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 Installation of down-hole gauges in oil wells to determine Flowing Bottom-
Hole Pressure (FBHP) is a dominant process especially in wells lifted with 
electrical submersible pumps.  However, intervening a well occasionally is 
an exhaustive task, associated with production risk, and interruption. The 
previous empirical correlations and mechanistic models failed to provide a 
satisfactory and reliable tool for estimating pressure drop in multiphase 
flowing wells. This paper aims to find the optimum parameters of Feed-
Forward Neural Network (FFNN) with back-propagation algorithm to predict 
the flowing bottom-hole pressure in vertical oil wells.  The developed neural 
network models rely on a large amount of available historical data measured 
from actual different oil fields. The unsurpassed number of neural network 
layers, the number of neurons per layer, and the number of trained samples 
required to get an outstanding performance have been obtained. Intensive 
experiments have been conducted and for the sake of qualitative comparison, 
Radial Basis neural and network and the empirical modes have been 
developed. The paper showed that the accuracy of FBHP estimation using 
FFNN with two hidden layer model is better than FFNN with single hidden 
layer model, Radial Basis neural network, and the empirical model in terms 
of data set used, mean square error, and the correlation coefficient error. 
With best results of 1.4 root mean square error (RMSE), 1.4 standard 
deviation of relative error (STD), correlation coefficient (R) 1.0 and 99.4% 
of the test data sets achieved less than 5% error. The minimum sufficient 
number of data sets used in training ANN model can be low as 12.5% of the 
total data sets to give 3.4 RMSE and 97% of the test data achieved 90% 
accuracy. 
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1. INTRODUCTION 

Petroleum engineers are always interested in finding appropriate and reliable tools to predict the 
productivity of horizontal well as accurate predictions seem very important to conduct technical and 
economical feasible studies before drilling the wells which is very costly [1]. With the increased utilization 
and deployment of permanent down-hole gauges, measuring flowing bottom-hole pressure (FBHP) gets 
relaxed and faster. However, these gauges require continuous maintenance and calibration to avoid erroneous 
readings. Also, by intervening a well from time to time to measure FBHP is an expensive task, associated 
with production risk and interruption. For these reasons, the motivation of the prediction of FBHP has been 
argued.  

Flowing bottom hole pressure prediction in gas wells is an old petroleum engineering problem. 
There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. 
Some of these attempts have produced correlations that provide good prediction in some cases [2]-[3]. 
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However, their general applicability is questionable. Correlations that address only a specific class of 
problems exist. These types of correlation usually perform better than those which attempt to meet the need 
of a variety of problems. Usually, the higher the number of variables in the model the lesser the reliability 
and general applicability of the correlations. This is the result of using methodologies such as conventional 
regression analysis [4]. In such methodologies, the chances of correctly and completely capturing the 
relationship between variables decrease as the number of variables increases. Many parameters could be 
involved in these types of problems, such as gas-oil ratios in two-phase systems, water flow in three phase 
systems, and inclination angles of the pipe. Models proposed by the investigators are based on empirical 
wells contained modest amounts of gas and oil production rates correlations developed from laboratory 
studies.  

Most of the existing methods for predicting FBHP require one or more assumptions [5]-[7] (e.g., 
steady state flow, ideal gas of constant viscosity, small and constant compressibility and constant viscosity 
fluid) be applied. These methods appear to be subjected to appreciable error unless better limits of 
applicability are defined.  

