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Conditional functional dependencies (CFDs) have been used to improve the 

quality of data, including detecting and repairing data inconsistencies. 

Approximation measures have significant importance for data dependencies 

in data mining. To adapt to exceptions in real data, the measures are used to 

relax the strictness of CFDs for more generalized dependencies, called 

approximate conditional functional dependencies (ACFDs). This paper 

analyzes the weaknesses of dependency degree, confidence and conviction 

measures for general CFDs (constant and variable CFDs). A new measure for 

general CFDs based on incomplete knowledge granularity is proposed to 

measure the approximation of these dependencies as well as the distribution 

of data tuples into the conditional equivalence classes. Finally, the 

effectiveness of stripped conditional partitions and this new measure are 

evaluated on synthetic and real data sets. These results are important to the 

study of theory of approximation dependencies and improvement of 

discovery algorithms of CFDs and ACFDs. 
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1. INTRODUCTION  

High data quality has a very important role for many organizations in making correct decisions. 

However, in real-world applications, the data often contains inconsistencies, inaccuracies and errors because 

of integration of data from various sources. A recent report showed that billions of dollars in losses annually 

for US business is due to poor data quality [1]. Although functional dependencies (FDs) are significant 

constraints and knowledge in relational database design and data mining [2-6], they are not robust enough to 

address data quality problem. Therefore, CFDs have been extended from FDs to solve this problem [7-8]. 

FDs only hold on a set of tuples satisfying the conditions characterized by CFDs. For example, let cust be a 

relation specifying customers with the attributes: CC (country code), ZIP (zip code), STR (street), AC (area 

code), CT (city) as introduced in [7][9]. Let's consider two CFDs: 1 = ([CC, ZIP]  STR, (44, - || -)) and 

2 = ([CC, AC]  CT, (01, 212 || NYC)).  CFD 1 only holds on the relation cust when the customer's 

country code is 44. CFD 2 shows that if all customers in the US (CC=01) have an area code of 212, then 

their city must be NYC. These constraints cannot be discovered from the databases using the concept of FD. 

The main application of CFDs is data cleaning [7][10][11] in which CFD discovery is an important 

stage. The measures have been used to discover the interesting rules, reduce search space and relax strictness 

of CFDs with exceptions in data [9][12-13]. Chiang et al [12] introduced the various measures to evaluate the 

data quality rules, including Support, 2-Test, Confidence, Interest and Conviction. Based on the subsumed 

classes in the partitions, these measures captured interesting CFDs such that there exist the conditional 
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attributes on the left hand side (LHS) of these CFDs. The non-subsumed classes are used to formalize the 

approximate constant CFDs for identifying dirty data values. Therefore, it seems difficult to approximate the 

general CFDs based on these measures.  

The interesting rules in the discovery problem of constant CFDs [14] were also evaluated based on 

the 2-Test.  Moreover the conviction is an effective measure for association rules because it tackles the 

weaknesses of the confidence and interest measures [15]. As shown in [12], the conviction is the best 

measure for providing the interesting CFDs and identifying the dirty data values. Therefore, the conviction 

measure will be selected for analysis in this study. 

Recently, Nakayama et al [13] presented the formalization of ACFDs with the confidence measure 

based on the maximum number of tuples in a relation satisfying the conditional dependency. This measure is 

extended from the error measure g3[16], which has been used widely in the study, discovery and application 

of approximate functional dependencies (AFDs) and comparable dependencies (CDs) [17-21]. Nakayama et 

al focused on extending three discovery algorithms for ACFDs (approxCFDMiner, approxCTANE and 

approxFastCFD) from CFD discovery algorithms [9]. 

Unfortunately the effectiveness of stripped conditional partitions and evaluation of this measure for 

ACFDs were not considered. Therefore we introduce the conditional indiscernibility relation, conditional 

equivalence class, conditional partition, stripped conditional partition and dependency degree  as an 

extension from the concepts of Pawlak rough set [22-23] to confront this problem. Rough set theory is an 

effective approach for analyzing uncertain and incomplete data in many areas of data mining, knowledge 

discovery and attribute reduction [22-28]. In addition, information (knowledge) granularity can be used to 

measure uncertainty of information [29-33].  

This study also infers that the measurement of ACFDs allows us to know the distribution degree of 

objects in the conditional equivalence classes. For example, we can represent how much degree patients 

corresponding to any symptom are distributed into disease groups. However the above measures cannot 

express this distribution. We therefore introduce the incomplete knowledge granularity of conditional 

partition induced by itemsets based on  the knowledge granularity of the partition [33] to propose a new 

measure that not only measures the approximation degree of dependencies CFDs, but also the distribution of 

data tuples into the conditional equivalence classes. This measure can give us a more general view of ACFDs 

with expectation for extending ACFDs to other application domains such as classification and sociological 

investigation. Finally the computations of measures using the stripped conditional partitions allow the 

discovery time of CFDs and ACFDs to be improved effectively. 

