
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 8, No. 3, June 2018, pp. 1659~1670

ISSN: 2088-8708, DOI: 10.11591/ijece.v8i3.pp1659-1670 1659

Journal homepage: http://iaescore.com/journals/index.php/IJECE

CCCORE: Cloud Container for Collaborative Research

Salini Suresh
1
, L. Manjunatha Rao

2

1Computer Science, Bharathiar University, Coimbatore, India
2Department of MCA, Dr. Ambedkar Institute of Technology, Bangalore, India

Article Info ABSTRACT

Article history:

Received Jun 9, 2017

Revised Jan 1, 2018

Accepted Jan 8, 2018

 Cloud-based research collaboration platforms render scalable, secure and

inventive environments that enabled academic and scientific researchers to

share research data, applications and provide access to high- performance

computing resources. Dynamic allocation of resources according to the

unpredictable needs of applications used by researchers is a key challenge in

collaborative research environments. We propose the design of Cloud

Container based Collaborative Research (CCCORE) framework to address

dynamic resource provisioning according to the variable workload of

compute and data-intensive applications or analysis tools used by

researchers. Our proposed approach relies on–demand, customized

containerization and comprehensive assessment of resource requirements to

achieve optimal resource allocation in a dynamic collaborative research

environment. We propose algorithms for dynamic resource allocation

problem in a collaborative research environment, which aim to minimize

finish time, improve throughput and achieve optimal resource utilization by

employing the underutilized residual resources.

Keyword:

Cloud computing

Collaborative research

Container

Dynamic allocation

Finish time

Residual resources

Throughput

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Salini Suresh,

Computer Science,

Bharathiar University,

Coimbatore, India.

Email: pnsalinisuresh@gmail.com

1. INTRODUCTION

In mid-1990’s various grid-based cyberinfrastructures or e-infrastructures were constituted that

integrated high-speed research networks and middleware services and endorsed researchers for collaborative

sharing of distributed resources. These firmly unified science gateways served as resource providers for

specialized as well as generic research initiatives [1]. However, restricted interface to the data, domain-

specific nature of science gateways did not match the requirement of the researchers outside those domains

[2]. With the advent of cloud computing, easy reconfigurable and adaptive Virtual private research

environments and science clouds became a preferred alternative to a traditional grid or cluster-based e-

infrastructures. Cloud-based collaborative research platforms provide the researchers with computing, storage

resources required to run their applications, and they can collaborate to share data and application, while he

concentrates on his area of research. Cloud platform offers compute environment with the huge set of

computing resources much bigger than what an individual research organization can afford. Organizations

can scale up, scale down the resources, and pay for it according to the usage. Multitenancy provided by cloud

architecture enabled the creation of domain and requirement specific virtual private research environments

that expedited researchers for collaboration and sharing of the resources [3]. Several science clouds such as

Nectar Research cloud [4] provides the infrastructure to run compute-intensive scientific applications [5], [6].

Even though a substantial amount of research work has been carried out with regard to cloud-based

collaborative research platforms, ample work does not exist in view of dynamic resource allocation in

collaborative research cloud frameworks.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1660

The primary aim of the paper is to design a Cloud Container based Collaborative Research

(CCCORE) framework employing an on-demand, dynamic resource provisioning according to the varying

workload, through a comprehensive assessment of requirements of the users and available resources in a

collaborative research environment.

1.1. Background

In this section, we discourse an illustrative set of existing work related to cloud-based collaborative

research platforms, among which some platforms used hypervisor-based virtualization while others have

deployed containerization based resource allocation.

Benjamin H. Brinkman et al [7] proposed a cloud-based portal for sharing data and collaborating on

projects containing large EEG datasets for fostering collaborative research. Authors discuss that portal

provides fundamental requirements of collaborative research platform and some of the features they have

emphasized are the security of the data and access rights on the data, access to data and results of an analysis,

a platform independent tool to view and search datasets.

Tarek Sherif et al [8] proposes a CBRAIN, a web-based generic collaborative research platform that

offers access to remote data sources, distributed computing sites, processing and visualization tools for data

and compute-intensive research in neuroimaging.

