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 Myoelectric pattern recognition (MPR) is used to detect user’s intention to 

achieve a smooth interaction between human and machine. The performance 

of MPR is influenced by the features extracted and the classifier employed. A 

kernel extreme learning machine especially radial basis function extreme 

learning machine (RBF-ELM) has emerged as one of the potential classifiers 

for MPR. However, RBF-ELM should be optimized to work efficiently. This 

paper proposed an optimization of RBF-ELM parameters using hybridization 

of particle swarm optimization (PSO) and a wavelet function. These 

proposed systems are employed to classify finger movements on the 

amputees and able-bodied subjects using electromyography signals. The 

experimental results show that the accuracy of the optimized RBF-ELM is 

95.71% and 94.27% in the healthy subjects and the amputees, respectively. 

Meanwhile, the optimization using PSO only attained the average accuracy 

of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, 

respectively. The experimental results also show that SW-RBF-ELM 

achieved the accuracy that is better than other well-known classifiers such as 

support vector machine (SVM), linear discriminant analysis (LDA) and k-

nearest neighbor (kNN). 
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1. INTRODUCTION 

Extreme learning machine (ELM) is a kind of single layer feed-forward networks (SLFNs) that has 

fast training time [1]. ELM is a great improvement of feed-forward neural networks (FFNNs), which very 

considerably reduces the training time of FFNNs by omitting the iterative learning process. In ELM, the 

weights and biases of the hidden node are determined randomly, while the output weights are calculated 

analytically. Therefore, the training time is very short compared to the traditional neural networks.  

The development of ELM is very fast and encompassing many applications. To improve the 

stability of ELM, Wang, et al. [2] proposed a method to find a high quality of feature mapping in the feature 

stage. Therefore, the output weight calculation using ridge regression can be optimized. On the other hand, 

the idea to construct a compact ELM was proposed by adding a new appropriate hidden neuron [3]. 

Likewise, the method to reduce of the size ELM was also proposed in [4], [5]. Many other developments of 

ELM have been proposed, such as ELM on online sequential data [6], [7], ensemble ELM [8], semi-

supervised and unsupervised ELM [9], [10], ELM for imbalanced data [11], and incremental ELM [12]. 

ELM method has been used for a wide range of application [13]. The ELM has been applied to 

electromyography (EMG)-based pattern recognition [14], face recognition [15], character recognition [16], 
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[17]. Moreover, it has been implemented in protein structure prediction [18], cancer detection [19], electrical 

power system problem [20] and physical parameter estimation [21]. 

Nevertheless, the hidden node parameters, the input weights, and biases, which are determined 

arbitrarily, result in a non-optimal system. Therefore, some efforts dealing with the optimization problem in 

ELM have been made. Self-adaptive evolutionary ELM (SAE-ELM) [22], and particle swarm optimization 

ELM( PSO-ELM) [23] are some methods developed to optimize the hidden node parameters.  

ELM is not merely working on the node style. A kernel form can be incorporated in ELM by 

replacing the node processing structure with a kernel function. This kernel ELM can be considered as a 

variance of least square support vector machine (LS-SVM) without the output bias [24]. Similar to the node-

based ELM, the kernel ELM faces the optimization problem too. The efficacy of the kernel ELM greatly 

depends on the optimum combination of the kernel parameters [25]. The popular grid search algorithm that is 

simple was used to search the optimal kernel [14]. However, the exhaustive grid search on a large number of 

the parameter spaces may result in a very time-consuming process. 

A popular particle swarm optimization (PSO) algorithm can be a promising solution for optimizing 

the kernel parameters in the kernel ELM. The PSO has been implemented in many areas such as medical 

[26], power system [27], and circuit design [28]. To the best of the author’s knowledge, no one employs PSO 

to optimize the kernel ELM. In the practical application, Ling, et al. [29] found that sometimes, PSO is being 

trapped in the local optima. Therefore, they proposed PSO mutated by wavelet. The existence of the wavelet 

mutation in PSO depends on the mutation probability. The higher the mutation probability is, the greater the 

chance of the wavelet is updating the particles of PSO. 

This paper introduces a swarm radial basis function extreme learning machine (SRBF-ELM), the 

radial basis function kernel ELM optimized by PSO. In addition, the paper proposes a swarm wavelet radial 

basis function extreme learning machine (SW-RBF-ELM), the optimization of radial basis function kernel 

ELM using combination PSO and wavelet. The wavelet differs SRBF-LEM and SW-RBF-ELM. The wavelet 

is implemented using a mutation probability. SRBF-ELM can be considered as SW-RBF-ELM with zero 

mutation probability. In this paper, SRBF-ELM and SW-RBF-ELM are applied to myoelectric pattern 

recognition (M-PR) to classify the individual and combined finger movements using two EMG channels. 