From this promising analysis, the paper focuses on solving the following issues: 

 Computing the measures based on the conditional partitions and stripped conditional 

partitions. 

 Evaluating the effectiveness of the stripped conditional partition for discovery algorithm of 

ACFDs (approxCTANE) based on the confidence measure. 

 Evaluating the limitations of the measures for ACFDs, including the dependency degree, 

confidence and conviction. 

 Proposing a new measure for CFDs and evaluating the utility of this measure. 

The rest of the paper is organized as follows: Section 2 presents primary concepts of partition, 

dependency degree and conditional functional dependencies. In section 3, we compute the measures and 

propose a new measure for CFDs based on conditional partition and stripped conditional partition as well as 

analyze among the measures. Section 4 introduces the discovery problem of ACFDs and product of two 

stripped conditional partitions. The evaluation of measures and discovery of ACFDs are conduced on the 

synthetic and real data sets in Section 5. Section 6 concludes the paper. 

 

2. PRELIMINARIES  

In this section, we introduce some concepts of relational database, indiscernibility relation, 

partitions, dependency degree and conditional functional dependencies [7-9][22-23][34]. 

Let r(R) be a relation on a set of attributes R = {A1, A2, ..., Am}, where dom(Ak) is a domain of Ak  

R. Then an indiscernibility relation IX is defined by 

]}[][,|),{( 2

kjkikjiX AtAtXArttI   

The relation IX partitions the set of tuples r into equivalence classes. For ti  r, an equivalence class 

)( iX tI  of ti on a set of attributes X is defined by  

]}[][,|{)( kjkikjiX AtAtXArttI   
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Then a set of equivalence classes }|)({ rttII iiXX    is called a partition of r on X. The 

partition 
XI is finer than 

YI if and only if for any equivalence class w 
XI , there exists the equivalence class 

q in 
YI  such that w q. To reduce computational time with the partitions, Huhtala et al. [17] have proposed 

the stripped partition of 
XI , denoted 

XÎ as follows 

  }1|||{ˆ  wIwI XX

   

A set of tuples O   r can be approximated with respect to X  R by defining the lower )(* OX  

approximation, where })(|{)(* OtIrtOX iXi   . Then for two sets of attributes X and Y, 

)(),( * OXrYXPOS
YIO 

 is a positive region of dependency X  Y.  

The coefficient 
||

),(
),(

r

rYXPOS
rYX


 defines a dependency degree of X  Y. If

,1),(  rYX  then XY is a functional dependency. 

Functional Dependencies (FDs) express the relationship between two sets of attributes on the 

relation r(R). In more generalized form, CFDs specify the constraints between two sets of attributes fixed by 

particular values. A Conditional Functional Dependency (CFD) , denoted (X  Y, tp) [9], is a Functional 

Dependency with respect to pattern tuple tp  such that for each  Ak  XY ,  tp[Ak] = ’a’  or  tp[Ak]  = ’-’, where 

the constant  a  dom(Ak) and value of unnamed variable ’-’ drawn from  dom(Ak). A tuple ti matches the 

pattern tuple tp on the set of attributes X, denoted ti[X] ≤  tp[X] if and only if  for each Ak  X, (ti[Ak] = 

tp[Ak] ) or  (ti[Ak] = 'a', tp[Ak] =  '-'), a  dom(Ak) . We write ti[X]<< tp[X] if ti[X]  ≤  tp[X] but  tp[X]   

ti[X]. 

The CFD  = (X  Y, tp) holds on r (or r satisfies , denoted |r ) if, for any ti, tj  r such that 

ti[X] = tj[X]  ≤  tp[X], then ti[Y] =  tj[Y] ≤  tp[Y]. 

As mentioned in [9][12] we can discover the CFDs of form  = (X  Ak, tp), where the single 

attribute Ak is in R and not in X.  Let   = (X  Ak, tp) be a CFD and X ≠  . According to [9], X
c
  X is a set 

of attributes such that tp[X
c
] is a constant pattern tuple. The remaining attributes X

v
 = X - X

c
 is corresponding 

to variable pattern tuple such that tp[X
v
] = (-, ..., -). Therefore, the CFD  can be expressed by the form  = 

([X
c
, X

v
]  Ak, tp). 

  

3. APPROXIMATE MEASURES FOR CFDs 

In this section, we present the conditional partition, stripped conditional partition, and approximate 

measures for dependencies. We first consider some measures for CFDs. 