A. Mc Gregor et al [9] present RP-SMARF, a collaborative research platform built on cloud, in the

area of smart facilities management, which connects geographically disseminated heterogeneous resources.

Bastian Roth et al [10] have sort after the challenges in scientific collaboration and proposed an

approach, which leverages on groupware tools and hypervisor-based virtualization techniques like KVM,

VMware vSphere or Xen to run a generic collaboration platform.

Muhamad Fitra Kacamarga et al [11] authors put forward complete computing platform in

bioinformatics research, which uses Docker containers for lightweight virtualization. Paper describes that

Docker containers allow customization of the compute environment and effectively overcome the challenges

in VM based approach.

Yujian Zhu et al [12] demonstrates a lightweight container based and a scalable system called

Docket is based on LXC (Linux Containers) which provides a platform to run different application

frameworks pertaining to academic and scientific research.

Elahehkheiri et al [13] have elaborated a tenant-based resource allocation approach using genetic

algorithm and heuristic algorithm to overcome the issues of over-utilization and under-utilization in resource

allocation for SaaS applications.

Sijin He et al [14] have proposed a virtual resource unit named EAC, which delivers better resource

efficiency and scalability and discussed resource-inefficiency in the VM-based approach.

1.2. Problem

Scientific research in various disciplines often involves researchers from different organizations

collaborating to conduct analysis, experiments or simulations that are data and compute intensive and with

unpredictable resource requirements [15], [16]. These kind applications or tools requires highly dynamic

resource allocation method. The resource intensive applications, data, and tools shared in highly collaborative

research platforms suffer from bursty workloads [17]. However, most of the collaborative research platforms

depend on the Cloud service providers for resource provisioning that schedule the applications independently

and provisions the resources statically. Lack of a comprehensive assessment of applications and the available

resources can lead to under or over utilization of resources and increased execution time for an application

[18], which is undesirable in a collaborative research environment.

Therefore, we identified that the major problems as for resource allocation in collaborative research

cloud frameworks with varying workloads are:

a. Bursty workloads owing to Data and compute-intensive tools and applications.

b. Static provisioning of resources, which leads to resource locking.

c. Increased execution time due to lack of comprehensive assessment of applications and the available

resources.

1.3. Proposed solution

Our proposal is the design of Cloud Container based Collaborative Research (CCCORE) framework

that intends on– demand, customized containerization, comprehensive assessment of resource requirements

and applies a scalable algorithm that uses underutilized residual resources to achieve optimal resource

allocation in a dynamic collaborative research environment. CCCORE offers a proficient way to standardize

research methods, establish a relationship among data, and share the findings amongst researchers.This

enables the researcher to focus on his domain of research rather than gaining the proficiency in infrastructure

Int J Elec & Comp Eng ISSN: 2088-8708

CCCORE: Cloud Container for Collaborative Research (Salini Suresh)

1661

installations and analysis tools [19]. CCCORE rapidly spawns computational instances and provide a

customized unit of resources according to the varying workload of applications or tools used by the

researcher [20]. Researchers often need to replicate the results, study the inferences or analyze the results by

varying the parameters. CCCORE containerizes entire set of data, application and all its dependencies, hence

deliver a complete compute environment for the researcher.

2. ARCHITECHTURE OF CCCORE

2.1. CCCORE components
CCCORE integrates two units a) Research collaboration unit (RCU) and b) Management Interface

(MI). RCU is ready to use container with data, applications/ tools, and operating system. It is optimized

based on a finish time. RCU is shared among collaborating researchers on a trusted network. The residual

resource pool of RCU provides it the capability to run an instance of an application and create an operating

image for theresearcher. Figure 1 demonstrates the model of an RCU.

Figure 1. Model of RCU

We defined the original researcher who owns the research data, application or tools as owner. MI

manages and administers RCU. Researcher sends the login request to the owner through MI. Owner approves

or denies the login request depending on the credentials. When researcher request for the resources, MI will

check resources available with owner and provision RCU from his pool of resources. The CCCORE defines

permissions to view, edit, delete and publish the data and applications in the container based on user rights.