The main contribution of this paper is on the optimization of kernel extreme learning machine PSO 

and wavelet. The second contribution is the implementation of the proposed system on myoelectric pattern 

recognition to improve the performance of MPR. 

The structure of this paper is as follows. The second section will discuss the basic theory of PSO 

and the hybridization of wavelet and PSO. Then, the experimental setup is presented in the third section. 

Next, in the fourth section, the experimental results on the able-bodied subjects are discussed. Additional 

experiment on the amputee subjects is also provided. Finally, the fifth section ends the paper with the 

conclusion. 

 

 

2. RESEARCH METHOD 

2.1. Kernel Extreme Learning Machine 

ELM is a learning algorithm for single layer feedforward networks (SLFNs). In classical SLFNs, 

network parameters are tuned iteratively while in ELM; most of these parameters are determined analytically. 

Hidden parameters can be independently calculated from the training data, and output parameters can be 

determined by the pseudo-inverse method. As a result, the learning of ELM can be carried out fast compared 

to the other learning algorithms [25].  

As described in [25], the output of ELM is defined by: 
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where g(x) is the feature mapping in the hidden layer, T is the target and C is the regulation parameter of 

ELM. The feature mapping in the hidden layer of ELM can be replaced by a kernel function. Therefore, the 

formulation of the kernel based ELM is defined by: 
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and K is a kernel function as shown in Equation (4) to Equation (6). 
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2.2. Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm that has 

been applied widely in many optimization areas [29-31]. PSO is inspired by the social behaviors of animals 

like fish schooling and bird flocking [29]. The particle swarm does not use selection. It means that all 

population members survive from the beginning until the end [32]. In the PSO, a swarm of interacting 

particles moves in an n-dimensional search space of the problem’s possible solution. Four elements that are a 

position  ⃗  , a velocity  ⃗  , the best previous (local) position  ⃗   and the best global position  ⃗   represent a 

particle in the swarm. Some generations are generated to update the particle’s positions and velocities. The 

particles explore the promising domain to find the best solutions, which spread throughout the swarm. The 

parameter adaptations are given by: 

 

   
 (   )     

 ( )     
 (   )       (7) 

 

   
 (   )      

 ( )        (   
 ( )     

 ( ))        (   
 ( )     

 ( ))  (8) 

 

Where 

   
 
 [   

 
    

 
] 

   
 
 [   

 
    

 
] 

        
        

 

In the above equations, 
q
ip  denotes the best previous (local) position and 

q
ig

 
denotes the best global 

position. Moreover, t represents the generation, k denotes the number of the particles in the swarm, d denotes 

the number of dimensions,  is inertia weight, and c1 and c2 are acceleration constants which are weighted by 

r1 and r2.  

 

2.3. PSO with Wavelet Mutation 

PSO typically converges in the early stage of the searching process. This indicates that PSO tends to 

be trapped in the local optima. This shortcoming may influence the performance of the myoelectric finger 

classification. One of the solutions of the local optima is by injecting a wavelet function inside the PSO. The 

wavelet mutates the swarm particle in small probability to create a possibility for the swarm particle to get 

out from the local optima. 

The wavelet mutation in PSO was proposed by Ling et al. [29]. A mutation chance is driven by a 

mutation probability pm  [0 1]. If xi(t) is selected to be mutated then a new position is given by: 
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where parmax and parmin are the maximum and minimum position, respectively. As for , it is the Morlet 

wavelet function defined by: 
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The variable “a” in the Morlet wavelet is determined by equation: 
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The objective of the optimization using the wavelet-PSO is to find the optimum parameters of the 

kernel ELM that minimize the classification error of the finger motion recognition. A 3-fold cross validation 

was employed to measure the error. Moreover, the fitness function of particle x  is defined by 
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where Nv is the number of cross validations, En is the error in each validation process.  

The pseudo code of the wavelet mutation for optimizing the parameters of the kernel based ELM is 

presented in Figure 1. 