Definition 3.1. [9][12][35] Let r(R) be a relation, the support of CFD  = (X  Ak, tp) on r, denoted 

sup(, r), is defined by 

  
||

||
),sup(

r

r
r pt
  (1)  

where |||| ][ kpp XAtt rr  is the number tuples in r matching tp on set of attributes XAk. 

From the conviction measure in [12], Definition 3.2 defines this measure for general CFDs. 

Definition 3.2.  Let r(R) be a relation, the conviction measure of CFD  = (X  Ak, tp) on r, denoted 

Conv(, r), is defined by 

  
]))[,(]),[,((

]))[,((])).[,((
),(

kpkp

kpkp

AtAXtXP

AtAPXtXP
rConv




   

where probability P(X,tp[X]) is equal to sup(X, tp[X]) and if (X, tp[X]) and (Ak, tp[Ak]) are independent, then 

Conv(, r) is equal to 1. 

Definition 3.3. [13] Let r(R) be a relation, the confidence of CFD  = (X  Ak, tp) on r, denoted 

conf (, r), is defined by 

  
||

)},(|','||'max{|
),(

r

tAXrrrr
rconf

pk
  (2) 
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Partitions of itemsets are introduced in [9] to check correctness of CFDs in the discovery problem. 

Let r(R) be a relation on R and (Z, tp[Z]) be an itemset, where  Z  R. There exists a conditional 

indiscernibility relation 
])[,( ZtZ p

I on r, defined by 

  ]}[][][|),{( 2

])[,( ZtZtZtrttI pjijiZtZ p
   

A conditional equivalence class of ti with respect to itemset (Z, tp[Z]), denoted ),(])[,( iZtZ tI
p

  is 

defined by ]}[][][|{)(])[,( ZtZtZtrttI pjijiZtZ p
 .Therefore there exists a conditional partition of r 

with respect to (Z, tp[Z]), defined by 

  }0|)(|,|)({ ])[,(])[,(])[,(  iZtZiiZtZZtZ tIrttII
ppp

  (3) 

 

Table 1. A data table 

 A1 A2 A3 

t1 0 1 0 
t2 0 1 0 

t3 1 2 0 

t4 1 2 0 
t5 0 1 0 

t6 0 2 1 

t7 1 2 2 
t8 1 3 2 

t9 1 3 2 

t10 2 1 3 
t11 2 2 1 

We have that )(])[,( iZtZrt tI
pi


 , where )(])[,( iZtZ tI

p

 ≠ , is not always equal to r. Therefore the 

conditional partition 
])[,( ZtZ p

I is a semi-partition. 

For example, let r(R) be a relation as Table 1. Then 

 }{},{},,{},,,{},{},,,{ 1110987436521,( ),,21
tttttttttttI AA 



 ;   }{},,,{},{ 117436,( )2,,21
tttttI AA 



  

rtttttw
AAIw




},,,,{ 117643
)2,,2,1(


 

Definition 3.4. Let O  r be a set of tuples and let (Z, tp[Z]) be an itemset such that Z  R, the lower 

)(])[,( * OZtZ p
approximation of O  is defined by 

  })(|{)(])[,( ])[,(])[,(* OtIandIrtOZtZ iZtZZtZip pp
   (4) 

Definition 3.5. Let  r(R) be a relation, the dependency degree of CFD   = (X  Ak, tp) on r, 

denoted (, r), is defined by 

  
||

|),(|||
1),(

][][

r

rPOSr
r

XtXt pp





  (5) 

where:  )(])[,(),( *])][
][,(

qXtXrPOS pIqXt
kAptkAp




  and wr
XptXp IwXt 

])[,(
][ 

  

Proposition 3.1. Let r(R) be a relation, the support of CFD  = (X  Ak, tp) on r is computed by 

  
||

||

||

||
),sup(

])[,(

r

w

r

r
r

kXAptkXAp
Iwt






  (6) 

Proof. we have |||| ][ kpp XAtt rr  = ||
])[,(

w
kXAptkXAIw 

 . Proposition 3.1 therefore can be inferred 

from Definition 3.1   

Proposition 3.2.  Let r(R) be a relation, the conviction measure of CFD  = (X  Ak, tp) on r is 
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computed by 

  
||||

|)||.(|||
.

||

1
),(

][][

][][

kpp

kpp

XAtXt

AtXt

rr

rrr

r
rConv




  (7)  

where Z=X , Z=Ak, or Z=XAk ,  wr
ZptZp IwZt 

])[,(
][ 

 and if (X, tp[X]) and (Ak, tp[Ak]) are independent, then 

Conv(, r) is equal to 1. 