The owner through MI set researcher’s rights on RCU through Access control list (ACL). The two conditions

that arise in setting the rights of the researcher are:

a. The owner gives the researcher full rights on RCU and owner rolls backs his rights on it.

b. Owner and researcher collaborate and hold the same rights on RCU.

Table 1. Researcher’s Rights on RCU
 Rights Description

No Access The Researcher will not see the RCU in his account.

View The Researcher can see the RCU in his account and can view the data and tools available in the RCU.

View and execute The Researcher can view the data and work on the data with tools available in a different parameter setting.
Ownership Researcher will own RCU.

2.2. Sequence diagram of CCCORE

The stepwise description of the sequence diagram is given below:

Step 1: Researcher request for resources to MI

Step 2: MI verifies researcher and authenticate.

Step 3: MI sends query research request to owner.

Step 4: Owner verifies the request, authenticate and allocate resources packaged in RCU.

Step 5: RegisterRCU details (allocated memory, CPU, storage, bandwidth) with MI.

Step 6: Set researcher rights on RCU and grant it to researcher.

Step 7: Researcher access RCU.

Step 8: MI monitors RCU performance for under provisioning or over provisioning.

Step 9: MI manages RCU the resource and resource allocation.

Step 10: MI optimizes RCUfor better finish time and resource utilization.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1662

Step 11: Researcher sends the decommission request to MI upon finishing the job.

Step 12: MI decommissions RCU by releasing the resources.

Step 13: MI update the resource pool of RCU.

Step 14: MI update the RCU decommission to owner.

Figure 2 shows the sequence Diagram of CCCORE

Figure 2. Sequence Diagram of CCCORE

2.3. CCCORE capabilities

In the following section, we describe some of the key potentialities of CCCORE as a collaborative

research platform.

Customization: CCCORE creates custom-built RCUs on demand according to researcher’s

requirements. A researcher can select data (raw or analyzed), applications, and compute, storage resources

bundled as RCU.

Flexibility: Inthe scientific research analysis, researcher may often need to build multiple

environments, to generate various results based on the parameter settings. CCCORE enables the researchers

to work on an existing project by duplicating the same settings irrespective of the local host environment

[21]. CCCORE setsan environment to run multiple instances of same applications for different users.

Reproducibility: Reproducibility of researchis time consuming and challenging and call for

configuring the platform, virtual machine clustering, compatibility fixes for operating system, software

libraries andtools [22]. CCORE expounds reproducibility to facilitate researchers to reproduce the complete

compute environment used by the original researcher. CCCORE create lightweight RCUswith an entireset of

data, application and all its dependencies like root file systems, registries, software libraries and thus the

entire workflow of a project used by the original researcher could be replicated and extended byother

Int J Elec & Comp Eng ISSN: 2088-8708

CCCORE: Cloud Container for Collaborative Research (Salini Suresh)

1663

researchers. Research findings and inferences packaged in RCU is shared and reused by other researchers,

thus facilitating validationof theresults and inferences.

Computational portability: Some computational tools used for scientific analysis tightly couples

with system environments and registry settings. RCU being a lightweight container and platform independent

is portable across all platforms. The replication of the computational environments to run the applications

shared between researchersis resolved in CCCORE as RCU instances can be exported to any environment,

consequently enabling the emulation of computational environments to run these applications. Open

Virtualization Format (OVF) defines an open source standard for packaging and distributing software for

virtual machines.

Dynamic resource provisioning: CCCORE count on autoscaling tofurther dynamic allocation of

resources for compute intensive research applications. Research tools or applications may demand set of

dedicated resource or at times workload can vary based on the intensity of analysis. Scalability [23] imparted

in CCCORE enables allocation of resourcesin response to the uncertain workload.Demand-driven resource

provisioning commissions or decommissions resource instances for the RCU through MI.To achievea faster

execution time, MI allocates residual resources of any RCU to any other RCU that demands it. Provisioning

the compute capacity according to the varying workload that occurs in scientific applications requires the

elimination of resource locking due to static provisioning of resources. Moreover, the static resource

provision causes under utilization or over utilization of resources that poses a challenge in resource

allocation.