 

 
Begin 

Load emg_features, classes 

t  1    // iteration number 

Initialize x(t)  // x(t) : position, a particle swarm 

Evaluate f(x)  // f(x): fitness function Eq.(12)  

Initialize v  // v : velocity 

 ̃       //  ̃ : personal best position 

 ̂    ̃    //  ̂ : global best position 
While (condition satisfied) do 

 i  i+1 

 update position of particle x(i)   // Eq.(7) 

 update velocity v(i)   // Eq.(8) 

 if v(i)> vmax, v(i)=vmax end 

 if v(i)< -vmax, v(i)=-vmax end 

 

 update  ̃ if new  ̃ better than previuos  ̃ 

 update  ̂ if new  ̂ better than previuos  ̂ 
 

 perform wavelet mutation operation with pm  

 Updating x(i)        // Eq.(9)  

 Evaluate f(x(i)) // f(x): fitness function Eq.(12)  

end 

end 

 

Figure 1. The pseudo code for PSO with wavelet mutation for optimizing the parameters of ELM 

 

 

2.4. The Experimental Setup 

Figure 2 shows the diagram block of the experiment conducted in this section. The EMG data was 

collected from eight able-bodied subjects, two females and six males aged 24-60 years old. Two EMG 

MyoScan™ T9503M sensors or electrodes were placed on the forearm of the subject to collect myoelectric 

signal from flexor policis longus (FPL) and flexor digitorium superficialis (FDS) muscles, as shown in  

Figure 3. The FlexComp Infiniti™ System from Thought Technology acquired the EMG signals with a 

sampling frequency of 2000 Hz and then amplified the signals with a total gain of 1000. 

 

 

 
 

Figure 2. The experimental setup of the PSO-wavelet mutation for ELM parameters optimization 
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Figure 3. The placement of the electrodes 

 

 

The data collection and the myoelectric pattern recognition process were conducted using the 

Matlab 2012b installed in the Intel Core i5 3.1 GHz desktop computer with 4 GB RAM running on Windows 

7 operating system. Digitally, the EMG data is filtered using a band-pass filter which filters the signals in the 

frequency range between 20 and 500 Hz and a notch filter was used as well to remove the 50 Hz line 

interference. The collected data was down-sampled to 1000 Hz. 

In this paper, the experiment considered ten classes of the individual and combined finger 

movements. The individual fingers consist of the flexion of thumb (T), index (I), middle (M), ring (R), and 

little (L) fingers, while the combined finger consists of the pinching of thumb and index fingers (T–I), thumb 

and middle fingers (T–M), thumb and ring fingers (T–R), thumb and little fingers (T–L), and closing the 

hand (HC). During the data collection, the subjects were asked to perform one finger movement for 5 s and 

then take a rest for 5 s. The subject repeated each movement six times. The data collected were divided into 

training data and testing data using 3-fold cross validation. 

In the experiments, the myoelectric pattern recognition (M-PR) extracts features of waveform length 

(WL), slope sign changes (SSC), number of zero crossings (ZCC), sample skewness (SS), mean absolute 

value (MAV), mean absolute value slope (MAVS), root mean square (RMS), some parameters from Hjorth 

time domain parameters (HTD) and 6-order autoregressive (AR6) model parameters are included. Moreover, 

SRDA will project and reduce the dimension of the feature extracted. The experiment involved the steady 

state signal only and removed the transient state of the myoelectric signal. The majority vote with four 

previous states may be used to refine the classification performance.  

As depicted in Figure 2, PSO mutated by wavelet is used to optimize the parameters of radial basis 

function extreme learning machine (RBF-ELM). This hybridization is called swarm-wavelet based RBF-

ELM or SW-RBF-ELM. Some parameters should be determined at the beginning of the experiment. Two 

parameters of RBF-ELM are C and g (see Equation (4)). They are in the range of [2
-7

, 2
10

], and [2
-7

, 2
10

] for C 

and g, respectively. Then, the parameters of PSO (see Equation (7) and Equation (8)) are set as follows. 

Parameter c1 and c2 are set at 2.05, and  is 0.9. Parameters r1 and r2 are random functions in the range  

of [0-1]. In addition, the optimization was done until 150 generations were completed with 30 particles in 

each generation. As for the parameter of the wavelet, the work in this section will vary the value of the 

wavelet parameters, as seen in Equation (9) and Equation (10)) except for α; it is determined randomly, 

according to [33].To test the efficacy of the proposed system, some experiments will be conducted. They are: 

a. The experiment on the influence of the mutation probability pm 

b. The experiment on the shape parameter   ( Equation (11)) 

c. The experiment on the parameter g (Equation (11)) 

d. The experiment on the pattern recognition performance 

 

 

3. RESULTS AND DISCUSSION 

3.1. Experiment on the Able-bodied Subjects 

3.1.1. Mutation Probability pm 

This section tested the influence of the mutation probability pm to the SW-RBF-ELM performance. 