Proof.  We have ]))[,(( kpk AtAP  =1-
||

||
1]))[,sup((

][

r

r
AtA kp At

kpk    and  

]))[,(]),[,(( kpkp AtAXtXP  = ]))[,sup(( XtX p
 - |)||.(|

||

1
]))[,sup(( ][][ kpp XAtXtkpk rr

r
XAtXA   

Therefore Proposition 3.2 can be proven from Definition 3.2.   

Proposition 3.3. Let r(R) be a relation and  = (X  Ak, tp). Then the measure Conf is computed by 

  
||

},||max{|||
1),(

])[,(
])[,(][

r

wqIqqr
rConf

XptX kpkp Iw XAtXAXt  







  (8) 

 

where 
 

  



 




otherwiser

OXifIww
wr

c

XtX

IwXt

c
p

c

XptXp
||

|||
|||| ])[,(

][
])[,(




 (9) 

Proof. From Equation 2, we obtain 

||

||}|,||max{|
),(

][][

r

rrsrss
rConf

XtXt pp





  

    

||

}|,||max{|||
1

][][

r

srssr XtXt pp


   

On the other hand, in a similar way to the computation of g3 in [17], we have 

 }|,||max{| ][ srss Xtp  




])[,(

},||max{| ])[,(
XptX kpkIw XAtXA wqIqq . Proposition 3.3 is 

therefore  proven.    

Example 3.1. Let's compute the measures Sup,  , Conf, and Conv for the  dependencies 1 and 2 

from Table 1: 

1 = (A1  A2, 0 || 1) 2 = (A1  A2, - || -) 

Through 1 , 2 and Table 1, we can infer the conditional partitions as follows: 

 },,,{ 6521)0,( 1
ttttI A    },{},,,,,{},,,,{ 1110987436521),( 1

tttttttttttI A 

  

 },,,{ 10521)1,( 2
ttttI A    },{},,,,,{},,,,{ 9811764310521),( 2

tttttttttttI A 

  

 },,{ 521)1,0,( 2,1
tttI AA    }{},{},,{},,,{},{},,,{ 1110987436521),,( 2,1

tttttttttttI AA 

  

From these conditional partitions and Equations 5-8, we have: 
 11/3),( 1 rSup   11/11),( 2 rSup   

11/7
11

04
1),( 1 


r  0

11

011
1),( 2 


r  

11/10
11

34
1),( 1 


rConf   11/7

11

)133(11
1),( 2 


rconf   

11/28
34

)411.(4
.

11

1
),( 1 




rConv   1),( 2 rConv   
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Because 1)),(()).,(()),,(( 2121  APAPAAP , we infer that ),( 1 A  and ),( 2 A  are independent. 

Therefore, 1),( 2 rConv  . 

  

The following proposition expresses an interesting relationship between the confidence and 

dependency degree. 

Proposition 3.4. Let r(R) be a relation and  = (X  Ak, tp). Then 

||

},||max{|
),(),(

])[,(
])[,(

r

wqIqq
rrConf

XptX kpkIw XAtXA 







   

Proof.  From (8), we obtain the following connection 

||

},|max{|||
1),(

])[,(
])[,(][

r

wqIqqr
rConf

XptX kpkp Iw XAtXAXt  









 
||

|)(])[,(|||
1

*][
])[,(

r

qXtXr pIqXt
kAptkAp






 
||

},|max{|
),(

])[,(
])[,(

r

wqIqq
r

XptX kpkIw XAtXA 







      

We next present an example to analyze three measures, including dependency degree, confidence 

and conviction for general CFDs. 

Example 3.2. Let's compute the measures for the following dependencies from Table 1 

1 = (A1  A2, 0 || 1) 2 = (A1  A2, - || -) 3 = (A1A2  A3, -,2 || -) 

4 = (A1  A3, 1 || -) 5 = (A1A2  A3, -,- || 0) 6 = (A2A3  A1, 2,- || -) 

From Equations 5, 7 and 8, we have 

(1, r) = 7/11 (2, r) = 0 (3, r) = 8/11  

Conf(1, r) = 10/11 Conf(2, r) = 7/11 Conf(3, r) = 10/11 

Conv(1, r) = 28/11 Conv(2, r) = 1 Conv(3, r) = 1 

  

(4, r) = 6/11 (5, r) = 3/11 (6, r) = 9/11 

Conf(4, r) = 9/11 Conf(5, r) = 5/11 Conf(6, r) = 10/11 

Conv(4, r) = 1 Conv(5, r) = 1 Conv(6, r) = 1  

    

Remark 3.1. From Example 3.2, let's evaluate the measures based on theory analysis: 