Neural networks and artificial intelligent approaches have been used in different fields [8]-[10], 
however these approaches recently have been employed in the petroleum industry [11]-[12], but their 
potential has not been fully investigated. In areas where a pattern exists between sets of data, a successful 
correlation can be developed with an artificial neural network (ANN). The pattern recognition capability of 
ANN makes it a desirable tool to employ under a variety of conditions. When the data contains a relationship 
that is implicit in nature, a network such as Kohonen, Probabilistic, or Back-propagation may discover that 
relationship despite the complexity. Most applications of artificial neural networks (ANNs) in multi-phase 
flow are confined to pipes. Authors [13] found fairly good bed heights estimations using an ANN. Flow 
pattern and frictional pressure drop were predicted [14]-[16] using an ANN. Neural networks (NNs) 
estimated the flow pattern Bottom Hole Pressure with less than 5% error and frictional pressure drop with 
less than 30%. Satisfactory results have been found for three phase relative permeability compared with 
experiments using adopted a PSO and neurofuzzy models to train the perceptron and to predict pollutant 
levels in gas wells [17]-[19]. The approach was proved to be feasible and effective by applying to some real 
air-quality problems and by comparison with a simple back-propagation (BP) algorithm. Support vector 
machine approach has been also used in training ANNs for predicating flow bottom hole pressure [20]-[21]. 
Even though the mentioned approaches have obtained reseanoable results, but the standard structure of these 
approaches have been used. In the paper, an attempt to find the optimum structure parameters that affects the 
performance especially in case of Artificial neural netowrks will be accomplished. Furthermore, practical sets 
of data available from an oil field are used for learning, testing, and validating the designed schemes. To 
prove the effectiveness of the proposed neural networks in estimation of the FBHP, intensive performance 
analysis is carried out. 
 
 
2. FLOWING BOTTOM-HOLE PRESSURE IMPORTANCE AND ELECTRICAL UBMERSIBLE 

PUMP (ESP) WELL SYSTEM 
Electric Submersible Pumping (ESP) is one of the most commonly used methods of well 

production/fluid lifting in the oil and gas industry.  It is responsible for the highest amount of total fluids 
produced (oil and water) by any artificial lift method and an ideal method for high water cut wells. 
Centrifugal pumps can be single-stage or multi-stage units. Single-stage pumps are mainly used when low to 
medium discharge pressure is required, while multi-stage pumps are designed to overcome higher discharge 
pressures. This is the case of ESP used in the petroleum industry where fluids must be lifted from deep 
formations. 

ESP is normally installed at the end of the production tubing string, which is inserted inside a bigger 
piping called casing. Normally ESP installation depth is shallower than the formation (producing zone) 
depth. The pressure drop schematic of flowing oil well with ESP is shown in Figure 1 and Figure 2. The 
pressure drop lines of interest in this study are the lines labeled A, B, and C. The pressure at the top of line A 
is the well head pressure and the end of it is the pressure of the pump discharge. Line A represents the drop in 
pressure due to the hydrodynamic multiphase flowing column and the frictional losses in the tubing.  Line B 
is the line difference between the discharge and intake pressures of the pump. Simply it represents the total 
pressure developed by ESP. Line C represents the drop in pressure between the pump intake and the 
perforations at the producing formation due to the hydraulic column and frictional loss in the casing below 
the pump. Its top end is the pump intake pressure and its lower end is the well flowing bottom-hole pressure. 
It is a normal practice to have online pressure measurements at, well-head, pump discharge and pump intake. 
In fields of the study, these measurements are recorded every 15 minutes. In this paper re-sampled data for 
daily records have been used.  
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The pressure measurements for the pump discharge and intake are normally obtained by permanent 
pressure gauges installed within ESP assembly. Unfortunately, FBHP at the perforations has no permanent 
measurements and in our case we almost have no records for FBHP of an ESP well due to difficulties of 
access and other restrictions. Therefore, the scope of the paper is limited to the estimation of the pressure 
drop along the lines A and B only. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. ESP Well System 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 

 
Figure 2. Typical Pressure Drop Profile Diagram 

 
 

The estimation of the pressure drop along the line C (i.e. estimation of the pressure drop from the 
FBHP to the pump intake pressure) is less complex compared to drop in pressure along line A due to better 
homogenous flow and negligible friction. Hence, this pressure drop is out of the paper scope. Also, it would 
be very difficult to evaluate this estimation due to unavailability of FBHP records. 

