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ABSTRACT

A comprehensive comparison study on the data mining based approaches for detecting is-
landing events in a power distribution system with inverter-based distributed generations is
presented. The important features for each phase in the island detection scheme are investi-
gated in detail. These features are extracted from the time-varying measurements of voltage,
frequency and total harmonic distortion (THD) of current and voltage at the point of com-
mon coupling. Numerical studies were conducted on the IEEE 34-bus system considering
various scenarios of islanding and non-islanding conditions. The features obtained are then
used to train several data mining techniques such as decision tree, support vector machine,
neural network, bagging and random forest (RF). The simulation results showed that the im-
portant feature parameters can be evaluated based on the correlation between the extracted
features. From the results, the four important features that give accurate islanding detec-
tion are the fundamental voltage THD, fundamental current THD, rate of change of voltage
magnitude and voltage deviation. Comparison studies demonstrated the effectiveness of the
RF method in achieving high accuracy for islanding detection.
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1. INTRODUCTION
A small localized power source called as distributed generation (DG) becomes an alternative to bulk electric

generation due to yearly demand growth. These DGs can be in the form of wind farm, micro hydro turbine and
photovoltaic (PV) generator. Generally, these DGs are in the range of kW up to MW with several advantages such as
environmental benefits, improved reliability, increased efficiency, improved power quality and reduced transmission
and distribution line losses [1–3]. However, one of the major drawbacks of DGs is when subjected to islanding mode
of operation. Islanding is referred as disconnection of the main source in which it can be operated either intentional
or unintentional. When disconnection occurs, the active part of the distribution system should sense the disconnection
from the main grid and shut down the DGs, where island operation is prohibited or control action must be activated
to stabilize the islanded part of system [4, 5]. Islanding operation has some benefits but several drawbacks are still
observed, especially in unintentional islanding events which may cause problems related to power quality, safety,
voltage and frequency stabilities, and interference [6, 7].

Various techniques have been developed to detect islanding. Islanding techniques can generally be classified
into remote and local methods. Remote methods are based on communication between the power utility and the DGs.
Remote methods are highly reliable, but the practical implementation of these schemes can be inflexible, complex and
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expensive. For instance, the cost of implementing a remote method can be extremely expensive especially when it is
implemented in networks that do not initially have any communication infrastructure with the power utility. Therefore,
local methods are favourable for detecting islanding condition. These local methods can be categorized as passive,
active and hybrid techniques [8–10]. The passive islanding detection technique monitors the system parameters such
as voltage, current, frequency and harmonic distortion at the point of common coupling (PCC) with the utility grid
for detecting events [3,11–13]. In the active islanding detection technique, disturbances are intentionally injected into
the network and the island is detected based on the system responses to the disturbances [6, 14–16]. Meanwhile, the
hybrid technique is a combination of the active and passive techniques, in which active technique is applied only if
islanding is not detected by the passive technique [3, 17–20].

Data mining is widely used in numerous area including islanding detection [21–24]. For instance, an intel-
ligent islanding detection technique was developed in [25] using decision tree (DT) classifier to identify and classify
islanding operations at specific target locations. However, the DT classifier is not capable in capturing all possible
islanding events. To improve the accuracy of the DT classifier, fuzzy rule-based incorporated with DT was utilized
in detecting the islanding events [26]. In [13], a statistical signal processing algorithm is applied by using features
from voltage and frequency waveforms. The accuracy of this technique is acceptable, but the delay in statistical pro-
cessing makes this technique slower than other islanding detection techniques. Realizing the potential of data mining
techniques for islanding detection, new techniques have been developed by combining the discrete wavelet transform
with various classifiers, namely, DT, probabilistic neural-network (PNN) and support vector machines (SVM) [27].
The test results showed that the best accuracy can be achieved by the DT classifier model [27]. In [28] a pattern
recognition approach based on the DT classifier was employed for islanding detection. However, DT classifier have
limitations, such as possibility of spurious relationships, possibility of duplication with the same sub-tree on different
paths and limited to one output per attribute, and inability to represent test that refer to two or more different objects,
which requires an exploration of others intelligent technique. On the basis of the comprehensive literature review, the
data mining using correlation and coefficient analysis had rarely been reported. Therefore, the main objective of this
study is to propose a new islanding scheme using the correlation and coefficient analysis for features extraction and
data mining techniques. Initially, features are extracted using the correlation and coefficient analysis in which seven
parameter indices at the target DG location have been identified as important features for identifying the islanding
events. Then five different data mining techniques, namely, DT, SVM, neural network (NN), bagging and random for-
est (RF) have been developed as classifiers in islanding detection. The proposed islanding detection scheme is tested
on the IEEE 34 bus system with inverter based DGs.