1. The measure Conv cannot define how much dependency (or violation) is there in  = ([X
c
, X

v
]  

Ak, tp) with the following CFD forms: 

 tp[Ak] = ‘-‘, X
c 
= : 2 

 tp[Ak] = ‘-‘, X
c  

≠ , X
v  

≠ : 3 and 6 

 tp[Ak] = ‘-‘, X
v 
= : 4 

 tp[Ak] ≠ ‘-‘, X
c 
= : 5 

To unravel this, because (X, tp[X]) and (Ak, tp[Ak]) are independent in these forms, we infer that  

their Conv measures are always equal to 1 even when any values in data tuples are changed. We 

can see this limitation in 2, 3, 4, 5, and 6. 

2.  Dependency degree  is too strict for measuring the approximation of CFDs. 

Indeed, with dependency 2 from Example 3.2, we observe that just four tuples violating 2 make 

dependency degree of 2 to be 0. 

3. As shown in Example 3.2 for dependencies from 1 to 6, the measure Conf can overcome the 

drawbacks of  and Conv for general CFDs. However, they cannot measure the distribution of data 

tupes in the conditional equivalence classes. 

Indeed, if values in tupes t3 and t9 corresponding to attributes A3 and A2 are changed from 0 to 1 

and 3 to 5, then Conf (even  and Conv) of 2 and 4 never change. 

Therefore, we propose the following lemma and definitions for a new measure.  
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From the knowledge granularity of a partition [33], we introduce the incomplete knowledge 

granularity of conditional partition induced by itemset (Z, tp[Z]). 

Definition 3.6. Let }...,,{ 1])[,( lZtZ wwI
p

  be a conditional partition with the incomplete 

probability distribution  )(...,),( 1
])[,(

lI
wPwPP

ZptZ


 on the set of tupes r, ||/||)( rwwP ii   and 

1)(
])[,(

  
ZptZi Iw iwP . Then incomplete knowledge granularity of 

])[,( ZtZ p
I is defined by 

  



l

i

i
i

l

i

iiZtZ
r

w
wwPwIIE

p

11

])[,(
||

||
||)(||)(   (10) 

Lemma 3.1.  Let r(R) be a relation  = (X  Ak, tp) holds on r if and only if 

)()( ])[,(])[,(



kpkp XAtXAXtX IIEIIE   

Proof. We demonstrate that )()( ])[,(])[,(



kpkp XAtXAXtX IIEIIE   if and only if there is the same 

distribution of the tuples r into classes 
])[,( XtX p

Iw  and 
])[,( kpk XAtXAIq  respectively, i.e, for any


])[,( XtX p

Iw , there exists 
])[,( kpk XAtXAIq  such that qw  , i.e,  holds on r.  Lemma 3.1 is therefore 

proven.      

From Lemma 3.1, a distribution error degree of  can be expressed by 

  
)(

)()(
),(

])[,(

])[,(])[,(






XtX

XAtXAXtX

E

p

kpkp

IIE

IIEIIE
r


  (11) 

Then we have a new measure for CFD as follows 

Definition 3.7. Let r(R) be a relation and  = (X  Ak, tp). A new measure, called distribution 

dependency degree, is defined by: 












otherwise

Iif
IIE

IIE
r

r XtX

XtX

XAtXA

E
D

p

p

kpk

0

0||
)(

)(
),(1

),( ])[,(

])[,(

])[,( 






  (12) 

Example 3.3. From Example 3.2, we have D(2, r) = 5/9 and D(4, r) = 13/25. If we change data 

values as in Remark 3.1 (3.), then D(2, r) = 23/45 and D(4, r)  = 11/25. 

We see that the bigger measure D, the bigger dependency probability of . If D(, r) = 1, then  

becomes a CFD. Therefore D can be used to measure the approximation of ACFDs. Moreover, D can 

measure the distribution degree of data tuples based on the conditional dependencies as indicated in 

following example. 

Table 2. A data table of patients 

 Name Symptom Disease 

t1 N1 1 1 

t2 N2 1 2 

t3 N3 1 3 
t4 N4

 2 2 

t5 N5 2 2 

t6 N6 2 2 
t7 N7 1 4 

t8 N8 1 5 

t9 N9 3 1 
t10 N10 2 3 

t11 N11 2 4 

t12 N12 3 1 
t13 N13 3 1 

t14 N14 2 1 

t15 N15 3 1 
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Example 3.4. Let  r(R) be a relation  as Table 2 

With 11 = (Symptom  Disease,1 || -), 12 = (Symptom  Disease, 2 || -), and 13 =  (Symptom  

Disease, 3 || -) in Table 2, we have D(11, r) = 1/5, D(12, r) = 1/3, and D(13, r)=1. If values in tupes t10 

and t11 corresponding to Disease attribute are changed from 3 to 1 and 4 to 2, then D(12, r) = 5/9. 