Flowing bottom-hole pressure of a well is the pressure that is measured or calculated at or near the 
producing formation at the bottom of the well while the well is flowing or producing hydrocarbons as shown 
in Figure 3. It is always higher than the flowing pressure at the surface, but lower than the shut in bottom-
hole pressure.  

Knowing the bottom-hole pressure of an oil well can help forecasting the well potential during the 
life cycle of the well. In other words, well production monitoring and artificial lifting optimization can be 
performed, which is a key objective for oil production maximization and operational cost reduction [12]. 
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Bottom-hole pressure data also can be used to provide information on pore pressure that can be calculated for 
safety while drilling development wells in the area. It is critical for drilling operations especially 
underbalanced drilling. This also provides valuable data to select accurate kill fluid weight. The data also can 
be used to improve accurate under- or over-balance before perforation.  

Tubing pressures and casing pressures of flowing wells have always been important factors in 
operating wells and under restricted production their importance is increased. Changes in these pressures, 
correlated with age or with rate of production, have been considered as giving important information as to the 
quality of the well, sand conditions, conditions of the bore hole through the sand, and whether the equipment 
in the hole is operating properly.  A general study of bottom-hole pressures throughout an entire field has a 
direct application to the operation of a particular lease or an individual well. Bottom-hole pressure surveys of 
the field will provide data which will assist in making a more accurate estimate, much earlier in the life of the 
field, of the time when wells must be produced by artificial lift and of the amount of fluid that will have to be 
handled. It is of considerable value to know within reasonable limits when the wells will have to be pumped. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Schematic of Oil Well with ESP [12]  
 

 
3. THE PROPOSED NEURAL NETWORK FOR FBHP ESTIMATION 

Typically, FFNN consists of a set of sensory units (source nodes) that constitute the input layer, one 
or more hidden layers of computation nodes, and an output layer.  The source nodes in the input layer of the 
network supply respective elements of the activation pattern (input vector), which constitute the input signals 
applied to the neurons (computation nodes) in the second layer (i.e., the first hidden layer). The output 
signals of the second layer are used as an input to the third layer, and so on for the rest of the network. The 
set of output signals of the neurons in the output (final layer) constitute the overall response of the network to 
the activation pattern supplied by the source nodes in the input (first) layer. A multilayer FFNN with one 
input, two hidden and one output layers is shown in Figure 4. 

The activation function of the artificial neurons in FFNNs implementing the back propagation 
algorithm is a weighted sum (the sum of the inputs x multiplied by their respective weights wji): 

 

𝐴𝑗(𝑥.𝑤) = � 𝑥𝑖𝑤𝑗𝑖                                    (1)
𝑛

𝑖=0
 

 
The activation function depends only on the inputs and the weights. If the output function would be 

the identity (output=activation), then the neuron would be called linear. But, it has severe limitations and the 
most common output function is the sigmoidal function: 

 

𝑂𝑗(𝑥.𝑤) =
1

1 + 𝑒𝐴(𝑥.𝑤)                                     (2) 
 
The output depends only on the activation function, which in turn depends on the values of the 

inputs and their respective weights. Now, the goal of the training process is to obtain a desired output when 
certain inputs are given. Since the error is the difference between the actual output 𝑂𝑗(𝑥.𝑤)and the desired 
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output 𝑑𝑗, the error depends on the weights, and we need to adjust the weights in order to minimize the error. 
The error function for the output of each neuron can be defined as: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Multi-layer Feed forward neural network 

 
 

𝐸𝑗(𝑥.𝑤.𝑑) = �𝑂𝑗(𝑥.𝑤) − 𝑑𝑗�
2                     (3) 

 
The error of the network will simply be the sum of the errors of all the neurons in the output layer: 

 
𝐸(𝑥.𝑤.𝑑) = ��𝑂𝑗(𝑥.𝑤) − 𝑑𝑗�

2              
𝑗

 (4) 

