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 This paper presents a comparative study between the genetic algorithm and 
particle swarm optimization methods to determine the optimal proportional–
integral (PI) controller parameters for wind farm supervision algorithm. The 
main objective of this study is to obtain a rapid and stable system by tuning 
of the PI controller, thereby providing an excellent monitor for our wind 
farm by sending separate set points to all wind generators. A supervisory 
system controls the active and reactive power of the entire wind farm by 
sending out set points to all wind turbines. A machine control system 
ensures that the set points at the wind turbine level are reached. The entire 
control is added to the normal operating power reference of the wind farm 
established by a supervisory control. Finally the performance of the 
proposed algorithm is verified through MATLAB/Simulink simulation 
results by considering a wind farm of three doubly-fed induction generators. 
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1. INTRODUCTION  

The home of the environment, the strategy of which is environmental protection, has spared no 
effort since it opened its doors for the protection formal nuisances. Recently, this greenhouse handled an 
important topic related to renewable energy and environmental protection. In the third millennium, the 
importance of renewable energy is of continuing concern to researchers and environmentalists worldwide. 
Experts have reported that many climate change nuisances, such as floods, cyclones, greenhouse gas 
emissions, accelerated soil erosion, and losses in genetic diversity, have appeared innumerous countries. 
Experts have also explained that all these nuisances pose an unprecedented ecological threat on a global 
scale. Thus, the question that currently arises is how to address this situation and how to control energy. The 
only solution that could save the Earth is orienting toward renewable energy from the sun, the wind, and  
tides [1]. 

The major difficulty associated with decentralized energy sources (e.g., wind farm and solar plant) 
is that these sources do not participate in the general services system (i.e., voltage adjustment, frequency, 
possibility to operate on islanding). This case is particularly true with renewable energy sources, the 
production of which is unpredictable and considerably fluctuating. The integration of decentralized 
production units in a network poses several problems, including random and unpredictable producible (e.g., 
wind power, solar), lack of frequency–power and voltage adjustments, and sensitivity to voltage dips. The 
failure to participate in services system brings this type of energy source to behave similarly to passive 
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generators of electricity. Penetration of distributed generation must be limited (20% or 30% of the power 
consumed after a few feedbacks) to ensure network stability in acceptable conditions; thus, power 
supervision of these farms is necessary [1]. 

Current research in the field of wind farms is oriented toward the development of supervision 
algorithms to distribute the total power reference between wind generators. In this context, several algorithms 
have been proposed. Proportional distribution algorithm [2], [3], was developed to distribute power 
references in a proportional manner. From a safety concern, this algorithm ensures that each wind generator 
constantly functions far from its limits, as defined by the (P, Q) diagram [2]. The algorithms based on 
optimized objective function [4-6] permits an optimal distribution of the active and reactive power references 
on the wind generators. It needs optimization methods, such as genetic algorithm (GA) [7], neurons  
networks [8], particles swarm optimization (PSO) [5], and methods that combine the latter with fuzzy 
logic[09], [4]. The last supervision algorithms are based on proportional–integral (PI) regulators. This class 
of algorithms regulates the problem of supervision by using a simple PI regulator [10], [11], [29].  

The current research work presents a comparative study of the GA and PSO methods to determine 
the optimal PI controller parameters for the wind farm supervision algorithm, and compared with the non-
optimized PI controller, in which the parameters are adjusted manually. 