2. BUILDING THE DATA SET
2.1. Test System

Fig. 1 shows the single-line diagram of the IEEE 34-bus distribution system model in MATLAB/SIMULINK
software. The DG and the load are connected to distribution system by a 100-kVA 24.9-kV/480-V transformer. Mean-
while, the PCC is connected with R load with 100-kW. The DG is an inverter-based DG with current controlled
interface using the same control units in the previous study [29].

Figure 1. System under test: IEEE 34-bus system.

2.2. Database Generation

Various islanding and non-islanding events should be generated with a wide range of dataset for training the
classifier. The possible situations that may create islanding and non-islanding conditions are given as follows:
i. Load and capacitor switching at different buses,
ii. Several types of fault at different busses, and
iii. Event that can trip breaker and reclosers, and island the DG.

Comparative Study in Determining Features Extraction for Islanding Detection Scheme ... (Aziah Khamis)
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The above situations are simulated under possible variation in operating condition which are considered as:
i. Normal DG loading,
ii. Different operating points that cause power mismatch at the local R load connected at bus 848.

2.3. Features Selection

The main idea of features selection is to choose the most significant input variables by eliminating features
with non/less-predictive information. The use of significant features can greatly improve the classifier model perfor-
mance and thus, increase the prediction accuracy as well as the computational speed. In this paper, the combination of
various features parameters has been chosen from previous islanding detection methods focusing on inverter-based-
DG. The extracted features include Xa frequency deviation (∆f), Xb voltage deviation (∆V), Xc rate of change of
voltage magnitude (∆V)/(∆t), Xd fundamental current total harmonic distortion (THDCf ), Xe current total har-
monic distortion (THDC), Xf fundamental voltage total harmonic distortion (THDV f ) and Xg voltage total har-
monic distortion (THDV ).

The features are extracted by per phase basis in order to identify the most essential feature parameters for
islanding detection. Figs. 2 and 3 show examples of features signals obtained from islanding event for phase-A at
DG terminal in distribution system. The signals in Figs. 2a-c and d-f represents the voltage and frequency of phase-A
during islanding condition case, respectively. The signals in Figs. 2b and c are the voltage deviation (∆V) and rate
of change of voltage magnitude (∆V)/(∆t), respectively, obtained from the voltage signal of Fig. 2a. The frequency
signals of Fig. 2d are evaluated to get the frequency deviation (∆f) as illustrated in Fig. 2f. Meanwhile, the information
of THD for voltage and current are selected as shown in Figs. 3a and b. The entire features information is then utilized
as the input for the classifier. The features are then rearranged and expressed as,

Input =


Xa1 Xb1 Xc1 Xd1 Xe1 Xf1 Xg1

Xa2 Xb2 Xc2 Xd2 Xe2 Xf2 Xg2
...

...
...

...
...

...
...

Xay
Xby Xcy Xdy

Xey Xfy Xgy

 (1)

where Xa is referred to the frequency deviation (∆f), Xb is referred to the voltage deviation (∆V), Xc is referred
to rate of change of voltage magnitude (∆V)/(∆t), Xd is referred current total harmonic distortion (THDC), Xe is
referred to fundamental current total harmonic distortion (THDCf ), Xf is referred voltage total harmonic distortion
(THDV ), Xg is referred to fundamental voltage total harmonic distortion (THDV f ) and y is referred to the number
of points taken after the disturbance detected.
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Figure 2. Example features extraction for islanding case: (a) Phase A voltage signal, (b) Voltage deviation (∆V),
(c) Rate of change of voltage (∆V)/(∆t), (d) Phase A frequency signal, (e) Zoom in frequency after disturbance, (f)
Frequency deviation (∆f).