2.4. Framework of CCCORE

The main modules of the layered framework of CCCORE are Physical layer, virtualization and

control layer, service layer, delivery layer. Figure 3 illustrates layered framework architecture of CCCORE.

Figure 3. Layered architecture of CCCORE

Physical layer: Physical layer allocates necessary compute, storage and bandwidth to create the

compute stack of any RCU. Two virtual routers interconnect multiple virtual resources. MI creates RCU of

different configurations according to the researcher’s needs. MI specifies the virtual path depending on the

bandwidth allocated to each researcher. Virtual infrastructure Diagram of CCCORE in Figure 4 illustrates the

interconnection of virtual resources of CCCORE.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1664

Figure 4. Virtual infrastructure diagram of CCCORE

Table 2 shows the functionalities of each node of Virtual infrastructure diagram.

Table 2. Node Functionalities
NODE Number FUNCTION

 1 Storage size (hard disk size)

2 ,4 Virtual Router
3,6,7 Compute nodes

5 MI

We consider a as the virtual link bandwidth between virtual router and computational resources b as

thevirtual limit latency between compute nodes. MI connects the resources (storage, compute) through virtual

routers. To create an RCU, MI selects one of the computation nodes 3, 6, 7 based on the workload, through

virtual router 4 creating routes 5-4-6, 5-4-7 or 5-4-3. MI connects Computation nodes 3, 6, 7 to storage node

1 through virtual router 2. MI comprehensively assess the available resources of CCCORE and allocates

bandwidth and resourcesto any RCU based on workload requirement and finish time.

Virtualization and control layer: In Hypervisor based virtualization; the guest operating system that

runs the applications consumes server resources thus increasing the system overheads [24]. Virtualization and

control layer has adopted operating system level virtualization that enables the RCUs to share the operating

system with host and other RCUs [25]. The layer offers an abstraction for the researchers and ensures

isolation of resources for all the RCUs.

Service layer: This layer acts as a repository, which storesimages inOVF (Open Virtual Format) of

all RCUs .RCU is exported in OVF format to the image depo. OVF format enhances theportability and

platform independenceof RCU. Researchers access the allocated RCUthrough the service layer.

Delivery layer: In a collaborative research environment where resource demands are always high,

Virtual Machine (VM) based approach can be in efficient. Delivery layer counts on rapidly scalable

containers to accommodate high resource demands [26].

3. RESEARCH METHODOLGY

3.1. System model
We model dynamic resource allocation problem as an optimization problemand aims to minimize

the finish time and improve the throughput to achieve optimal resource utilization. Our container based

resource allocation algorithm enhances dynamic scalability by employing underutilized residual resources

[27] and hence minimize finish time of an application.

Consider the set of total available resources N
p
 (compute, memory, storage, and bandwidth) in

CCCORE. Each RCU is denoted as r, residual resources in each RCU is denoted

. Consider job

(application) Aj with workload Lj, and maximum allowed service delay Tj, then the resources required
 is

calculated as

 =

 (1)

Int J Elec & Comp Eng ISSN: 2088-8708

CCCORE: Cloud Container for Collaborative Research (Salini Suresh)

1665

RCU will not execute a job with a size less than defined minimum value to avoid under utilization and

resource locking. We define a minimum size of any job executed by RCU.

Minimum job size shouldbe ≥ Ljβjwhere βj =

MI comprehensively assess the total available resources in CCCOREto optimally allocate resources.

Total residual resources in RCU is calculated as,

Z= ∑

 (2)

Finish time for a job is a ratio of workload to resource required with a specific time delay. Finish time

decreases with optimal utilization of residual resources.