We observe that the nearer the measure D(1i, r) is to 1, the bigger the centralized distribution of  

the patients in 
i

r
1

into one or more diseases is. 

We now propose the computation for measures based on the stripped conditional partition to reduce 

the computational time in discovering ACFDs. 

 

Definition 3.8. Let r(R) be a relation and let (Z, tp[Z]) be an itemset such that  Z  R. A stripped 

conditional partition of 


])[,( ZtZ p
I  , denoted 


])[,(

ˆ
ZtZ p

I  is defined by 

  }1|||{ˆ
])[,(])[,(  wIwI ZtZZtZ pp


 (13) 

Based on the stripped conditional partition, for any itemset (Z, tp[Z]), where Z ≠  and Z   R, if 

1|| ][ Zt p
r , then we have the following definitions, propositions, and lemmas. 

Definition 3.9. Let r(R) be a relation. Then, the support of  is computed according Equation 1, 

where ||
ptr is defined by 

  



 


otherwiser

OZifXAZIww
rr

c

kZtZ
XAtt

c
p

c

kpp

||

,ˆ|||
|||| ])[,(

][



 (14) 

Proposition 3.5. The incomplete knowledge granularity of 
])[,( ZtZ p

I is defined by 

  






   
||)1|(|||

||

1
)(

])[,(
ˆ ][])[,( 



ZptZ pp Iw ZtZtZ rww
r

IIE  (15) 

Proof. From Equation 3 and 13, we infer that  
 

])[,(
ˆ][ ||||

ZptZp IwZt wr is the number of single 

conditional equivalence classes removed from the conditional partition 
])[,( ZtZ p

I . Hence, 

  ||)1|(||||||||||| ][ˆˆ][

2

ˆ

2

])[,(])[,(])[,(])[,(
ZtIwIwZtIwIw pZptZZptZpZptZZptZ

rwwwrww    
(16) 

Proposition 3.5 is therefore proven.    

Now through the stripped conditional partitions, the new measure D can be computed using 

Equations 12, 14, and 15.  

The computation of Conf  is based on Proposition 3.6 as follows 

Proposition 3.6. Let  r(R) be a relation and  = (X  Ak, tp) where  X  R,  Ak  R. Then, the 

confidence measure Conf of  is defined by 



















 

otherwise
r

rr

Atif
r

wf

rConf

kpp

XptX

XAtXt

kp

Iw

||

||||
1

''][
||

)(
1

),(
][][

ˆ
])[,(




 (17) 

where 










otherwisew

wqthatsuchIqexiststhereifIqqw
wf kpkkpk XAtXAXAtXA

1||

ˆ}ˆ||max{|||
)( ])[,(])[,(


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|| ][ Xtp
r and || ][ kp XAtr  are computed based on Equation 14. 

Proof. If tp[Ak] = ‘-‘, then for any equivalence class 
])[,( XtX p

Iw , there exist the equivalence 

classes 
])[,( kpk XAtXAIq  such that qw

kXAptkXAIq 
])[,(

 . On the other hand, for any 
])[,( XtX p

Iw , if 

cardinality of w is equal to 1 and ti  w then ti always satisfies  = (X  Ak, tp). Hence, for any


])[,(
ˆ

XtX p
Iw , if there exists 


])[,(

ˆ
kpk XAtXAIq  such that q   w, then the number of tuples in w violating 

CFD  is },ˆ||max{|||)( ])[,( wqIqqwwf
kpk XAtXA   . Otherwise, q was removed from the conditional 

partition 
])[,( kpk XAtXAI . Thus, f(w)= |w| - 1. 

If tp[Ak] ≠ ‘-‘, then for any 
])[,( XtX p

Iw , if there exists 
])[,( kpk XAtXAIq  such that  q  w, then q is 

unique. Hence,   

||

||||
1

||

||||
1),(

][][])[,( ])[,(

r

rr

r

qw
rConf

kppXptX kXAptkXA XAtXtIw Iq 




   

  

Proposition 3.6 is therefore proven.      

 

4. THE DISCOVERY PROBLEM OF ACFDs 

Let SupThr be a support threshold, a CFD  = (X  Ak, tp) is frequent if sup(, r) SupThr  [9] 

As introduced in [13], with a confidence threshold ConfThr, the ACFD  = (X  Ak, tp) holds on the 

relation r (or r approximately satisfies , denoted r |=Conf ) if and only if Conf(, r)   ConfThr. Then  = 

(X  Ak, tp) is minimal if 1) ,XAk  2) for any proper subset ,XY  ,(| kConf AYr  ]),[||][ kpp AtYt

and 3) for any pattern tuple
ps where 

pp st  , )||][,(|  XsAXr pkConf
. 