Figure 3. Example features extraction for islanding case: (a) Voltage total harmonic distortion (THDV ), (b) Current
total harmonic distortion (THDC).
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3. FEATURE EXTRACTION USING CORRELATION AND COEFFICIENT ANALYSIS
The inclusion of irrelevant and redundant features extraction in the classifier model may results in poor

performance in classification accuracy and increases the computation time. To obtain high classification accuracy,
high quality of features need to be extracted in describing the islanding events using the correlation and coefficient
analysis. Fig. 4 shows the correlation between 28 features variable. The colours and shape element in the figure are
used to show the degree of correlation [30]. The variables are said to have perfect correlation with itself, which is
in the diagonal lines on the diagonal of the graphic (see Fig. 4). The blue colours shows the positive value, whereas
the red for negative value that used to encode the sign of correlation. Meanwhile, filled circled means positive value,
while anti-clockwise is for negative values. In this analysis, the Pearson correlation coefficient is utilized to measure
the strength between 28 variable features. Mathematically, the coefficient is expressed as follows:

r =
N

∑
kl − (

∑
k)(

∑
l)√

[N
∑

k2 − (
∑

k)2][N
∑

l2 − (
∑

l)2]
(2)

where N is referred to number of pairs of scores,
∑

kl is referred to sum of the products of paired scores,
∑

k is
referred to sum of k scores,

∑
l is referred to sum of l scores,

∑
k2 is referred to sum of squared k scores, and

∑
l2

is referred to sum of squared l scores.

Figure 4. Visual summary of correlation between the 28 candidate attributes for phase A.

For instance, Fig. 4 shows that the most positive correlation variable is Xg, where most of the relationship
between the variables are in positive value. The relation correlation between Xb 1 and Xc 1, Xb 1 and Xc 4, and
Xb 3 and Xc 1 are evaluated as -0.6746369, -0.6300237 and -0.3214842, respectively. Therefore, the circle with red
colours in Fig. 4, show the negative correlated between Xb and Xc. This finding proves that Xb is the most negative
correlation between the features as shown in Fig. 4.

The significant of the variables is again highlighted by the importance analysis report from the RF learning
as illustrated in Fig. 5. The figure shows that the top four variable are listed as [Xg,Xe,Xb,Xc]. The out-of bag
accuracy-based ranking results in approximately same with the top four, even though the Xb should be substituted to
the lower correlated with Xg.

Similar to the islanding detection classifier procedure adopted to phase-A, classifier training and testing data
set procedures are applied on the other two phases namely, phase B and C. Figs. 6(a) and 6(b) shows the correlation
between 28 features variable for phase-B and C, respectively. The figure shows the correlation relationship with the 28
features variable by depicting the pattern of relations among the variables. Meanwhile, Fig. 7 shows that the important
behaviour report from the RF model classifier for phase-B and C. Phase-B and C show an equal important variable. The
observation likewise reveals that the top four variable are listed as [Xg,Xe,Xb,Xc].
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Figure 5. Top-down importance of variable according to accuracy loss or misclassification rate reduction (gini) for
phase A.
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(a)

(b)

Figure 6. Visual summary of correlation between the 28 candidate attributes: (a) phase B, (b) phase C.
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(a)

(b)

Figure 7. Top-down importance of variable according to accuracy loss or misclassification rate reduction (gini): (a)
phase B, (b) phase C.
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4. IMPLEMENTATION OF DECISION TREE AND RANDOM FOREST AS CLASSIFIERS
Fig. 8 illustrates the DT structure for the islanding classification model for inverter-based DG consists of 8

nodes. At the top of the tree, the value of Xe is first compared with the threshold value 0.632898 and it will split
into two descendent subsets. This subset is then split into several leaf called nodes which are designated by a class
label. There are two class label in this study, namely, islanding and non-islanding cases. From the figure, all the cases
having Xe within 0.63 and 0.65 are predicted as non-islanding state. However, for cases with Xe less than 0.63, the
classification depends on the value of Xb and Xc.