Finish time for a Job Aj is calculated as,

 =

 -

 (3)

Let Zr is allocated bandwidth for each user, Y is the unused bandwidth for RCU, n is the maximum number

of RCUs that can be created in CCCORE, x is active RCUs at any moment of time.

Maximum throughput allocated to any RCU (Xr) is calculated as:

 ∑
 (4)

 Maximum throughput of CCCORE is calculated as ∑
 ∑

3.2. Proposed algorithm

An on–demand, flexible resource provisioning call for a comprehensive assessment of requirements

of the users and available resources. The proposed algorithm aims to minimize the finish time, improve the

throughput and achieve optimal resource utilization. If the initially provisioned resources of an RCU is not

adequate either to meet the finish time or resource requirements of an application, MI allocate the requested

resources from the unused residual resources of other RCUs.

Algorithm 1: RCU Allocation

Input:

A: Maximum number of RCUs allocated for each researcher owner

N: Total number for RCUs available in CCCORE

B: Maximum number RCUs any researcher can request.

Output: RCU ij

1. If B ≤ A then

2. Obtain RCU ij(1≤B ≤A) from A

3. Create RCU ij

4. If B> A then

5. Obtain RCU ij(A ≤ B ≤ N) from N with MI approval

6. Create RCU ij

7. Set user rights for RCU ij

Algorithm 2: Optimal resource allocation algorithm

Input:

N
P
: Total Available resources in CCCORE.

r: RCU number

Job: Aj

Work Load: Lj

Max allowed time delay: Tj

Minimal resource required for job Aj
 =

Residual resource in RCU Z = ∑

a = bandwidth of RCU

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1666

b =Latency between RCUs

Output:
 , optimizedresource

1. Job /workload requested

2, Created RCU r

3. Resource allocated to RCU r ←
 (

 >

)

4. Finish Time
 =

5. If actual finish time >Tj

6. Residual resource added to RCU r (
 +Z)

7. Finish time =
 =

 -

8. If required resource is more than

9. Resource added to RCU r (
 +Z)

10. Finish time =
 =

 -

11. If idle time of RCU>I

12. RCUdecommissioned.

4. RESULT AND ANALYSIS

The hardware infrastructure deployed for the experiment consisted is as follows:

Identical configuration of four physical machines each with configuration core i5 5287U processor 3 MB

smart cache, 2 core /4 threads @ 2.9 GHz. Installed Memory (RAM): 4.00 GB which are connected using 1G

Ethernet switch cisco SF 300 -24 port.We configured RCU based systemswith Physical machines

installedwith Ubuntu 14.04, Open stack and 4 LXD (Linux containers).VM based systems are installed with

windows 2012 server Standard edition with service pack 2 and 4 VMs.

4.1. Scenario I

We evaluated VM-based and the RCU-based systems for resource efficiency with respect to finish

time and throughput. Improvement of finish time, increases the resource efficiency in a collaborative research

environment. We compared the VM-based and RCU-based systemsby running a .net application and Sage

Math. While the .net application is computationally light, sage math is a memory and compute intensive

application. We conducted multiple iterations by varying configuration of VM and RCU. We conducted 50

iterations for .net application, as it is lightweight and 10 iterations for Sage math.Table 3 showsaverage finish

time in executing the .net application for configurations 1) 2core compute, 1GB RAM and 2) 4core compute,

8GB RAM and in executing Sage Math application for configuration s3) 6core compute, 8GB RAM and 4)

8core compute, 16GB RAM using VM based and RCU based systems.

Table 3. Average finish time for VM and RCU using .net Application and Sage Math
Configuration Application Iterations Type Average finishtime in

seconds

2core,1GBmemory .net 50 VM 83.06
2core,1GB memory .net 50 RCU 45.18

4core,8GB memory .net 50 VM 82.7

4core,8GB memory .net 50 RCU 38.14

6core,8GB memory SageMath 10 VM 1839.56

6core,8GB memory SageMath 10 RCU 1086.33

8core,16GB memory SageMath 10 VM 1839
8core,16GB memory SageMath 10 RCU 952

Figure 5 highlights that RCU showed 45% better finish time than VM for configuration 1) 53.8%

better finish time for configuration, 2), 41% better finish time for configuration, 3) 48% better finish time for

configuration, 4) the comparative analysis highlights that with increase of resources (core and memory) our

proposed RCU based CCCORE delivers a better finish timethan VM, due to improved resource utilization

implemented through our algorithm.