Problem 1. Let r(R) be a relation. The discovery problem of ACFDs is to discover the frequent and 

minimal ACFDs on r. 

The right - hand - side (RHS) candidate set of (X, sp), denoted C
+
(X ,sp), is used to check minimality 

of dependencies and prune the search space of  discovery algorithms of CFDs and ACFDs (CTANE and 

appoxCTANE) based on attribute-set/pattern lattice.  

To discover the frequent and minimal ACFDs on r, the algorithm appoxCTANE [13] starts from a 

set L1={(Ak,- ) | Ak ∈ R} ∪ {(Ak, a) | sup(Ak, a) ≥ SupThr, Ak ∈ R, a ∈ dom(Ak) } and generates L2 from L1, L3 

from L2, …in which,    is the set of itemsets (X,sp) such that the cardinality of X is equal to  . For each 

itemset (X,sp) ∈   , the RHS candidate set C
+
(X ,sp) is computed by intersection of RHS candidate sets 

C
+
(X\Ak ,sp[X\Ak]) for any AkX. Then the dependency  = (X\Ak  Ak, sp[X\Ak]||sp[Ak]) is minimal if and 

only if (Ak, sp[Ak])  C+
(X ,sp). From that, to mine the frequent and minimal ACFDs on r, appoxCTANE 

checks the dependencies  = (X\Ak  Ak, sp[X\Ak]|| sp[Ak]) such that (Ak, sp[Ak]) ∈ C
+
(X ,sp), (X, sp)    ,  

and Ak  X. Let up  be any tuple pattern such that up[Ak] = sp[Ak] or  -  , and up[X\Ak] ≤ sp[X\Ak] . If Conf(, r) 

≥ ConfThr, then output , and remove (Ak,∗) from C
+
(X, up) for every (X, up) ∈    where ’∗’ denotes  all 

values for Ak, including the variable .  If Conf(, r)=0, then remove (Ap, ∗) from C
+
(X ,up) for every Ap ∈ R\X, 

and (X, up) ∈   . Next, the algorithm removes itemsets (X ,sp) from     such that C
+
(X ,sp) is empty. This 

process is performed for the next levels      ,      ,… until there exists q such that     is equal to empty. 

Readers can refer C
+
(X ,sp) and the algorithms CTANE and appoxCTANE in the papers [9][13]. 

Now, let r(R) be a relation and let (X, tp) and (Y, sp) be two itemsets such that 0|| 
ptr and 0|| 

psr . 

Then, the itemset (Z, up) is generated from (X, tp) and (Y, sp) such that Z = XY and  










0||),(

][][0||])[,(

YXifst

YXsYXtandYXifYXYst
stu

pp

pppp

ppp
 

According to the product of two partitions in [9] and [17], the following lemmas hold based on the 

conditional partitions and stripped conditional partitions. 

Lemma 4.1. The conditional partition 
),( puZI is computed by 


),(),(),( .

ppp sYtXuZ III    
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where 

}0||,,|{. ),(),(),(),(  qwIqIwqwII
pppp sYtXsYtX

  

Lemma 4.2. Assume that 1|| 
ptr , 1|| 

psr and 1|| 
pur . Then the stripped conditional partition 


),(

ˆ
puZI is computed by 


),(),(),(

ˆ.ˆˆ
ppp sYtXuZ III   

where 

}1||,ˆ,ˆ|{ˆ.ˆ
),(),(),(),(  qwIqIwqwII

pppp sYtXsYtX

  

Lemmas 4.1 and 4.2 are used to compute the products of two conditional partitions and stripped 

conditional partitions for the itemsets in the levels L2, L3, …of the attribute-set/pattern lattice. 

The results in Section 3 and 4 allow us effectively improve the computation time for the CFD and 

ACFD discovery algorithms. These results are also used to evaluate the limitations of the measures 

(dependency degree, conviction and confidence) in general CFDs and the utility of the proposed measure 

(D). 

 

5. RESULTS AND DISCUSSION 

This section evaluates the effectiveness of the stripped conditional partition for the discovery 

algorithm of ACFDs based on the confidence measure and the utility of new measure (D). 

Based on the algorithm appoxCTANE [13], the algorithms that discover ACFDs using the 

conditional partitions (CPs) and stripped conditional partitions (SCPs) are called CP-appoxCTANE and SCP-

appoxCTANE, respectively.  