Figure 8. DT generated for phase A considering optimal node of inverter based DG.

Fig. 9 shows the multidimensional scaling (MDS) plot for islanding and non-islanding events utilizing the
RF classifier. This MDS is used to discover the underlying structure of distance measured between objects. The MDS
assign the observations to specific locations in a conceptual space (commonly 2 or 3 dimensional space used), thus the
distance between points in space match the given dissimilarities as closely as possible.

Figure 9. Multidimensional scaling plot of proximity matrix from random forest.

5. TEST RESULTS
The simulation data were obtained using MALTAB/SIMULIK software and the data were randomly divided

into training and testing data set as summarized in Table 1. The features are extracted from the information given
in (1). The open-source software, Rattle is used to implements the conventional DT, bagging and RF classifier. For
easy comparison, all the classifier use the same training and testing data sets which gives two predictors of class label
called as islanding and non-islanding events. Table 2 shows classification results for testing data set of phase A with
three different classifiers, namely DT, bagging and RF classifiers. This result reveals that the highest accuracy can be
achieved with the RF classifier with percentage classification of 98.9% and 100% for the non-islanding and islanding

IJECE Vol. 7, No. 3, June 2017: 1112 – 1124
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cases, respectively.

Table 1.
NUMBER OF SAMPLE

Non-islanding Islanding Total
Training data set 95 91 186
Testing data set 91 94 185

Table 2.
CLASSIFICATION RESULTS ON TESTING DATA SETS FOR PHASE A

Classifier Model No of Cases Actual Class Non-islanding Islanding Classification Accuracy (%)
DecisionTree 91 Non− islanding 78 4 85.71

94 Islanding 13 90 95.74
Bagging 91 Non− islanding 89 1 97.80

94 Islanding 2 93 98.94
RandomForest 91 Non− islanding 90 0 98.90

94 Islanding 1 94 100

Further comparison is then made for islanding detection using SVM, NN, DT, bagging, and RF classifiers
considering all the three phases. The performances of accuracy of these classifiers is evaluated as shown in Fig. 10 and
Table 3. Table 3 show the accuracy of the five classifiers for islanding detection at each phase, i.e, phase-A, B and C.
For all the phases, the RF classifier gives the highest accuracy compared to the other classifiers in detecting islanding
events as indicated in bold. This result proves that the best classifier model to predict the islanding condition based on
per phase feature extraction can be obtained using the RF classifier.
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Figure 10. Accuracies of various model
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Table 3.
PERFORMANCE OF VARIOUS MODEL CLASSIFIER IN TERM OF ACCURACIES

Classification Model Accuracies Average
Phase A Phase B Phase C Accuracies

SupportV ectorMachine(SVM) 0.9892 0.973 0.973 0.9784
NeuralNetwork(NN) 0.8726 0.9323 0.9059 0.9036
DecisionTree(DT ) 0.9081 0.9622 0.9946 0.955
Bagging 0.9838 0.946 0.9892 0.9892
RandomForest(RF ) 0.9946 0.9946 0.9892 0.9928

6. CONCLUSION
A new islanding detection scheme for a power distribution system with inverter-based DG has been devel-

oped. The proposed scheme implements feature extraction using correlation and coefficient analysis for each phase
and data mining techniques for classifying the islanding events. Unlike previous research works which ignore the per
phases analysis, the proposed islanding scheme work progressively at each phase for a comprehensive identification of
islanding cases. The simulation results on the IEEE 34 bus system with inverter-based DG showed that the proposed
islanding detection classifier using per phase feature extraction can accurately detect the islanding events. A compar-
ison between various classifiers, namely, SVM, NN, DT, bagging and RF has been made and the results showed that
the highest accuracy in detecting islanding events can be achieved from the RF classifier.
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