The pm value is varied from 0 to 0.6. The parameter pm = 0 means no wavelet mutation in the PSO. Besides,  

  is equal to 0.2 and g is equal to 10000. The experimental results are presented in Figure 4. 

Figure 4 indicates that on the parameter pm = 0, the fitness value of the PSO is larger than that with 

pm more than 0, even when it is the largest value. The lower the fitness value, the better the system, so the 

PSO with wavelet mutation is better than without wavelet mutation. Therefore, the wavelet mutation can 
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enhance the optimization process. Moreover, in general, the figure also shows that the more the mutation 

probability, the less the fitness value. However, the pm = 0.5 is the optimum value among the tested values. 

 

 

 
Figure 4. The fitness values for variable pm when  =0.2 and g=10000 over eight subjects 

 

 

Table 1 gives more information regarding the mutation probability pm across different subjects. 

InTable 1, the underlined value indicates the minimum value for each subject. This table emphasizes the fact 

in Figure 4 that pm = 0.5 is the most accurate PSO across seven subjects, out of eight. Although the accuracy 

of the parameter pm=0.6 is the highest, it occurred in five subjects only. Another interesting fact is also found 

in the Table. The mutation wavelet does not provide a benefit to the optimization process on two subjects, S5 

and S8 because the accuracy of the system with wavelet mutation and without is very similar. This fact 

shows that the wavelet mutation in the PSO does not fully ensure the improvement in the classification 

performance. However, there is a high probability that the optimization process will be improved. Finally, the 

parameter pm = 0.5 is selected for the rest of the experiment. 

 

 

Table 1. The accuracy of SW-RBF-ELM when  =0.2 and g=10000 using 3-fold cross validation 

Subject 
Mutation parameter (Accuracy in %) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

S1 92.278 92.417 92.417 92.869 92.869 92.869 92.869 

S2 98.098 98.098 98.028 98.028 98.028 98.129 98.098 

S3 95.070 95.070 95.070 95.139 95.139 95.440 95.546 

S4 93.240 93.238 93.238 93.344 93.344 93.344 93.310 

S5 96.731 96.660 96.660 96.731 96.660 96.731 96.731 

S6 97.088 97.215 97.215 97.215 97.215 97.250 97.250 

S7 93.898 94.106 94.106 93.967 94.005 94.038 94.004 

S8 97.880 97.880 97.880 97.880 97.880 97.880 97.880 

Average 95.535 95.585 95.577 95.647 95.643 95.710 95.711 

*The underlined value is the highest one 

 

 

The higher value of the parameter pm increases the searching space of the optimization in PSO. If 

the number of elements in a particle is small, it is preferable to increase the value of the parameter. Figure 4 

implies that the higher value of pm tends to give good optimization performance. This phenomena matches 

with the fact suggested by Ling et al. [29]. They recommended a higher value of pm in between 0.5 – 0.8 for a 

small number of elements in a particle. In this research, the number of elements is two. 

To examine the benefit of wavelet mutation statistically, an analysis of variance (ANOVA) test was 

conducted on the fitness value of the PSO without wavelet mutation and with wavelet mutation pm = 0.5. The 

confidence level p is set at 0.05. ANOVA test produced p = 3.69 x 10
-7

. This result concludes that the 

enhancement produced by wavelet mutation is statistically significant. 
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3.1.2. Shape-parameter   

This section varied the value of shape parameter   in Equation (11). The shape parameter is varied 

among 0.1, 0.2, 0.3, 0.5, 2 and 5. The value of the parameter pm is 0.5 following the result in section 0. 

Furthermore, g is equal to 10000. The experimental result is presented in Figure 5. 

Figure 5 indicates that   = 2 converged earlier than the others did. The final fitness value of it is the 

second worst after   = 5. On the other hand, the small value of   gave a good optimization process. These 

facts imply that the high value of   is not a good option for optimization of SW-RBF-ELM. The best 

optimization process is shown when   = 0.2.  

 

 

 
Figure 5. The fitness values for variable    when pm = 0.5 and g = 10000 over eight subjects 

 

 

Table 2 draws different finding from Figure 5. The table shows that SW-RBF-ELM with  = 0.1 

achieved the highest average accuracy, not  = 0.2. Besides, it attains the highest accuracy across four 

subjects, which is similar to  = 0.2. By considering the fitness value and the average accuracy performed,  

 = 0.2 is selected as the optimal shape parameter. 

