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 In three dimensional (3D) space vector modulation (SVM) theory with α-β-γ 
frame there are some issues which are well known and are widely practiced 
being quite obvious but without any proof so far. In this paper necessary 
scientific foundations to those issues have been provided. The foremost of 
these issues has been with the frame of reference to be considered in 3D 
SVM applications for unbalanced three phase systems. Although for 
balanced three phase systems there has been no controversy with α-β frame 
as the frame of reference but in 3D it has not yet been established which one, 
α-β-γ frame or the a-b-c frame, is mathematically correct. Another significant 
issue addressed in this work has been to ascertain the exact reason when a 
three phase system has to be represented in 2D or 3D space to apply SVM. It 
has been presented for the first time in this work that the key factor that 
determines whether 3D or 2D SVM has to be applied depends on the 
presence of time independent symmetrical components in a three phase ac 
system. Also it has been proved that the third axis, the γ –axis, represents the 
time independent quantity and that it must be directed perpendicular to the α-
β plane passing through the origin.
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1. INTRODUCTION  

Space Vector theory is based upon the d-q-0 and -- transformation theories presented by Park 
(1929) [1] & Clarke et al. (1951) [2] respectively. Originally, it was developed for studies of electrical 
machines [3]. Since then there have been many applications of Space Vector Modulation (SVM) in power 
converters and ac drives [3]-[7]. Electrical machines being balanced three phase loads without zero sequence 
components such studies have remained confined to - transformation only and the SVM applied was 2D 
SVM. The ability of representing a three phase balanced system by a single vector applying α-β  
transformation and the successful applications of 2D SVM in different areas of power converter applications 
e.g. dc drives, ac drives, inverters, rectifiers, and different flexible AC transmission system (FACTS) devices 
for power quality applications [3]-[15] led researchers to apply SVM for three phase unbalanced systems.  

In an unbalanced system the -component is not zero so the number of dimensions of the active 
space increases from 2 to 3, making the 3D SVM as the applicable SVM. The first 3D SVM was reported by 
Zhang et al. [16] in 1997. In [16], -- frame has been used with the axis for -component shown as a 
perpendicular to the - plane and passing through the origin. It has been stated therein, “With the additional 
neutral leg, the space vector modulation control is much more complex and there is no precedent literature 
addressing this issue”. Using 3D SVM in -- frame has remained an area comparatively less worked and 
less reported [17]-[21]. To overcome the complexities and difficulties of 3D SVM in -- frame, Perales et 
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al. [22] proposed to use a-b-c coordinates for 3D SVM. Since then a number of works using a-b-c frame have 
been reported [23]-[26]. But none of these papers have justified a-b-c frame as a valid frame to 
mathematically represent a 3D space or any vector in a 3D space. A comparison of shunt active power filter 
with load current detection and with source current detection but without reference to space vector theory has 
been presented in [27].  

The paper has been organized in different sections. In Section-2 the mathematically appropriate 
frame of reference for 3D SVM analysis has been established. In Section-3, the necessary and essential 
condition for a three phase system to be represented as a 2D vector in accordance to space vector theory has 
been presented and in Section-4 the logic for mapping the one-dimensional vector representing zero sequence 
component of symmetrical components of a three phase system along the -axis has been presented. 
Conclusion has been presented in Section-5. 
 
 
2. THE CORRECT MATHEMATICAL FRAME FOR 3D ANALYSIS: -- OR A-B-C? 

Space vector theory is an effective analytical tool to analyze three phase systems. In this method any 
time-varying three phase system is converted from time domain to a set of two vectors in space domain. If 
va(t), vb(t), and  vc(t) be three phase quantities in a-b-c plane then the system can be represented by a space 
vector Vഥ which is the resultant of two vector quantities Vഥୗ  and Vഥ୞ as: 

 
Vഥ ൌ Vഥୗ ൅ Vഥ୞         (1) 
 

where,  Vs


 = ( V + jVα β ) , a 2D space vector in the - complex plane, shown in Figure 1, with 

real axis unit vector �Vα directed along phase quantity va(t) in the a-b-c plane and j= -1  

 

= 
0 1 22 (a v (t)+ a v (t) + a v (t))a b c3
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and,      Vz


 =  1 (v (t)+ v (t)+ v (t))a b c3
      (3) 
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Vβ

 
 

Figure 1. Transformation from a-b-c to - 
  
 

If the sum of three phase quantities be zero then Vz


 is zero and (1) becomes: 
 
Vഥ ൌ Vഥୗ          (4) 
 
Application of Clarke transformation converts the same three phase system of va(t), vb(t) and vc(t) 

from a-b-c to -- frame. The transformation, when va(t) + vb(t) + vc(t) ≠ 0, is as follows: 
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1 -1/2 -1/2v vα a2
v  = 0 3/2 - 3/2 vβ b3