 
Using the gradient descent to minimize the error (4), on can obtain the following adjustment rule for 

the weights 
 
Δ𝑤𝑗𝑖 = −ƞ 𝜕𝐸

𝜕𝑊𝑗𝑖
                                                       (5) 

 
Equation (5) is used to get the updated weights as: 

 
𝑤𝑗𝑖(𝑘 + 1) =    𝑤𝑗𝑖(𝑘 ) +   Δ𝑤𝑗𝑖                   (6) 

 
 
4. NEURAL NETWORKS DEVELOPMENT AND OPTIMIZATION 

In order to construct the neural network models that capable of estimating the FBHP, realistic data 
sets available from Oman oil fields, specifically from oil production wells lifted with ESP, are used. The data 
were collected from three different fields, Field-A, Field-B and Field-C. All three fields have water injection 
as reservoir pressure support and all of them have well production with two different artificial lifting; 
namely, ESP and gas-lift. There are twelve different input variables and one output variable for the ANN to 
be constructed. List of these variables, their units and their recording frequency are listed in Table 1. The 
motor current and pressures data are obtained from online-meters measurements that record samples every 15 
minutes in a database historian system. The production data rates and ratios are obtained from testing the well 
production at dedicated three phase test separator equipped with individual phase flow meters. The 
measurement frequency is every one to three months, depending on the well oil production rate. The data 
pertaining to fluids properties is obtained from laboratory analysis that is done once for every well or field.   

Fifteen-minute frequency data is re-sampled to daily frequency records to reduce number of samples 
while keeping reasonable representative variation in the data. Since the study scope is to estimate the FBHP, 
then, the data sets for well static conditions (i.e. when well is not flowing) were excluded. Also, incomplete 
data sets with readings over the meter range are excluded. Then, monthly production data is aligned with the 
daily data by replicating the monthly data daily until next month sample. Well (field) fluid data is then 
aligned with the daily data sets for each well (field). Before training the neural network model, the data is 
normalized. After training, the results of data sets are de-normalized and reorganized back to wells and 
timing sequence.  
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Table 1. ANN Description of Input and Output Variables  
Input Abbreviation Unit Measurement Frequency 

1 Tubing Head Pressure THP KPa 15 minutes 
2 Motor Current M.Curr Am 15 minutes 
3 Liquid Production Rate Gross m3/d 1-3 months 
4 Oil Production Rate Oil m3/d 1-3 months 
5 Water Production Rate Water m3/d 1-3 months 
6 Gas Production Rate Gas m3/d 1-3 months 
7 Base Sediment & Water (water cut) BS&W % 1-3 months 
8 Formation Gas Oil Ratio FGOR - 1-3 months 
9 Oil Specific Gravity Oil API - one per well 

10 Produced Water Specific gravity Water API - one per well 
11 Pump Intake True Vertical Depth P.Depth m fixed per pump 
12 Pump Discharge Pressure Disch.P KPa 15 minutes 
 Output    
1 Pump Intake Pressure Intake.P KPa 15 inutes 

 
 
4.1. FFNN with a single hidden Layer Structure 

A very basic structure of FFNN with one hidden layer is considered. To reach to the optimal number 
of hidden neurons, a test of the network is started with 4 neurons in the hidden layer and then increased the 
number of neurons in a multiple of four. In each case, the network is trained to a specified training error goal 
of 0.005. The data used for the neural network model is taken from Field-A. The network performance 
statistical factors are recorded. The main performance metrics considered are the relative root mean square 
error (RMSE) and standard deviation (STD). Also, the percentage of the test data attaining 95% and 90% 
accuracy of FBHP estimation are used as a secondary performance metric. Figure 5 shows the network 
performance against the number of neurons in the hidden layer. 