 

 

Table 2. The accuracy of SW-RBF-ELM when pm=0.5 and g=10000 using 3-fold cross validation 

Subject 
 (Accuracy in %) 

0.1 0.2 0.3 0.5 2 5 

S1 92.869 92.869 92.869 92.869 92.869 92.869 

S2 98.028 98.129 98.028 98.098 98.028 98.028 

S3 95.893 95.440 95.893 95.139 95.070 95.139 

S4 93.310 93.344 93.310 93.344 93.240 93.309 

S5 96.731 96.731 96.660 96.731 96.660 96.731 

S6 97.321 97.250 97.250 97.250 97.215 97.123 

S7 94.106 94.038 94.002 94.004 93.898 93.898 

S8 97.845 97.880 97.880 97.845 97.845 97.845 

Average 95.763 95.710 95.737 95.660 95.603 95.618 

*The underlined value is the highest one 

 

 

3.1.3. Parameter g 

The previous two experiments have selected two optimum parameters, pm = 0.5 and  = 0.2. This 

section tries to get the optimum g parameter. The parameter g (Equation (11)) is varied from 100, 1000, 

10000 and 100000. The experimental results are presented in Figure 6. 

Figure 6 depicts the fitness values of four different g values. This figure indicates that the big 

number of g value give better accuracy than the small one. The g = 10000 exhibits the best performance. This 

fact is supported by the accuracy of SW-RBF-ELM in Table 3. 
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Figure 6. The fitness values for variation of the parameter g when pm=0.5 and  =0.2 over eight subjects 

 

 

Although the accuracy of the parameter g = 10000 is the lowest one on average across eight 

subjects, it is the highest in the over half of the subjects, which is five out of eight. These results confirm the 

recommendation of Ling et al. [29]. They found that by setting the parameter g in the high value, the other 

parameter could be chosen by trial and error.  

 

 

Table 3. The accuracy of SW-RBF-ELM when pm=0.5 and  = 0.2 using 3-fold cross validation 

Subject Parameter g (Accuracy in %) 

100 1000 10000 100000 

S1 92.869 92.869 92.834 92.800 

S2 98.028 98.098 98.129 98.129 

S3 95.732 95.893 95.440 95.546 

S4 93.347 93.310 93.344 93.238 

S5 96.731 96.660 96.731 96.731 

S6 97.250 97.215 97.250 97.215 

S7 94.038 94.004 94.038 94.106 

S8 97.845 97.845 97.880 97.880 

Average 95.730 95.737 95.706 95.706 

*The underlined value is the highest one 

 

 

3.1.4. Pattern Recognition Performance across Subjects 

The previous sections conducted some experiments to determine the optimum parameters of the 

wavelet. They are pm=0.5,  = 0.2 and g = 10000. This section applied those values to SW-RBF-ELM and did 

analysis on the results especially on the comparison between PSO with wavelet mutation and without 

mutation. The result is shown in Figure 7. 

 

 

 

Figure 7. The accuracy of RBF-ELM with mutation and without mutation using 3-fold cross validation 
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Figure 7 depicts the average accuracy of radial basis function ELM (RBF-ELM) that is optimized by 

PSO with wavelet mutation (SW-RBF-ELM) and without mutation (SRBF-ELM). The figure indicates that 

SW-RBF-ELM achieves better accuracy than SRBF-ELM across seven subjects. SRBF-ELM is as accurate 

as SW-RBF-ELM in one subject only, which is subject S8. Therefore, the probability of the improvement of 

the performance using wavelet mutation is 7/8 x 100 % = 87.5 %. On average, SW-RBF-ELM attained an 

accuracy of 95.71 % while SRBF-ELM achieved the accuracy of 95.54 %.  

 

3.1.5. Pattern Recognition Performance on the Movement 

This section investigates the performance of both systems, SRBF-ELM and SW-RBF-ELM, in 

classifying finger movements. The myoelectric pattern recognition classifies ten finger movements. They 

include thumb (T), index (I), middle (M), ring (R), and little (L) finger movements. The other movements are 

thumb–index (TI), thumb–middle (TM), thumb–ring (TR), thumb–little (TL), and the hand close (HC) 

movements. Figure 8 presents the classification results of SRBF-ELM (without wavelet mutation) and SW-

RBF-ELM (with wavelet mutation). 

