partitioning for training and testing the network can be a limiting factor.

• As our experiment uses MATLAB for computation, so it suffers the same threats to validity as MATLAB does.

• As we discussed in Section 4., The weights of the neural network are chosen as random variables with specified
distributions. So computed value may not produce the same result for every run. That is, even if for same input
dataset and the same learning scheme are employed, expecting the same output is difficult.

• So far there is no such criteria on range for training and testing partitioning with respect to the performance
validation.

The FMMRNN model shows that it yields a lower average relative prediction error and Normalized Mean Square
Error compared to other model [13, 14, 32] approaches.

5. CONCLUSION
In this approach, we presented a novel technique for software reliability prediction using fuzzy min-max

algorithm together with recurrent neural network technique. We presented experimental evidence showing that fuzzy
max-min algorithm with recurrent network (using back propagation learning) is giving the accurate result comparable
to other methods. Software reliability prediction is used to improve software process control and achieve high software
reliability. This finding gives a good sign of prediction capabilities of the developed fuzzy-neural networks model for
estimating the software reliability. More datasets and other types of computational intelligence and simulation tools
need to use for further justify our findings.

REFERENCES
[1] IEEE, “Standard glossary of software engineering terminology,” Standards Coordinating Committee of the IEEE

Computer Society, 1991.
[2] P. J. Boland, “Challenges in Software Reliability and Testing,” Department of Statistics National University of

Ireland, Dublin Belfield - Dublin 4 Ireland, Technical report, 2002.
[3] K. Khatatneh and T. Mustafa, “Software Reliability Modeling using Soft Computing Technique,” European

Journal of Scientific Research, vol. 26, no. 1, pp. 154–160, 2009.
[4] J. D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time Model for Software Reliability Measure-

ment,” in ICSE, T. A. Straeter, W. E. Howden, and J.-C. Rault, Eds., IEEE Computer Society. Orlando, Florida,
NJ, USA: Proceedings of the 7th International Conference on Software Engineering, March 1984, pp. 230–238.

[5] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “A Survey of Computational Intelligence Approaches for Software
Reliability Prediction,” ACM SIGSOFT Software Engineering Notes, vol. 39, no. 2, pp. 1–10, March 2014.

IJECE Vol. 6, No. 4, August 2016: 1929 – 1938

IJECE ISSN: 2088-8708 1937

[6] L. Tian and A. Noore, “Software Reliability Prediction Using Recurrent Neural Network with Bayesian Regu-
larization,” International Journal of Neural Systems, vol. 14, no. 3, pp. 165–174, June 2004.

[7] ——, “On-line Prediction of Software Reliability using an Evolutionary Connectionist Model,” Science Direct,
The Journal of Systems and Software, vol. 77, no. 2, pp. 173–180, August 2005.

[8] N. Karunanithi and D. Whitley, “Prediction of Software Reliability Using Feed-forward and Recurrent Neural
Nets,” in Neural Networks, 1992. IJCNN, vol. 1. Baltimore, MD: IEEE, June 1992, pp. 800–805.

[9] T. M. Khoshgoftaar, A. S. Pandya, and H. More, “A Neural Network Approach For Predicting Software De-
velopment Faults.” Research Triangle Park, NC: Proceedings of Third International Symposium on Software
Reliability Engineering, October 1992, pp. 83–89.

[10] Y. Singh and P. Kumar, “Prediction of Software Reliability Using Feed Forward Neural Networks,” in Computa-
tional Intelligence and Software Engineering (CiSE), I. Conference, Ed. IEEE, 2010, pp. 1–5.

[11] M. M. T. Thwin and T. S. Quah, Eds., Application of Neural Network for Predicting Software Development
Faults using Object-Oriented Design Metrics, vol. 5. Proceedings of the 9th International Conference on
Neural Information Processing (ICONIP’02), November 2002.

[12] L. Zhao, J. pei Zhang, J. Yang, and Y. Chu, “Software reliability growth model based on fuzzy wavelet neural
network,” in 2nd International Conference on Future Computer and Communication (ICFCC), vol. 1. Wuhan:
IEEE, May 2010, pp. 664–668.

[13] N. RajKiran and V. Ravi, “Software Reliability Prediction using Wavelet Neural Networks,” in International
Conference on Computational Intelligence and Multimedia Applications, vol. 1. Sivakasi, Tamil Nadu: IEEE,
December 2007, pp. 195 – 199.

[14] ——, “Software Reliability Prediction by Soft Computing Techniques,” Journal of Systems and Software, vol. 81,
no. 4, pp. 576–583, April 2008.

[15] P.-F. Pai and W.-C. Hong, “Software reliability forecasting by support vector machines with simulated vector
machines with simulated annealing algorithms,” Journal of Systems and Software, ELSEVIER, vol. 79, no. 6, pp.
747–755, June 2006.

[16] K.-Y. Cai, Software Defect and Operartional Profile Modeling. MA, USA: Kluwer Academic Publishers Nor-
well, 1998, vol. 1.

[17] R. Sitte, “Comparison of software-reliability-growth predictions: neural networks vs parametric-recalibration,”
Reliability, IEEE Transactions, vol. 48, no. 3, pp. 285–291, September 1999.

[18] S. Mohanta, G. Vinod, and R. Mall, “A Technique For Early Prediction of Software Reliability Based on Design
Metrics,” Springer, International Journal of System Assurance Engineering and Management, vol. 2, no. 4, pp.
261–281, December 2011.

