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 Nowadays, face recognition becomes one of the important topics in the 

computer vision and image processing area. This is due to its importance 

where can be used in many applications. The main key in the face 

recognition is how to extract distinguishable features from the image to 

perform high recognition accuracy.  Local binary pattern (LBP) and many of 

its variants used as texture features in many of face recognition systems. 

Although LBP performed well in many fields, it is sensitive to noise, and 

different patterns of LBP may classify into the same class that reduces its 

discriminating property. Completed Local Ternary Pattern (CLTP) is one of 

the new proposed texture features to overcome the drawbacks of the LBP. 

The CLTP outperformed LBP and some of its variants in many fields such as 

texture, scene, and event image classification.  In this study, we study and 

investigate the performance of CLTP operator for face recognition task. The 

Japanese Female Facial Expression (JAFFE), and FEI face databases are 

used in the experiments. In the experimental results, CLTP outperformed 

some previous texture descriptors and achieves higher classification rate for 

face recognition task which has reached up 99.38% and 85.22% in JAFFE 

and FEI, respectively. 
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1. INTRODUCTION 

Automatic face recognition has been a focus research topic in past few decades. This is due to the 

advantages of face recognition and the potential need for high security in commercial and law enforcement 

applications. Today, the face is the most common biometric used by humans. Face recognition is a task that 

humans perform routinely and effortlessly in our daily lives.  Humans are very good at recognising faces and 

complex patterns. Humans often use faces to recognise individuals and advancements in computing 

capability over the past few decades now enable similar recognitions automatically. Face Recognition more 

easily to apply instead of using fingerprint detection, iris recognition, signature recognition etc. 

because this sort of biometric also has some disadvantages for non-collaborative individuals. Many features 

have been proposed and used to design face recognition systems such as Principal Component Analysis 

(PCA) [1], Linear Discriminant Analysis (LDA) [2], Independent Component Analysis (ICA) [3], Local 

Binary Pattern (LBP) [4], etc.  

LPB is one of the famous texture descriptor proposed in 2002 by Ojala [5] for texture classification. 

LBP descriptor and many of its variants are used for different computer vision tasks, such as object and scene 

recognition [6], human detections [7], object tracking [8], and face recognition [4],[9]-[10]. The LBP 
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histogram is computed over user-defined patterns (grid of cells). The first step is the thresholding step where 

the centre of the pattern is compared with its pixel neighbourhood to convert their values to binary values (0 

or 1). This step aims to find the binary differences. The next step is the encoding step, which encodes the 

binary number of each pattern and converts it to the equivalent decimal number that characterises a structural 

pattern. The LBP is one distribution-based descriptor because all the patterns’ decimal values are then 

represented as a histogram. In addition to that, the LBP is computationally simple, showing good 

performance and excellent results in texture classification. Examples of LBP variants are Local Ternary 

Pattern (LTP) [11], Completed LBP (CLBP) [12], and Completed Local Binary Count (CLBC) [13]. In [4], 

the LBP is used for face description. The face is dividing into several blocks, LBP as a local descriptor is 

extracted from each block, and then all blocks descriptors are combined as a global descriptor. The nearest 

neighbour algorithm is used as a classifier. In [14], the authors have proposed a face recognition system 

based on CLBP. They used Multi-Class Support Vector Machine as a classifier to achieve a high face 

recognition accuracy. The combination of CLBP and sparse representation is used in to propose a new face 

recognition system in [15]. A brief evaluation of different face recognition systems based on LBP and 

different variants of LBP texture descriptors had been done in [16].   

Although the LBP showed a good response and performance in many fields, it suffers from some 

drawbacks. Many of texture features are proposed based on LBP and inherit the drawbacks.  The LBP is 

sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its 

discriminating property [12]. To overcome LBP drawbacks, we proposed a new texture descriptor, called 

Completed Local ternary Pattern (CLTP) [17]. CLTP showed good accuracy rates in many fields rather than 

LBP and CLBP [17]-[18]. In [17], the CLTP outperformed LBP, CLBP, and CLBC in term of texture 

classification accuracy. Moreover, in [18], the CLTP is used for image, event, scene and medical image 

classification and achieved higher classification accuracy compared with LBP, CLBP, and CLBC.  