Figure 8 shows that SW-RBF-ELM is better than SRBF-ELM in classifying two individual finger 

movements (T, and M), and four combined movements (TI, TM, TR, and TL). On the other hand, SRBF-

ELM is better than SW-RBF-ELM in two movements only: L and HC. As for finger movement I and R, both 

systems exhibited a similar performance. Overall, the SW-RBF-ELM is better than SRBF-ELM. In other 

words, the wavelet mutation in PSO enhances the classification performance of the pattern recognition 

system. However, the analysis of variance test (ANOVA) set p = 0.05 yields p is equal to 0.96. Therefore, the 

improvement is statistically not significant. This result confronts the ANOVA test result in Section 0 that 

proved the significance of the existence of the wavelet in PSO. These two results can be accommodated by 

saying that the enhancement of wavelet mutation in the optimization process is statistically significant, but it 

is not significant in the classification performance.  

 

 

 
Figure 8. The accuracy of the finger movement classification across eight subjects using 3-fold cross 

validation 

 

 

Table 4. The confusion matrix of the classification result of SW-RBF-ELM 
  Classified 

In
te

n
d

ed
 

  T I M R L TI TM TR TL HC 

T 97.27 0.00 0.04 0.00 0.52 0.65 0.00 0.61 0.00 0.91 
I 0.04 99.35 0.00 0.00 0.00 0.48 0.13 0.00 0.00 0.00 

M 0.00 0.00 99.66 0.00 0.00 0.00 0.34 0.00 0.00 0.00 

R 0.00 0.00 0.09 99.13 0.17 0.00 0.00 0.61 0.00 0.00 
L 0.00 1.19 0.00 1.84 91.40 2.19 0.79 0.53 1.89 0.18 

TI 0.56 1.91 0.04 0.00 1.48 94.57 1.00 0.13 0.30 0.00 

TM 0.00 0.74 0.22 0.26 1.48 4.30 91.58 1.22 0.22 0.00 
TR 1.27 0.17 0.00 0.17 0.38 0.55 1.44 94.81 0.55 0.68 

TL 0.30 0.00 0.22 0.13 2.65 1.13 0.00 1.04 94.53 0.00 

HC 0.75 0.35 0.00 0.00 1.27 0.17 1.96 0.70 0.00 94.80 

 

 

Another fact found in Figure 8 is that SRBF-ELM and SW-RBF-ELM exhibit relatively bad 

performance in classifying all combined movements and little finger movement. The phenomena can be 

investigated through the confusion matrix in Table 4 and Figure 9. Table 4 shows that the SW-RBF-ELM 

mostly misclassified the little finger movement (L) to thumb-index motion (TI) with the accuracy of 2.19 %. 

Besides, the system also misclassifies L to movement R and TL. As for the combined movement, SW-RBF-

ELM generally misclassified them to the individual movement they belong to. For instance, the movement 
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TL is mostly misclassified to the movement L by accuracy 2.65 %. Nevertheless, it did not occur in all 

combined movements. In addition to Table 4, Figure 9 helps the reader the get a visual graph of the 

confusion matrix.  

 

 
Figure 9. The confusion matrix plot of the classification result of SW-RBF-ELM 

 

 

3.1.6. SW-RBF-ELM and other well-known Classifiers 

In this experiment, the performance of SW-RBF-ELM is compared to other well-known classifiers 

such as original ELM using sigmoid activation function (Sig-ELM), SRBF-ELM, SVM, LDA, and kNN. The 

experimental results are depicted in Figure 10. 

 

 

 
Figure 10. The accuracy of SW-RBF-ELM and other well-known classifiers for finger movement recognition 

using 3-fold cross validation 

 

 

Figure 10 shows that SW-RBF-ELM is the most accurate classifier among seven different classifiers 

in recognizing ten finger movements using EMG channels across eight able-bodied subjects. This finding is 

supported by Table 5 that presents the average accuracy achieved by each classifier. SW-RBF-ELM achieved 

the accuracy of 95.71 %. Furthermore, SW-RBF-ELM achieved the highest accuracy on four subjects, while 

it attained the second lowest accuracy on the subject S3 and S4.  