 
 

2. POWER SYSTEM CONFIGURATION  
The system studied in this study as presented in the following diagram mainly compound from 

different electric Elements, the wind farm connect through a transformer (20KV / 690V) to the electrical 
network, additional different variable loads also connect to the network but with another transformer. we 
have focused more on central supervision unit that can control the wind farm in active and reactive power 
(PWE, QWF) following the network system  operator TSO required plan. 
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Figure 1. Power System Configuration [1] 
 
 

The main components of wind generators used in this wind farm are turbine, gearbox, doubly-fed 
induction generator (DFIG) when its stator is directly connected to the grid and to two inverters one side 
DFIG rotor (RSC) permits to control active and reactive powers of DFIG, the other one side grid (GSC) 
allows to manage transient balanced power and current to grid, as shown in Figure 2 [1], [13]. 
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a. Turbine Model : The amount of aerodynamic power aerP  captured from wind turbine Figure 2(a) can 

be expressed by the following Equation [3]: 
 

2
),(

3SV
CPCP pvpaer


       (1) 

 
where: 
 

aerP  is the obtained wind power(w),  is the air density(kg/m3), V is the wind speed(m/s), S is the swept 

area of the turbine, and pC is the Power coefficient. 
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Figure 2. DFIG based Wind Energy Conversion System 
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where : 

t  : is turbine speed,
windV  is the wind speed, and   : is blade pitch angle; 

The aerodynamic torque is given by : 
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b. Gearbox model 
As shown in Figure 2(c), the Gearbox torque can be presented by following Equation:  
 

G

C
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gC : gearbox torque ; 
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aerC  : aerodynamic torque ; and 

G    : Gearbox multiplying factor for speed, we have: 
 

G
mec

turbine


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where: 

mec is the mechanical speed  

 
c. General DFIG Model 
As shown in Figure 2(b), the DFIG is modeled in d, q Park model, the stator and rotor voltages can be written 
as: 
 

























drsdrqrrqr

qrsdrdrrdr

dssqsqssqs

qssdsdssds

dt

d
IRV

dt

d
IRV

dt

d
IRV

dt

d
IRV









)(

)(

     (4) 
 
The stator and rotor flux are given as follows: 
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where: 

sR , rR sL and rL  are  the resistances and inductances, respectively, of the stator and rotor windings, and 

srM is the mutual inductance . 

dsV  ,
drV ,

qsV ,
qrV ,

dsI ,
drI ,

qsI ,
qrI ,

ds ,
dr , qs and qr are the d and q components of the stator and 

rotor voltages , respectively, currents and flux where as    is the rotor speed in electrical degree . 
The active and reactive powers at the stator side and rotor side of DFIG are defined as: 
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The electromagnetic torque is expressed as: 
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Where P is the number of pole pairs. 
 
d. Converters Model 

For the DFIG model presented in the Park model, we follow a continuous equivalent model of 
converters in the Park reference [1], [29] to simplify the analysis of the complete power generation system. 
The currents and voltages of RSC and GSC shown in Figure 2(d) are defined by the following Equations: 
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where: 

rmdV , rmqV
rdi  , rqi  : express voltages and currents in Park model; and  

 regrdV  , regrqV  : Express adjusted  voltages in Park model. 

 
 
3. PI Algorithm for Wind Farm Supervision 
  The main objective of the PI regulator-based algorithm is to satisfy the system operator reference 
operating set-point (

refWFQ  ,
refWFP  ). These values are compared with the active and reactive powers at 

the point of common coupling (PCC)[17], and the difference in power is determined, which is distributed in 
an identical manner(

irefWGP  ,
irefWGQ  ) between the wind generators of the wind farm. The following 

Figure 3 presents the principle of this algorithm. 
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Figure. 3. PI controller for wind farm supervision 

 
 

where: 

WFP
~ : active power generated by wind farm 

WFQ
~ : reactive power generated or absorbed by 

 
A general block diagram for a PI control system is shown in Figure 4. The control signal U(t) is 

generated from the error, E(t), as in (11): 
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as follows: 
 

0<kp,  ki<10 
 

For the PSO algorithm, the population size is set to 20 particles. The parameters c1, c2 and W are set 
to 2.05, 2.05 and 0.7298, respectively. The maximum number of iteration n is set to 20 iterations.  