[19] W. Adnan, M. Yaakob, R. Anas, and M. Tamjis, “Artificial neural network for software reliability assessment,”
in TENCON Proceedings of Intelligent Systems and Technologies for the New Millennium, vol. 3, Fac. of Eng.,
Univ. Putra Malaysia, Selangor, Malaysia, 2000, p. 446451.

[20] K.-Y. Cai, L. Cai, Wei-Dong, Z.-Y. Yu, and D. Zhang, “On the neural network approach in software reliability
modeling,” The Journal of Systems and Software, ELSEVIER, vol. 1, no. 58, pp. 47–62, August 2001.

[21] Y.-S. Su and C.-Y. Huang, “Neural-network-based approaches for software reliability estimation using dynamic
weighted combinational models,” The Journal of Systems and Software, ELSEVIER, vol. 80, no. 4, pp. 606–615,
August 2007.

[22] J. H. Lo, “The Implementation of Artificial Neural Networks Applying to Software Reliability Modeling,” Con-
trol and Decision Conference, 2009. CCDC ’09. Chinese, pp. 4349 – 4354, June 2009.

[23] A. Joshi, N. Ramakrishman, E. N. Houstis, and J. R. Rice, “On neurobiological, neuro-fuzzy, machine learning,
and statistical pattern recognition techniques,” IEEE TRANSACTIONS ON NEURAL NETWORKS, vol. 8, no. 1,
pp. 18–31, January 1997.

[24] D. R. Hush and B. G. Herne, “Progress in supervised neural networks,” Signal Processing Magazine, IEEE,
vol. 10, no. 1, pp. 8–39, January 1993.

[25] A. C. Tsoi and A. D. Back, “Locally recurrent globally feedforward networks: A critical review of architectures,”
vol. 5, no. 2, pp. 229–233, March 1994.

[26] Y. Maeda and M. Wakamura, “Simultaneous perturbation learning rule for recurrent neural networks and its fpga
implementation,” IEEE TRANSACTIONS ON NEURAL NETWORKS, vol. 16, no. 6, pp. 1664–1672, NOVEM-
BER 2005.

[27] N. Karunanithi, Y. Malaiya, and D. Whitley, “Prediction of Software Reliability Using Neural Networks,” in
Proceedings IEEE International Symposium on Software Reliability Engineering. Austin, TX: IEEE, May
1991, pp. 124–130.

[28] J. D. Musa, “Software Reliability Data,” Data & Analysis Center for Software, January 1980.

Software Reliability Prediction using Fuzzy Min-Max Algorithm ... (Manmath Kumar Bhuyan)

1938 ISSN: 2088-8708

[29] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of Software Reliability Using Connectionist Models,”
IEEE Trans. Software Eng., vol. 18, no. 7, pp. 563–574, July 1992.

[30] Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predictability of software reliability models,” IEEE Transactions
on Reliability, vol. 41, no. 4, pp. 539–546, December 1992.

[31] R. Iyer and I. Lee, Measurement-based analysis of software reliability, Handbook of Software Reliability Engi-
neering. McGraw-Hill, 1996, pp. 303 – 358.

[32] R. Mohanty, V. Ravi, and M. R. Patra, “Hybrid Intelligent Systems for Predicting Software Reliability,” Applied
Soft Computing, vol. 13, no. 1, pp. 189–200, August 2013.

[33] Y. Singh, A. Kaur, and R. Malhotra, “Empirical Validation of Object-Oriented Metrics for Predicting Fault
Proneness Models,” Journal of Software Quality Control, Springer Science Business Media, LLC, vol. 18, no. 1,
pp. 3–35, July 2009.

[34] E. O. Costa, S. R., V. Aurora, and P. G. Souza, Eds., Modeling Software Reliability Growth with Genetic Pro-
gramming. Chicago, Illinois: Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, November 2005.

BIOGRAPHIES OF AUTHORS

Manmath Kumar Bhuyan is currently a Ph.D. candidate in the Department of Computer Science and
Engineering at Utkal University, Vani Vihar, INDIA. M Tech in Computer Science and Engineering
from NITTR, Kolkata. He worked with various MNC company as member in R&D group. He
worked as an Asst prof in Computer science & engineering department for more than 10yrs.

Durga Prasad Mohapatra received the M E degree in computer science engineering in 2000 from
REC and the Ph D degree in Computer Science Engineering in 2005 from Indian Institute of Tech-
nology, INDIA . He is an Associate Professor in the Department of Computer Science Engineering
at National Institute of Technology. He has published more than 70 papers in the areas of software
engineering, neural networks and genetic algorithms. He serve a members of Technical Societies
IEEE, Institution of Engineers (I), CSI

Srinivas Sethi is an Associate Professor in the Department of Computer Science Engineering in
Indira Gandhi Institute of engineering and Technology. He received the master degree in computer
application (MCA) in 1995 from Berhampur University, INDIA, and the Ph D degree in Computer
Science in 2011 from Berhampur University, INDIA, He is an Assistant Professor in the Department
of Computer Science Engineering & Application at IGIT Sarang. He has published more than 30
papers in the areas of software engineering, networking, cloud computing, etc.

IJECE Vol. 6, No. 4, August 2016: 1929 – 1938