 

 

Table 5. The accuracy of various classifiers for the finger movement recognition using 3-fold cross validation 

Classifier 
Accuracy 

Mean (%) STD 

Sig-ELM 95.10 2.25 
RBF-ELM 95.06 2.21 

SRBF-ELM 95.54 2.23 

SW-RBF-ELM 95.71 2.09 
SVM 95.39 1.86 

LDA 94.37 2.38 

kNN 95.06 2.37 
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The comparison of SW-RBF-ELM and the others can be made more obvious using the one-way 

ANOVA test, as described in Table 6. The table shows that the performance of SW-RBF-ELM and the other 

classifiers is not significantly different for the majority of subjects, except for subject S6. With this subject, 

most classifiers could not classify the ten finger movements as well as SW-RBF-ELM and SRBF-ELM. As 

for the subject S3, SW-RBF-ELM could not achieve a good accuracy, it is even worse than the other 

classifiers; more significantly it is worse than Sig-ELM, SVM, and LDA. 

 

 

Table 6. P-values of the comparison of SW-RBF-ELM and the other classifiers 
SW-RBF-ELM vs  RBF-ELM SRBF-ELM Sig-ELM SVM LDA kNN 

S1 0.75 0.82 0.85 0.33 0.82 0.95 

S2 0.37 0.98 0.29 0.75 0.61 0.51 
S3 0.07 0.77 0.01 0.04 0.04 0.08 

S4 0.34 0.98 0.38 0.55 0.47 0.45 

S5 0.70 1.00 0.91 0.80 0.24 0.84 
S6 0.00 0.86 0.00 0.01 0.00 0.00 

S7 0.95 0.87 0.09 0.75 0.57 0.86 

S8 0.31 1.00 0.03 0.14 0.15 0.17 

 

 

3.2. Experiment on the Amputee Database 

This section tested the performance of SW-RBF-ELM and SRBF-ELM to classify 12 finger 

movements on the EMG signals collected from the amputee subjects. The data collection is presented in [34]. 

The The finger motion classes consist of a thumb abduction (Ta), thumb flexion (Tf), index flexion (If), and 

middle flexion (Mf). Then ring flexion (Rf), and little flexion (Lf). Moreover, it involved thumb extension 

(Te), index extension (Ie), middle extension (Me), ring extension (Re), little extension (Le), little and ring 

flexion (LRf), index, middle and ring flexion (IMRf), and middle, ring and little flexion (IMRLf).  

The myoelectric pattern recognition used in this experiments is the same as the system used in 

section 3 and Figure 2. For wavelet parameters, the values of the parameters are pm = 0.1,  = 2 and  

g = 10000, following the work of Anam and Al-Jumaily [35]. Figure 11 depicts the experimental results of 

SRBF-ELM and SW-RBF-ELM on five amputee subjects.  

Figure 11 show that the SW-RBF-ELM achieved better performance than SRBF-ELM across five 

amputees except on amputee A5. On the amputee A5, SRBF-ELM is better than SW-RBF-ELM. Overall, 

SW-RBF-ELM outperformed SRBF-ELM. Probably, the optimization process in the PSO influences the 

superiority of SW-RBF-ELM over SRBF-ELM. Figure 12 gives clearer information about this assumption. It 

is shown in Figure 12 that after 30
th

 generation, the PSO did not change the fitness value. Meanwhile, the 

wavelet mutation helped the PSO to avoid the local optima. 

Furthermore, a statistical test on the accuracy using one-way ANOVA (p set at 0.05) was also done.  

The performance of the SW-RBF-ELM is significantly different from swarm ELM (p = 0.036). The SW-

RBF-ELM achieved the average accuracy of 94.27 %, while SRBF-ELM produced the average accuracy of 

92.55 %. 

 

 

  
 

Figure 11. Average classification accuracy of three 

different ELM methods 

 

Figure 12. The fitness value of PSO and wavelet-

PSO across five amputees 

 

 

In addition, the classification performance in regards to the finger motion was observed. As shown 

in Figure 13, the SRBF-ELM was able to classify the flexion motions with the average accuracy more than 
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90%. In contrast, the extension motions were classified with the average accuracy less than 90%. Similarly, 

the SW-RBF-ELM recognized the flexion motions better than the extension motions, but with the average 

accuracy that is better than the SRBF-ELM. 

 

 

 
Figure 13. The accuracy of different finger motions across five amputees 

 

 

The confusion matrix in Table 7 provides information about the misclassified finger motions. 

According to the Figure 13, SW-RBF- ELM poorly classified the Little extension (Le), Middle extension 

(Me), and Ring extension (Re). Me was mostly misclassified to Thumb abduction (Ta) and Middle flexion 

(Mf). Furthermore, the system mostly misclassified the little extension (Le) to Re and vice versa. Even 

though the misclassified motions were present, arguably the SW-RBF-ELM has succeeded in recognizing 

different finger motions on five amputee subjects with the accuracy of about 94%. 