For the GA algorithm parameters are selected as below: 
a. Selection: normalized geometric selection 
b. Crossover: arithmetic crossover 
c. Mutation: uniform method 
d.  Population number: 20 
e.  Generation (iteration) number: 20 
f. The same search interval and objective function as PSO algorithm. 

First, the PI controller gains are adjusted manually. Thereafter, we perform an optimization process 
using the PSO and GA methods. Figure 6 shows the cost function evolution during the optimization process 
using PSO and GA. After 20 iterations, the PSO and GA converge to the optimal parameters. 

Tables 1 and 2 show that all of these parameters obtained from both algorithms are different from 
one another for the active and reactive power controllers. The simulation results of the controlled system with 
the optimized PI are shown in Figures 7(a, b).The optimized PI controller by the PSO and GA methods are 
also compared with the non-optimized PI for the active and reactive powers. 

 
 

 
Figure 6. Evolution of the cost function (CF) 

 
 

Table 1. Parameters PI controller obtained by different methods for active power 

 
 

Table 2. Parameters PI controller obtained by different methods for reactive power 

 
  

Figures 7(a, b) show that the optimized PI controller using the PSO method has better performance, 
such as rapid response and trajectory tracking task, compared with the GA method and the non-optimized PI.   

Figures 8 and 9 shows the entire wind farm with the active and reactive powers and distribution 
order powers for each wind generators using the PSO–PI controller algorithm.  
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(a) Active Power 

 
(b) Rective Power 

 
Figure 7. Comparison results obtained by PI optimized by PSO, GA. And non-optimized PI 
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Figure 8. Simulation Results the centralized supervision of the reactive power [PSO-PI] 
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(a) Active Power produced by the wind farm 

 
(b) Active power produced by the first wind 

generator 
 

 
(c) Active power produced by the second wind 

generator 

 
(d) Active power produced by the third wind 

generator 
 

Figure.9.Simulation Results the centralized supervision of the active power [PSO-PI] 
 
 
6. CONCLUSION 

In this study, different approaches for wind farm supervision were presented. We focused our study 
on one of them which is based on proportional integral [PI] algorithm. In order to obtain the controller 
parameters, the comparative study have been taken between PSO and GA methods. To verify the 
effectiveness of the proposed methods, a model of the wind farm compound with three wind generators was 
simulated using Matlab/Simulink. The simulation results show that the optimized PI controller tuned by the 
PSO method exhibits better performance than the one tuned by the GA method and the non-optimized PI.   
 
 
APPENDIX 
Plant Parameters 
1.5 MW Wind Turbine Parameters: 
Rotor diameter: 35.25 m . blades Number: 3 
Inertia: 1000 kg/m2  
Air density   =1.22 kg/m3  

1.5 MW DFIG Parameters : 

 sR =0.012 , rR =0.021   

sL =2.037.10e -4 H:  rL =1.75.10e -4H 

srM =0.035 H: sL =0.035+2.037.10e-4 H 

rL =0.035+1.75.10 e-4 H 

0 10 20 30 40 50 60 70 80 90 100
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10

6

t(s)

P
w

f[
w

at
]

 

 

Pwf-ref

Pwf-més

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1
x 10

6

t(s)

P
w

g-
1[

w
at

]

 

 

Pwg1-max

Pwg1-més

Pwg1-réf

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1
x 10

6

t(s)

P
w

g-
2[

w
at

]

Pwg2-max

Pwg2-més

Pwg2-réf

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1
x 10

6

t(s)

P
w

g-
3[

w
at

]

Pwg3-max

Pwg3-més

Pwg3-réf



IJECE  ISSN: 2088-8708  
 

Wind Farm Management using Artificial Intelligent Techniques (Boualem Benlahbib) 

1143

Friction coefficient of DFIG: f=0.0024 N.m.s/rd 
Capacitors for DC Link: 
C1=C2=4400 μf 
Grid Parameters: 
Phase voltage (rms): 690 V Frequency: 50 
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