In this paper, the CLTP texture descriptor is studied and investigated for face recognition system. 

Different standard face datasets are used in this study such as JAFFE and PEI datasets. The experimental 

results illustrate that CLTP is more robust and achieves higher face recognition accuracy rate compared with 

CLBP.  

The rest of this paper is organised as follows. Section 2 briefly reviews the LBP and CLBP. Our 

proposed CLTP texture descriptors are explained in Section 3. Then in Section 4, the experimental results of 

proposed face recognition system using CLTP are reported and discussed. Finally, Section 4 concludes the 

paper. 

 

 

2. RELATED WORKS 

In this section, a brief review of the LBP and CLBP are provided.  

 

2.1. Local Binary Pattern (LBP) 

The LBP calculation can be described mathematically as follow: 
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Where ic and ip (p = 0, . . . , P − 1) denote the grey values of the centre pixel and the neighbour pixel 

on a circle of radius R, respectively, and P denotes the number of the neighbours. To estimate the neighbours 

that do not lie exactly in the centre of the pixels, the bilinear interpolation estimation method is used. The 

LBP is shown in Figure 1. In addition to LBP, Ojala et al. [5] also improved the original LBP to rotation 

invariant LBP (
ri

RPLBP , ) and uniform rotation invariant LBP (
2
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RPLBP ). After doing the encoding step in 
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to Equation (2) as follows: 
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Where K is the maximal LBP pattern value. 
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Figure 1.   LBP descriptor 

 

 

Although, many researchers targeted the LBP and did many improvements on it. The drawbacks of 

the LBP are inherited to all texture descriptors inspired from the LBP descriptor. The first drawback is 

sensitivity to noise as shown in the example in Figure 2 while the second drawback is shown in Figure 3 

where different patterns of LBP may be wrongly classified into the same class that reduces its discriminating 

property.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The example for LBP operator’s noise sensitivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Similar LBP codes for two different texture patterns 

 

 

2.2. Completed Local Binary Pattern (CLBP) 

In 2010, Guo et al. [12] proposed the completed LBP (CLBP) descriptor. In CLBP, the image local 

difference is decomposed into two complementary components; the sign component sp and the magnitude 

component mp. 
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Then, the sp is used to build the CLBP-Sign (CLBP_S), whereas the mp is used to build CLBP-

magnitude (CLBP_M). The CLBP_S and CLBP_M are mathematically described as follows: 
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Where ic, ip, R and P are defined before in Equation (1), while c denotes the mean value of mp in the whole 

image. 

The CLBP_S is equal to LBP whereas the CLBP_M measures the local variance of magnitude. 

Furthermore, Guo et al. [12] used the value of the grey level of each pattern to construct a new operator, 

called CLBP-centre (CLBP_C). The CLBP_C can be mathematically described as follows: 

 

),(_ , IcRP citCCLBP 
 (6) 

 

Where ic denotes the grey value of the centre pixel and cI is the average grey level of the whole image. 

Guo et al. [12] combined their operators into joint or hybrid distributions and achieved remarkable 

texture classification accuracy. They combined CLBP_S and CLBP_M in two ways. In the first way, they 

concatenated their histogram to build CLBP_S_M, while in the second way they calculated the 2D joint 

histogram. This 2D joint histogram is known as CLBP_S/M. The CLBP_C also combined with the CLBP_S 

and CLBP_M in two ways. In the first way, both of them are combined as 3D joint histogram and denoted as 

CLBP_S/M/C. In the second way, the CLBP_C is first combined jointly with the CLBP_S or CLBP_M to 

build 2D joint histogram denoted CLBP_S/C or CLBP_M/C, respectively. Then, this 2D joint histogram has 

to convert to 1D histogram and has to be concatenated with CLBP_M or CLBP_S to build the final histogram 

that denoted by CLBP_M_S/C or CLBP_S_M/C. 