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. RMSE and Accuracy of FF BPNN vs. Number of Neurons of single Hidden Layer 
 
 

The results indicate that the optimal number of neurons that achieves minimum RMSE is 68. Also, 
this result is supported from the overall accuracy of both 95% and 90% accuracy trends. Table 2 summarizes 
all statistical indicators of the network performance. It indicates that a remarkable performance of single 
hidden layer is achieved with 68 neurons where the RMSE is 2.53% and the STD is 2.44%. Also the 
percentage of the test data that showed intake pressure estimations within the 5% and 10% error from the 
actual intake pressure measurements are 94.4% and 99.8% respectively. The selected structure is addressed 
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again with different training mean square error goals and the performance is analyzed. The network is trained 
and tested for twenty different training mean square error goals within the range of 0.0001 to 0.04. Figure 6 
illustrates the achieved results in terms of RMSE and accuracy. 

 
 

Table 2. FFNN with 68 Number of Neurons in single Hidden Layer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. RMSE and Accuracy of FF with BPNN {68} vs. Training Error Goal  

 
 
4.2. Investigating a FFNN with Two Hidden Layers Structure 

In this section, the two hidden layer option is investigated. The objective of the analysis is to select 
the number of hidden neurons for each hidden layer that will yield the best network performance. To start 
with, a rule of thumb is used to select 15 neurons for the second hidden layer.  Then, the network is trained 
and tested for different numbers of neurons for the first hidden layer staring from 4 neurons then increasing 
the number of neurons in multiple of four. Then, the network performance analysis is carried out for each 
case using the testing data as done with the single hidden layer case. The achieved results have been 
demonstrated in Figure 7.  It is obvious that, the best RMSE is 3.6% occurs at 20 neurons are used in the first 
hidden layer. This is also supported by good accuracy points of 99% of test data fall within the 10% error and 
of 85% of test data fall within the 5% error. Then, the number of neurons in the first hidden layer is selected 

  %Relative Error (Test 
Data) 

%Relative Error 
(Training Data) 

Root Mean Square Error 2.5264 1.6958 
STD of Error 2.4378 1.6130 
Correlation Coefficient 0.9921 0.9953 
% of Data >95% Accuracy 0.9437 0.9870 
% of Data >90% Accuracy 0.9969 0.9982 
ErrorAvg 0.6650 0.5240 
Abs ErrorAvg 1.8276 1.0998 
Error min 0.0003 0.0004 
Error max 16.9147 20.1590 
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to be 20 neurons. The network is trained and tested again for different numbers of neurons in the second 
hidden layer. Performance analysis for different number of neurons in the second hidden layer were carried 
out starting with 2 neurons for the second hidden layer and then increasing the number of neurons in multiple 
of two until reached 40 neurons. Again, the obtained results are depicted in Figure 8. 

Based on the achieved results in Figure 8, it is clear that, the best RMSE is about 2.6% occurs when 
24 neurons are used in the second hidden layer. This is also supported by the good accuracy points of 99% of 
test data fall within 10% error band and 92% fall within 5% error band. Moreover, the tuning of the number 
of neurons for the first hidden layer is repeated with 24 neurons for the second hidden layer. 
 
 

 
 
Figure 7. RMSE and Accuracy of FFNN with {x 15} vs. Number of Neurons 1st Hidden Layer 

 
 

 
 
Figure 8. RMSE and Accuracy of FFNN with {20 x} vs. Number of Neurons 2nd Hidden Layer 
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As illustrated in Figure 9, the best RMSE is about 2.9% occurs for 22 neurons in the first hidden 
layer. This is also supported by the good accuracy points of 99% of test data fall within 10% error band and 
91% fall within 5% error band. Therefore, the selected number of neurons in the two hidden layers are 22 and 
24 neurons for the first and second hidden layers respectively. A further improvement to the neural network 
structure is tried by investigating the best selection of the training mean square error goal as shown in Figure 
10.  