Int J Elec & Comp Eng ISSN: 2088-8708

CCCORE: Cloud Container for Collaborative Research (Salini Suresh)

1667

Figure 5. Comparative analysis of Average finish time for VM and RCU

4.2. Scenario II

To evaluate the dynamic allocation of resources in line with the workload of compute-intensive

applications, wecalled functions for Bernoulli number, Integer factorization, and factorial in SAGE Math.

Bernoulli number function is computeand memory intensive whereas Integer factorization and factorial

functions are less compute intensive.

We compared finish time of VM, LXD and RCU systems withan identical configuration of 8 core,

16GB RAM in three iterations varying the residual resources. By varying the residual resources, we analyzed

the impact of resource optimization in the finish time. In the first iteration, no residual resources were made

available in the system; second iteration, with 25% residual resources available, in the third iteration 60%

residual resources were available.

Table 4. Finish time for VM, LXD, and RCU using Compute Intensive Sage Math Functions
 VM LXD RCU

 APPLICATION
Finish time in

Sec

Finish time in

Sec

Finish time in

Sec

BERNOULI NUMBER

no residual resource 248 221 221
25% residual resource 248 221 177

60% residual resource 248 221 160

INTEGER FACTORISATION
no residual resource 170 155 150

25% residual resource 170 155 134

60% residual resource 170 155 113
FACTORIAL

no residual resource 39 32 32

25% residual resource 39 32 24
60% residual resource 39 32 13

Figure 6. Comparative analysis of finish time for VM, LXDRCU with available residual resources

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1668

The comparative analysis shown in figure 6 demonstrates that finish time for VM and LXD did not

change with the availability of residual resources, but RCU employed underutilized residual resources and

achieved a better finish time.

4.3. Scenario III

We conducted experimentsto evaluate the throughput of RCU and VM for processing data in

varying sizes (1 GB, 4GB, and Bulk data ≥100 GB). The purpose of thestudy is to analyse the efficiency of

RCU inutilizing the unused bandwidth toachieve better throughput as shown in Table 5.

Table 5. Comparison of Throughput for VM and RCU
Configuration Data Iterations TYPE Throughput in

Gbps

2core, 4GBRAM 500GB harddisk. 1GB 10 VM 149.4
2core, 4GBRAM 500GB harddisk. 1GB 10 RCU 169.2

2core,4GB RAM,500GB harddisk 4GB 10 VM 140.5

2core,4GB RAM,500GB harddisk 4GB 10 RCU 174.7

8core,16GB RAM,500 GB hard disk Bulk data≥100 GB 10 VM 139.3

8core,16GB RAM,500 GB hard disk Bulk data≥100 GB 10 RCU 181.3

Figure 7. Comparison of throughput of VM and RCU in processing data of varying sizes

As it is obvious from Figure 7, while migrating 1GB data, RCU systems deliver improved

throughput of 13% more than the throughput of VM based systems. Throughput increased by 24% with data

of 4GB and 30.15% with bulk data migration. Therefore RCU achieves a better throughput compared to VM

in processing data in variable sizes since is able to use the unusedbandwidth to achieve better throughput.

5. CONCLUSION

We have designeda Cloud Container based Collaborative Research (CCCORE) framework with

dynamic resource provisioning according to the varying workload in the collaborative research environment.

The proposed system relies on flexible, customized containers named as RCU to spawn complete

computational environment for the researchers. Comprehensive assessment of user’s requirements and using

underutilized residual resources enhanced the efficiency of CCCORE. Experimental evaluation indicates that

proposed RCU based CCCORE framework outperformed VM based systems in terms of finish time and

throughput. Our future work will comprise the workflow automation of CCCORE and improve the container

security.