1/2 1/2 1/2 vcvγ

                            

       (5) 

 
But for the system where va(t) + vb(t) + vc(t) = 0, the Clarke transformation is given in (6). 
 

vav -1/2 -1/212α
= vbv 3 0 3 / 2 3 / 2β

vc

 
     
             

      (6) 

 

Clarke transformation equations (5) and (6) have been developed with phase-a vector va


aligned 

along -axis and the -axis located at right angles to the -axis. All the vectors va


, vb


, vc


, vα


 & vβ


are 

on the same plane, a 2D space as shown in Figure 1. This 2D space is the - plane as well as the a-b-c plane 
with origins of both frames located at the same point. Hence a-b-c frame has its all three axes on the same 
plane but for a frame to represent a 3D space all its axes cannot lie on one plane as per mathematics. So a-b-c 
frame is not the correct frame for analyzing any 3D space vector. It can be seen from (2) that a 2D vector Vഥୗ 
lies on the a-b-c plane i.e. the - plane. To mathematically represent a 3D vector V


 as in (1), another 1D 

vector Vഥ୞ has to be outside the α-β plane where the 2D vector Vഥୗ lies. In -- frame Vഥ୞ is mapped along a 

third direction called -axis and hence it is the correct mathematical frame for 3D space vector analysis. 
 
 

3. CONDITION FOR REPRESENTING A THREE PHASE SYSTEM WITH A 2D VECTOR 
As per symmetrical component theory [28], any single phase quantity of a three phase system can be 

expressed as a function of three vectors representing corresponding phase of three different balanced 
systems: positive sequence, negative sequence and zero sequence. While positive and negative sequence 
components are functions of time the zero sequence component is time independent.  Equations (2) and (6) 
reveal that the zero sequence components only have been left out of the - complex plane. Expression of  
Vഥஓ computed from (5) and the right hand side (r.h.s) of (3) are equal i.e. 

 
Vഥ୞ ൌ Vഥஓ          (7)  
 
Hence the time independent zero sequence component Vഥஓ does not lie on the - plane.  This fact 

leads to the conclusion that the condition for representing a three phase system with a 2D vector is that 
the system will not have any time-invariant symmetrical component. It does not exclude the negative 
sequence symmetrical components i.e. a three phase system having negative sequence components but 
without any zero sequence component can be represented by a 2D vector on α-β  plane.  This is different 
from the prevailing concept of space vector in 2D or in 3D based upon the balanced or unbalanced state of 
the three phase system under conversion.   
 
 
4. MAPPING ZERO SEQUENCE SYMMETRICAL COMPONENT ALONG -AXIS IN -- 

FRAME  
That  and  axes of - plane with mutually perpendicular directions have been clearly defined in 

Clarke transformation but the direction of γ -axis of α-β-γ frame has not been so defined. In the literature so 

far the γ -axis of the α-β-γ frame has been shown to be directed in a direction mutually perpendicular to both 

 andβ axes but why it shall be so directed has not been found in literature.  
It has been noted that the space vector representation of a three phase system having zero sequence 

components is a three dimensional vector. Combining equations (1) and (7) the general form of the 3D space 
vector for such a three phase system is, Vഥ = Vഥୗ + Vഥஓ i.e. the resultant of a 2D vector Vഥୗ on α-β plane and a 1D 

vector Vഥஓ along an axis - which is not on the - plane. The direction of -axis of ‐‐ frame has not been 
clearly defined as  and  axes have been. To satisfy the demand of symmetrical component facts that each 
individual phase mapped on α-β plane must have equal share of zero sequence components implies that Vഥஓ 
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has to be so located and directed that it remains common to each individual phase in identical manner. Hence 
the only logical direction for -axis is along the line perpendicular to  and  axes and passing through their 
point of intersection. This makes --  frame exactly analogous to Cartesian frame. Access to Cartesian 
frame opens up possibility of applying mathematical tools in space vector theory applications.  

 
 

5. CONCLUSION 
This work has provided the much needed scientific proofs for some hypotheses of 3D SVM theory. 

These hypotheses have been taken for granted without any proof on the ground that they are obvious and well 
known. It has been shown that between α-β-γ and a-b-c frames, the -- frame is the correct frame that fits 
the mathematical conditions essential to represent 3D space vectors. This work has determined the criterion 
that is necessary for a three phase unbalanced system to determine whether that has to be represented in a 3D 
space or in a 2D space. It has been justified here why the γ-axis in -- frame must be perpendicular to the 
α-β plane and why it must pass through the point of intersection of α & β axes. With these confirmations, 
coordinate geometry or vector analyses can now be applied for 3D SVM applications using -- frame as it 
exactly matches Cartesian frame. The present work has provided the mathematical and logical explanations 
which had been so far missing in the theory. 
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