 
 

 

 
Figure 9. RMSE and Accuracy of FFNN with {x 24} vs. Number of Neurons 1st Hidden Layer 

 

 

Figure 1. RMSE and Accuracy of FFNN with {22 24} vs. Training Error Goal 
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Similar to the single hidden layer analysis of the training mean square error goal, it is shown that, 
the RMSE is proportional to the training mean square error goal. The smaller the goal is the least the RMSE 
of the test data. As demonstrated in Figure 10, the selection of the training mean square error goal between 
0.0001 and 0.005 would result in an acceptable small RMSE when testing the model. For simplicity, the 
training mean square error goal is selected to be 0.001. Therefore, the final feed-forward neural network 
structure with two hidden layer is the {22 24} neurons and 0.001training mean square error goal.  

 
 

5. EXPERIMENTAL RESULTS AND DISCUSSIONS  
In this section, the construcyted single-layer and multilayer FFNN are used to estimate the FBHP. 

The obtained results of the neural networks models and their performance analysis are illustrated.  
 
5.1. Intake Pressure Estimation using FFNN with Two Hidden Layers in Field-A 

The data analysis is performed for the data collected from 15 wells in the Field-A, below are the 
results for the FFNN with two hidden layer with 22 neurons in the first layer and 24 neurons in the second 
layer {22 24} and 0.001 training mean square error goal. The number of training data sets is 6000 with 60%, 
20%, and 20% of training data are used for training, validation and testing respectively and the maximum 
number of epochs is 100. Table-3 shows the summary of some statistical performance indicators of the model 
for both the additional test data sets after training and for the training data sets.  The main three indicators are 
RMSE, STD of error and the correlation coefficient of the relative error for the test data sets after training, R.  
The value of these parameters after the testing phase are 2.16%, 2.07% and 0.993 respectively. 

 
 

Table 3. Field-A Performance Results Using FFNN {22 24} Model 

 
 
The actual intake pressure and the corresponding estimates from FFNN {22 24} model are shown in 

Figure 11. These data were rearranged into well by well intake pressure sets for the purpose of analysis and 
clear illustration. It is clear that, the model estimates are superbly close to the actual measurements with 
minor errors at cases where the intake pressure of the well is fluctuating sharply which could be due to 
unstable well flow. These values are at data sets number 900-1000 and 2200-2400. Therefore, we could state 
that the model accuracy slightly decreases under unstable well flow conditions. Figure 12 shows the model 
estimates of intake pressure versus the actual intake pressure measurements. It is obvious that the best linear 
fit of the data is almost identical to estimated values. This is very powerful indicator of the model’s worthy 
accuracy over full measurements range. This is also supported by the good correlation coefficient factor, R= 
0.998. The slight deviation over the 7000-8000 range is explained due to the unstable flow described 
previously. Figure 13 shows the model estimates error against the percentage of the test data sets and their 
corresponding errors in the estimate of the intake pressure. It shows that almost 100% (all the 2560) of the 
test data have returned estimates within ±10% error (within 90% accuracy). Furthermore, the derived 
calculations show that 96% of the test data sets have their intake pressure estimates with 95% accuracy. 
Therefore, these results confirm the robust capability of the model to estimate the intake pressure with a 
remarkable accuracy.   

By summing the final hidden neurons weights for each individual input and calculating its 
percentage of the total inputs weights, then the relevancy of individual inputs to the final output (intake 
pressure estimate) can be analyzed. Figure 14 shows the individual inputs relevancies to the contribution of 
calculating the final intake pressure estimate. It is found that, the most relevant input is the pump intake depth 
followed by the pump discharge pressure. In general, all the twelve inputs have similar relevancy within 6-10 
% with the exception of the pump intake depth which have the highest relevancy of about 14%. 