REFERENCES
[1] Kalyanam, et al., “Cloud-enabling a Collaborative Research Platform: The GABBs Story”, PEARC17 in

Proceedings of the Practice and Experience in Advanced Research Computing, no. 23, 2017.

http://pearc17.pearc.org/

Int J Elec & Comp Eng ISSN: 2088-8708

CCCORE: Cloud Container for Collaborative Research (Salini Suresh)

1669

[2] Marty Humphrey, et al., “CloudDRN: A Lightweight, End-to end System for Sharing Distributed Research Data in

the Cloud”, In Proceedings of IEEE 9th International Conference on e-Science, pp. 254-26, 2013.

[3] Voss, et al, “An elastic virtual infrastructure for research applications (ELVIRA)”, Journal of Cloud Computing:

Advances, Systems and Applications, vol. 2, no. 20, 2013.

[4] Sehrish Kanwal, et al, “Challenges of Large-Scale Biomedical Workflows on the Cloud -- A Case Study on the

Need for Reproducibility of Results, In Proceedings of IEEE 28th International Symposium on Computer-Based

Medical Systems, pp. 220-225, 2015.

[5] K. Keahey, et al, “Science clouds: Early experiences in cloud computing for scientific applications”, in

Proceedings of Cloud Computing and Application Workshop, pp. 825-830, 2008.

[6] Surya Nepal, et al, “TruXy: Trusted Storage Cloud for Scientific Workflows”, IEEE transactions on cloud

computing, vol. 5, no. 3, pp. 428-441, 2017.

[7] Benjamin H. Brinkmann, et al, “A Multimodal Platform for Cloud-based Collaborative Research”, In Proceedings

of IEEE EMBS Conference on Neural Engineering, pp. 1386-1389, 2013.

[8] Tarek Sherif, et al, “CBRAIN: A web based, distributed computing platform for collaborative neuroimaging

research”, Frontiers in Neuro informatics, vol. 8, article 54, pp. 1-13, 2014.

[9] A. McGregor, et al, “A Cloud-Based Platform for Supporting Research Collaboration”, In Proceedings of IEEE 8th

International Conference on Cloud Computing, pp 1107-1110, 2015.

[10] Bastian Roth, et al, “Towards a Generic Cloud-based Virtual Research Environment”, Computer Software and

Applications Conference Workshops (COMPSACW), pp. 267-272, 2011.

[11] Muhamad Fitra Kacamarga, et al, “Lightweight Virtualization in Cloud Computing for Research”, Communications

in Computer and Information Science, vol. 516 Springer International Publishing, pp. 439-445, 2015.

[12] Yujian Zhu, et al, “Monitoring and Billing of A Lightweight Cloud System Based on Linux Container”,

InProceedings of International Conference on Distributed Computing Systems Workshops IEEE, pp. 325-329,

2017.

[13] Elahehkheiri, et al, “An Approach based on Genetic Algorithm or multi-tenant Resource Allocation in SaaS

Applications”, IAES International Journal of Artificial Intelligence (IJ-AI), vol. 6, no. 3, pp. 124-138, 2017

[14] Sijin He, et al, “Elastic Application Container: A Lightweight Approach for Cloud Resource Provisioning”, In

Proceedings of IEEEInternational Conferenceon Advanced Information Networking and Applications (AINA),

pp. 15-22, 2012.

[15] Xiaoquan Su, et al, “An Open – source Collaboration Environment for Metagenomics Research", In Proceedings of

IEEE International Conference on e-Science, pp. 7-14, 2011

[16] Yongzheng Ma, et al, “Scientific collaboration cloud platform and its multidisciplinary applications”, In

Proceedings of IEEE Conference Information Science and Technology (ICIST), pp. 466-470, 2013

[17] A. Rosenthal, et al, “Cloud computing: A new business paradigm for biomedical information sharing”, Journal of

Biomedical Informatics, vol. 43, no. 2, pp. 342-353, 2010.