 

 

3. COMPLETED LOCAL TERNARY PATTERN (CLTP) 

In CLTP [17], local difference of the image is decomposed into two sign complementary 

components and two magnitude complementary components as follows: 
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Where ic, and ip are defined before in (1) while t denotes the user Threshold.  Then, the 
upper
ps  and 

lower
ps are 

used to build the  
upper

RPSCLTP ,_ and
lower

RPSCLTP ,_ , respectively, as follows: 
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Then RPSCLTP ,_
 is the concatenation of the 

upper
RPSCLTP ,_

 and 

lower
RPSCLTP ,_

 , as follows:  
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Similar to RPSCLTP ,_ , the RPMCLTP ,_  is built using the two magnitude complementary 

components 
upper
pm  and 

lower
pm  , as follows: 
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Moreover, the 
upper

RPCCLTP ,_  and 
lower

RPCCLTP ,_ can be described mathematically as follows: 
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Where ,tii c
upper
c  tii c

lower
c   and Ic  is the average grey level of the world image.  

The proposed CLTP operators are combined into joint or hybrid distributions to build the final 

operator histogram like the CLBP and CLBC [12],[13]. In the CLTP, the operators of the same type of 

pattern; i.e., the upper and the lower pattern, are combined first into joint or hybrid distributions. Then, their 

results are concatenated to build the final operator histogram. 

 

 

4. EXPERIMENTS AND DISCUSSIONS 

In this section, series of experiments are performed to study and investigate the performance of the 

CLTP for face recognition task. JAFFE [19] and FEI [20] standard databases are used in this study.  

Empirically, the threshold value t is set to 5 in all CLTP experiments. Different datasets were used in order to 

find the suitable threshold value which will be used in the CLTP evaluation experiments. The values were 

ranged from 0 to 25, and 5 was the suitable threshold value [17]-[18]. In all experiments, the LBP, CLBP, 

and CLTP are extracted based on three different texture patterns, namely, (P = 8 and R = 1), (P = 16 and R = 

2), and (P = 24 and R = 3).  

 

4.1. Dissimilarity Measuring Framework 

In this study, the nearest neighbourhood classifier as well as the chi-square statistic is used to 

measure the dissimilarity of the histograms. Equation (16) describes the 
2 distance between two histograms 
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4.2. Experimental Results of JAFFE dataset 

The JAFFE database includes 10 classes and total 213 images.  Each class has 20 JPEG images of 

different Japanese female in a different view of face expression which has angry, smile, sad, worry, nervous, 

neutral and etc. These images are grey and 256 x 256 in size. Examples of these images are shown in Figure 

4. Table 1 shows the average of classification results of face recognition dataset of 100 random splits. In each 
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class, N = (2, 5, 10) is used as training images, while the remaining images are used as testing images. The 

best classification accuracy has obtained by CLTP_S/M/C3,24 operator, which has reached up 99.38% while 

the CLBP_S/M/C3,24 has achieved the best classification accuracy, which has reached up to 98.77%. From the 

Table X, all CLTP descriptors outperformed the CLBP descriptors in term of accuracy rate. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Some images from JAFFE Database 

 

 

Table 1. Classification rates (%) on JAFFE Database 

Descriptors 
R=1, P=8 R=2, P=16 R=3, P=24 

2 5 10 2 5 10 2 5 10 

CLBP_S 56.43 63.97 70.52 47.62 53.54 58.78 48.59 56.34 61.76 

CLTP_S 74.27 81.37 85.74 80.41 86.63 90.50 84.61 89.88 94.00 

CLBP_M 70.29 74.37 76.58 74.93 79.97 83.94 73.47 79.31 83.76 
CLTP_M 78.20 84.67 88.76 80.59 85.61 87.72 78.74 85.03 89.02 

CLBP_M/C 87.26 91.53 94.03 88.03 92.73 94.89 89.09 94.14 96.27 

CLTP_M/C 86.42 91.88 95.42 90.44 95.25 97.88 91.99 96.12 98.24 
CLBP_S_M/C 86.24 90.71 93.98 85.79 91.97 94.68 89.73 95.00 97.19 