CP-appoxCTANE algorithm mines the ACFDs through the product of CPs  (Lemma 4.1) and the 

computations of the support and confidence of  using CPs (Definition 3.1 and Proposition 3.3). While the 

discovery of SCP-appoxCTANE  is  based on the product of SCPs (Lemma 4.2) and the computations of the 

support and confidence of  using SCPs (Definition 3.1, Definition 3.9 and Proposition 3.6). 
 

Table 3. A description of data sets 

 Dataset # of attributes # of tuples 

1 Synthetic datasets 6-12 500000 

2 Blood Transfusion 5 748 
3 Nursery 9 12960 

4 Chess 7 28056 

5 Car Evaluation 7 1728 
 

With the synthetic and real data sets, as shown in Table 3, the experiments are conduced under the 

CP-appoxCTANE and SCP-appoxCTANE algorithms. These algorithms are implemented in R on a 

computer with a 3.5 GHz Intel Core i7 processor and 8GB memory. 

The synthetic datasets sets are generated randomly by varying the number of distinct values of 

attributes (NDV), the number of tuples (|r|), the number of attributes (arity), and the support threshold 

(SupThr). Note that attributes per data set have the same NDV. 

To evaluate the effectiveness of stripped conditional partitions for discovery algorithms, the 

experiments are carried out as follows: 

o We fix ConfThr, |r|, arity and SupThr equal to 0.8, 500000, 6, and 100 respectively. NDV is varied 

from 100 to 500. 

o Fixing ConfThr, NVD, arity and SupThr  equal to 0.8, 100, 6 and 0.001  respectively, we vary |r| 

from 100k to 500k. 

o With SupThr = 0.005, ConfThr = 0.8 and NDV = 20, arity is varied from 6 to 12. 

o With |r| = 500k, arity = 6, NDV = 100, we vary SupThr from 0.001 to 0.1. 

As shown in Figures 1 and 2, SCP-appoxCTANE outperforms CP-appoxCTANE with increasing 

the number of distinct values, arity as well as the number of tuples and decreasing the support thresholds.  

Similarly, we can apply Lemma 4.2 and Lemma 3.1 (the incomplete knowledge granularity of SCPs 

for CFD ) and Proposition 3.5 to  reduce the discovery time of CFDs for CTANE algorithm in the paper [9]. 
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(A) 

 
 

(B) 

Figure 1: Comparison of discovery algorithms of ACFDs based on CP and SCP (varying NDV and |r|) 

 

 
 

(A) 

 
 

(B) 

Figure 2: Comparison of discovery algorithms of ACFDs based on CP and SCP (varying Arity and Support 

threshold) 

 

With data sets (Blood Transfusion, Chess, Nursery and Car Evaluation) downloaded from the 

Repository [36], to ensure the evaluation of the measures Conf and D on the same set of ACFDs using the 

algorithm SCP-appoxCTANE, if the measure values of CFDs are greater than 0  in this algorithm, we 

omitted pruned criteria of RHS candidate set C
+
(X,up). With the support thresholds 0.05 for Chess and 

Nursery and 0.01 for Blood Transfusion and Car Evaluation, the discovered ACFDs  = (X\Ak  Ak,      

sp[X\Ak]|| sp[Ak]) in each dataset are sorted in ascending by the supports of (X\Ak, sp[X\Ak]). We observe that 

in Figure 3, the dependencies  = (X\Ak  Ak, sp[X\Ak]|| sp[Ak]) with lower supports of (X\Ak, sp[X\Ak]) 

tended to have bigger the values of Conf(, r). The dependencies based on the measure Conf focus much 

more on the group with high confidence, the remaining CFDs are in groups with medium and low 

confidence. Therefore Conf  is too lenient when measuring the approximation of CFDs. Whereas the measure 

D of dependencies spread from low to high values.  

From the theoretical and experimental results, we demonstrate that the stripped conditional partition 

is efficient for discovering of CFDs and ACFDs. Moreover the measure D not only measures centralized 

distribution degree of the objects into one or more groups, but also measures the approximation of CFDs 

effectively. 
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(A) Blood Transfusion 

 
(B) Chess 

 
(C) Nursery 

 
(D) Car Evaluation 

Figure 3: An evaluation between conf and D 

 

 

6. CONCLUSION 

This paper has introduced the stripped conditional partitions and incomplete knowledge granularity 

for the computations of measures to effectively improve the discovery time for the general CFDs and 

ACFDs. From the analysis of the weaknesses of the measures (dependency degree, conviction and 

confidence), we propose a new measure for the general CFDs. This measure can help us to have a more 

general view of ACFDs with expectation for extending them to other application domains. 
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