 
Abs Error 

KPa(Test Sets) 
%Relative Error 

(Test Sets) 
Abs Error KPa 

(Train sets) 
%Relative Error 

(Train Sets) 
Root Mean Square Error RMSE 149.554 2.164 121.516 1.872 
STD of Error 140.727 2.067 121.290 1.864 
Error Avg 50.695 0.643 -7.563 -0.180 
Abs Error Avg 103.290 1.481 76.001 1.153 
Error min 0.009 0.000 0.004 0.000 
Error max 1554.999 19.040 1398.879 19.620 
Correlation Coefficient R - 0.993 - 0.995 
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Figure 2. Intake Pressure Measurements and FFNN {22 24} Model Estimations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Cross Plot of Intake Pressure Measurements vs. FFNN {22 24} Model Estimations 
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Figure 13. Distribution of Intake Pressure Estimations Error of FFNN {22 24} Model  
 
 

 
 

Figure 14. Inputs Relevancy of FFNN {22 24} Model Estimations for Field-A 
 
 

5.2. Intake Pressure Estimation using FFNN with Single Hidden Layer  
Table 4 shows the summary of the statistical performance indicators of the model for both the 

additional test data sets and for the training data sets.  Again, the same three indicators are used - RMSE, 
STD of error and the correlation coefficient of the relative error for the test data sets, R.  They show a 
respectable performance with 2.3, 2.3 and 0.0993 values respectively. These performance matrices are very 
close to the results obtained from the two hidden layer model. 

Figure 15 shows the actual intake pressure and the corresponding estimates from the model. It is 
clear that, the model estimates are superbly close to the actual measurements with minor error at cases where 
the intake pressure of the well is fluctuating sharply which could be due unstable well flow. These values can 
be seen at data sets number 2200-2400. Therefore, we could state that the model accuracy slightly decreases 
under unstable well flow conditions. Figure 16 shows the cross plot of the actual intake pressure 
measurements versus the model estimates. The chart illustrates that the best linear fit of the data is almost 
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perfectly falls on top of the line where the actual values equal the estimate ones (45 degree). It indicates the 
remarkable accuracy of the model over the full measurements range. This is also supported by the remarkable 
correlation coefficient factor, R= 0.998. The slight deviation over the 7000-8000 range is again due to the 
unstable flow described previously. Figure 17 shows the model estimates error distribution. It shows that 
almost of 2560 test data have returned estimates within ±10% error (90% accuracy). Furthermore, the derived 
calculations show that 97% of the test data sets have their intake pressure estimates within 95% accuracy. 
Again, these analyses present the robust capability of the model to estimate the intake pressure. 

Figure 18 shows the individual inputs relevancies to the contribution of calculating the final intake 
pressure estimate. All inputs have similar relevancy within 6-10 % with exception of the pump intake depth 
which have the highest relevancy of about 12%. Table 3 and Table 4 show that the significant performance of 
the two models exception for data of the field-C where a slight drop in performance is noticed. Further 
analysis has been done to address this drop. It might be related to down-hole measurements of intake pressure 
accuracy of Field-C or the high gas to liquid ratio characteristic of the Field-C. By analyzing the achieved 
performance indicators, it is clear that FFNN with two hidden layers outperforms FFNN with a single hidden 
layer. 
 
 

Table 4. Field-A Performance Results Using FFNN {68} Model 

 
Abs Error KPa 

(Test Sets) 
%Relative Error 

(Test Sets) 
Abs Error KPa 

(Train sets) 
%Relative Error 

(Train Sets) 
Root Mean Square Error RMSE 142.5 2.3 116.1 1.8 
STD of Error 142.6 2.3 91.5 1.5 
Error Avg 1.4 0.1 -71.5 -1.1 
Abs Error Avg 111.7 1.7 85.2 1.3 
Error min 0.1 0 0 0 
Error max 1047.6 15.2 1915.2 20.4 
Correlation Coefficient R - 0.9927 - 0.9945 

 
 

 
 

Figure 15. Intake Pressure Measurements and FFNN {68} Model Estimations 
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Figure 16. Cross Plot of Intake Pressure Measurements vs. FFNN {68} Model Estimations 
 
 

 
 