CLTP_S_M/C 88.24 93.40 96.66 92.13 96.56 98.54 93.10 96.51 98.10 

CLBP_S/M 73.34 81.60 87.70 72.54 81.73 88.34 79.78 86.51 90.70 

CLTP_S/M 84.20 90.33 93.74 87.67 93.51 96.54 90.00 93.93 97.18 

CLBP_S/M/C 86.39 92.29 94.60 88.28 93.55 96.02 92.54 96.65 98.77 

CLTP_S/M/C 89.21 95.08 97.46 94.57 97.25 98.74 95.44 98.53 99.38 

 

 

4.3. Experimental Results of FEI Face Database 

The FEI face database is one of the standard faces databases.  This database collected includes faces 

for 200 Brazilian persons captured on 2005 and 2006 at Artificial Intelligence Laboratory of FEI in São 

Bernardo do Campo, São Paulo, Brazil.  FEI face database has a 2800 face image in total from the student 

and staff in the FEI from 19 years old to 40 years old.  The images in FEI database are organised in 200 

classes and each class contains14 images for the same person in different face view, rotation of almost 180 

degrees and with different facial expression.  The size of faces image is  640 x 480 pixels. Figure x shows 

some examples of FEI face database.   

 

 

 
 

Figure 5. Some images from FEI Face Database 

 

 

Table 2 shows the average of classification results of face recognition dataset of 100 random splits. 

In each class, N = (2, 5, 10) is used as training images, while the remaining images are used as testing 

images.  The best classification accuracy has obtained by CLTP_S/M/C2,16 operator, which has reached up 

85.22% while the CLBP_S/M/C3,24 has achieved the best classification accuracy, which has reached up to 

76.15%. Aside from CLTP_ M operator when N = (2, 5, 10) at P = 24, R = 3, all CLTP operators have 

achieved higher performance than CLBP operators for all N numbers of training images at radiuses 1, 2, 3. 
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Table 2. Classification rates (%) on FEI Face Database 

FEI database 
R=1, P=8 R=2, P=16 R=3, P=24 

2 5 10 2 5 10 2 5 10 

CLBP_S 12.13 16.90 21.03 9.09 11.98 15.15 12.18 16.25 20.12 

CLTP_S 30.55 38.53 46.66 43.17 54.82 66.74 47.16 59.34 72.58 
CLBP_M 18.98 26.47 33.29 22.87 32.93 41.00 26.96 36.90 45.16 

CLTP_M 25.14 32.82 42.81 26.81 35.03 47.25 26.34 34.63 45.19 

CLBP_M/C 33.46 46.17 55.61 35.22 49.76 59.66 40.97 53.87 61.16 
CLTP_M/C 43.21 54.20 68.04 45.93 56.87 71.10 42.78 54.48 68.96 

CLBP_S_M/C 32.82 44.16 53.64 37.24 49.30 59.31 44.33 56.92 66.47 

CLTP_S_M/C 47.81 60.36 76.84 51.19 63.57 77.22 48.45 61.38 76.71 
CLBP_S/M 23.47 34.15 42.31 29.68 42.11 50.52 40.58 55.40 64.22 

CLTP_S/M 43.58 57.56 71.91 48.17 62.28 76.20 46.83 60.26 76.52 

CLBP_S/M/C 37.07 50.97 60.29 47.10 60.70 70.23 55.02 68.80 76.15 
CLTP_S/M/C 55.07 68.22 82.05 58.36 71.46 85.22 56.72 70.82 84.32 

 

 

5. CONCLUSIONS 

In this paper, the proposed Completed Local Ternary Pattern (CLTP) texture descriptor are studied 

and evaluated for face recognition task. Two standard face datasets are used in the experiments in this study 

which are JAFFE and PEI datasets. Different numbers of training images with a different size of the 

descriptors are used in the experiments. The experimental results showed the superiority of the proposed 

CLTP against CLBP in both JAFFE and PEI databases. This is due to the properties of CLTP compared with 

CLBP.  
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