[18] Uchechukwu Awada, et al, “Improving Resource Efficiency of Container-instance Clusters on Clouds”, In

Proceedings ofIEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 929-934, 2017.

[19] J.J. Rehr, et al, “Scientific Computing in the Cloud”, Computing in Science & Engineering, vol. 12, no. 3,

pp. 34-43, 2010.

[20] Yan Hu, et al, “A cloud computing solution for sharing healthcare information”. In Proceedings of the 7th

International Conference for Internet Technology and Secured Transactions (ICITST), pp. 465-470, 2012.

[21] Carl Boettiger, “An introduction to Docker for reproducible research, with examples from the R environment”,

ACM SIGOPS Operating Systems Review - Special Issue on Repeatability and Sharing of Experimental Artifacts,

vol. 49, no. 1, pp. 71-79, 2015.

[22] Svetlana Sveshnikova, et al, “Using Virtualisation for Reproducible Research and Code Portability”, In

Proceedings of International Conference on High Performance Computing & Simulation (HPCS), pp. 891-89,

2017.

[23] BaharAsgari, et al, “An Effiecient Approach for Resource Auto-Scaling in Cloud Environments”, International

Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 5, pp. 2415-2424, 2016.

[24] Jyoti Shetty, et al, “An Empirical Performance Evaluation of Docker Container, Openstack Virtual Machine and

Bare Metal Server”, Indonesian Journal of Electrical Engineering and Computer Science, vol. 7, no. 1,

pp. 205-213, 2017

[25] David Beserra, et al, “Comparing the performance of OS-level virtualization tools in SoC-basedsystems: The case

of I/O-bound applications”, In Proceedings of IEEE Symposium on Computers and Communications (ISCC),

pp. 627-632, 2017.

[26] Luciano Baresi, et al, “MicroCloud: A Container-based Solution for Efficient Resource Management in the Cloud”,

In Proceedings of IEEE International Conference on Smart Cloud, pp. 218-223, 2016.

[27] Bruno Yuji Lino Kimura, et al, “Workload regression-based resource provisioning for small cloudproviders”, In

Proceedings of IEEE Symposium on Computers and Communication (ISCC), pp. 295-301, 2016.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marty%20Humphrey.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6683915/
http://ieeexplore.ieee.org/document/6683915/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6680792
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sehrish%20Kanwal.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7167490/
http://ieeexplore.ieee.org/document/7167490/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7164867
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7164867
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20McGregor.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7214172/
https://link.springer.com/bookseries/7899
https://link.springer.com/bookseries/7899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6184368
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6184368
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6737458
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Svetlana%20Sveshnikova.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8030510
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8030510
http://ieeexplore.ieee.org/document/8024598/
http://ieeexplore.ieee.org/document/8024598/
http://ieeexplore.ieee.org/document/8024598/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8016448
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bruno%20Yuji%20Lino%20Kimura.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7543757/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7536670
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7536670

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 : 1659 – 1670

1670

BIOGRAPHIES OF AUTHORS

Salini Suresh is working as Assistant Professor, Department of Computer Science, Seshadripuram

Academy of Business Studies, Bangalore. She has got 12 years of teaching experience. She has

obtained Bachelor of Science from Calicut University in the year 1997, Master of Computer

Application from Bharathidasan University in the year 2000 and Master of Philosophy from

Manonmaniam Sundurnar University in the year 2003. Now she is a Research scholar at

Bharathiar University, Coimbatore, India. She has authored 3 textbooks and published research

papers in one International Journal and presented papers at National and International conferences.

Dr. L. Manjunatha Rao is working as Professor and Head, Department of MCA, Dr. AIT,

Bangalore. He has 25 years of teaching experience. He did his Bachelor of Science from Bangalore

University in the year 1990. He Studied Masters of Computer Application from Madurai Kamaraj

University and was awarded in the year 1999. In 2002 did Master of Philosophy from

Manonmanium Sundaranar University. He has awarded Ph.D. from Vinayaka Mission University,

Tamil Nadu. He has published research papers in both national and International Journals and has

authored 2 textbooks.