 

 

Table 7. The confusion matrix of the classification results of swarm-wavelet elm averaged for five amputees 

(Units: %) 

 
Intended Task 

 Lf Rf Mf If Le Re Me Ie R Tf Te Ta 

C
la

ss
if

ie
d

 T
a

sk
 

Lf 98.2 0.5 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.4 0.0 0.3 
Rf 0.8 98.4 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Mf 0.2 0.7 95.8 0.3 0.3 0.8 0.9 0.6 0.0 0.0 0.3 0.2 

If 0.2 0.1 0.1 97.7 0.3 0.3 0.2 0.1 0.0 0.7 0.1 0.3 
Le 0.0 0.0 0.4 0.3 90.1 4.6 1.8 0.2 0.0 0.6 1.0 0.9 

Re 0.1 0.0 0.7 0.2 3.8 89.8 2.1 0.2 0.0 0.6 0.7 1.7 

Me 0.2 0.0 1.3 0.3 2.4 3.1 88.6 1.3 0.0 0.4 0.7 1.8 
Ie 0.1 0.0 0.7 0.3 0.2 0.2 1.0 94.8 0.1 0.2 1.7 0.8 

R 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.1 99.1 0.3 0.0 0.0 

Tf 0.1 0.0 0.0 1.3 0.9 0.5 0.2 0.2 0.1 96.0 0.4 0.2 
Te 0.0 0.1 0.3 0.1 1.2 0.9 0.7 2.0 0.0 0.7 92.8 1.1 

Ta 0.0 0.0 0.3 0.4 1.2 2.3 1.1 0.3 0.0 0.2 1.2 93.0 

 

 

To conclude, the proposed pattern-recognition system, which employs PSO mutated using a wavelet 

function to optimize the kernel based ELM (SW-RBF-ELM), was able to recognize eleven imagined finger 

motions on five trans-radial amputees with the high accuracy of 94.27 % even though it employed only two 

EMG channels. The proposed system performed better than standard PSO-ELM (SRBF-ELM). 

 

 

4. DISCUSSION 

The previous research [36] has shown that RBF-ELM is an promising classifier for myoelectric 

pattern recognition. However, the parameters of RBF-ELM should be selected properly. In this article, two 

kinds of PSO are employed to optimize the parameters of RBF-ELM, PSO and wavelet-PSO, that produce 

SRBF-ELM and SW-RBF-ELM, respectively. Both classifiers have been tested on the healthy and amputee 

subjects. In general, SW-RBF-ELM is better than SRBF-ELM and RBF-ELM. To show more general 

performance of SW-RBF-ELM, the comparison of the proposed methods and other well-knowns have been 

conducted, as shown in Figure 10 and Table 5. The results imply that the parameter optimization on RBF-

ELM using wavelet-PSO can improve the performance of RBF-ELM. In addition, the results support the 

result in [22] and [23] that the optimization is needed in ELM to look for the optimized parameters for ELM. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition (Khairul Anam) 

495 

However, these two publications optimized the number of the units in the hidden layer. Meanwhile, in this 

article, the optimization is conducted for radial basis function parameters.  

 

 

5. CONCLUSION 

This paper proposed the optimization of radial basis function extreme learning machine (RBF-ELM) 

using particle swarm optimization (PSO) and the hybridization of wavelet and PSO. The former is called 

SRBF-ELM and the later is named SW-RBF-ELM. The role of the wavelet in SW-RBF-ELM is to increase 

the searching space of the PSO in order to avoid the local optima that possibly occur in the PSO process. The 

experimental results show that the wavelet mutation improves the optimization process of the PSO. 

Consequently, the wavelet mutation in PSO also enhances the classification performance of the system. Both 

classifiers have been tested on the able-bodied subjects and amputees. On the able-bodied subjects, the 

accuracy of SW-RBF-ELM is 95.71 % while SRBF-ELM is 95.53 %. The improvement of wavelet mutation 

on the amputees is more significant than that on the able-bodied subjects. On the amputees, the SW-RBF-

ELM achieved the average accuracy of 94.27 %, while SRBF-ELM produced the average accuracy of  

92.55 %. The experimental results also show that SW-RBF-ELM achieved an accuracy that is better than 

well-known classifiers such as SVM, LDA, and kNN.   
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