Figure 17. Distribution of Intake Pressure Estimations Error of FFNN {68} Model 
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Figure 18. Inputs Relevancy of FFNN {68} Model Estimations for Field-A 
 
 
5.3. Number of Data Sets Used in Model Training 

To determine the minimum sufficient number of data sets used to train a two hidden layer model 
with {22 24} neurons, the neural network is trained, tested and the performance parameters are recorded. 
This was repeated for ten different number of data sets increasing from 3 sets to 3000 sets. The achieved 
results are shown in Figure 19. It is shown that the accuracy of estimating FBHP increases with increasing 
the number of data sets used in training. However, a small number of training data sets, 375 sets, can still be 
used for training within an acceptable estimation accuracy. The achieved RMSE is 3.4 while 97% and 93% 
of the test data achieved 90% accuracy and 95% accuracy respectively. With around 1500 data sets, the 
model resulted in a RMSE of 2.1 and 99.8% and 98% of the test data achieved 90% accuracy and 95% 
accuracy respectively. 
 

 
Figure 19. Results Performance of {22 24} Model vs Number of Data Sets used in Training 
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5.4. Model Generalization 
To test ANN models for generalization across different fields, Radial Basis neural network, RB NN, 

has been developed for the sake of comparison. The models have been tested using data sets from another 
different field unused to train and develop the model. For example, a {22 24} FFNN model developed 
(trained) using data from field-A and then tested using data sets from Field-B. This cross field testing showed 
a poor FBHP estimation accuracy. Although, the same model has shown a good FBHP estimation when 
tested using data sets from the same field even though that well was not used in the training process. This is a 
clear illustration and prove of the limitation of ANN model applicability to the range of the used data in 
training the model. This can be explained as a result of the capability of the ANN to extract and model the 
hidden complexity of system modeled using its power of feature detection due to parameters’ variations and 
changes. In fact, each field has some unique parameters that are not changing within the field and physically 
linked to FBHP, however they are not used in ANN modeling inputs. Consequently, ANN model will be able 
to estimate FBHP well within the same field (these parameters are not changing), but when moving across 
different fields (these parameters are changing) and ANN logically will fail to estimate FBHP as it has not 
learned the impact of their variances on FBHP. Figure 20 shows the achieved results of single and two-layer 
neural network results for A/B/C Fields and gives the comparison between them and Radial Basis model 
achieved results.  
 

 

 
Figure 30. Trends of Single Layer, Multilayer and RBNN Models Results for A/B/C Fields 
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Figure 21. Performance Comparison between FFNN {22 24} and Empirical Models 
 
 

 Figure 20 illustrates that the overall performance of the three models is significant, however overall 
performance of field-C is slightly less. This drop might come back to the accuracy of down-hole 
measurements of intake pressure or high gas to liquid ratio of Field-C. based on the achieved results, FFNN 
with two hidden layers outperforms the others. Furthermore, Figure-21 shows that the performance of the 
best achieved model, two-layer neural network, outperforms the simplified developed empirical model.  

 
 

6. CONCLUSION 
This paper presented one and two hidden feed forward with back-propagation algorithm artificial 

neural network models to estimate FBHP of oil wells. The developed neural network models rely on a large 
amount of available historical data on oil wells. They have shown exceptionally accurate FBHP performance 
estimation that significantly outperforms the empirical model and Radial Basis neural network. The number 
of neural network layers and the number of neurons per layer have been developed to find the optimum 
neural network structure. The paper shows that the accuracy of FBHP estimation using FFNN with two 
hidden layer model is better than FFNN with single hidden layer model in terms of data set used, mean 
square error, and the correlation coefficient error. With best results of 1.4 root mean square error (RMSE), 
1.4 standard deviation of relative error (STD), correlation coefficient (R) 1.0 and 99.4% of the test data sets 
achieved less than 5% error. The minimum sufficient number of data sets used in training the ANN model 
can be low as 375 sets only to give a 3.4 RMES and 97% of the test data achieved 90% accuracy. 
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