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 This paper proposes an accurate iris localization algorithm for the iris images 
acquired under near infrared (NIR) illuminations and having noise due to 
eyelids, eyelashes, lighting reflections, non-uniform illumination, eyeglasses 
and eyebrow hair etc. The two main contributions in the paper are an edge 
map generation technique for pupil boundary detection and an adaptive 
circular Hough transform (CHT) algorithm for limbic boundary detection, 
which not only make the iris localization more accurate but faster also. The 
edge map for pupil boundary detection is generated on intersection (logical 
AND) of two binary edge maps obtained using thresholding, morphological 
operations and Sobel edge detection, which results in minimal false edges 
caused by the noise. The adaptive CHT algorithm for limbic boundary 
detection searches for a set of two arcs in an image instead of a full circle 
that counters iris-occlusions by the eyelids and eyelashes. The proposed CHT 
and adaptive CHT implementations for pupil and limbic boundary detection 
respectively use a two-dimensional accumulator array that reduces memory 
requirements. The proposed algorithm gives the accuracies of 99.7% and 
99.38% for the challenging CASIA-Iris-Thousand (version 4.0) and CASIA-
Iris-Lamp (version 3.0) databases respectively. The average time cost per 
image is 905 msec. The proposed algorithm is compared with the previous 
work and shows better results.
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1. INTRODUCTION 

Iris recognition [1]-[3] is accepted as one of the most accurate biometric technologies to identify 
individuals and has applications in many distinct domains such as border-control services, law enforcement, 
secure transactions and payments, customer authentication, social-media forums, smart devices, privacy and 
data protection etc. The iris segmentation is an important stage in an iris recognition system, which mainly 
deals with localizing iris’s inner and outer boundaries (i.e. iris localization) in the captured iris image. The 
highly accurate iris recognition systems demand for the iris images captured under constrained imaging 
environments and with subjects’ full cooperation [4]. However, this restricts the range of domains where the 
iris recognition can be applied. The iris localization with high accuracy can be achieved in the constrained 
iris recognition systems, but it is challenging to get accurate iris localization in the less constrained systems.  

The less constrained (noisy) iris images (Figure 1(b)) may contain reflections caused by a light 
source and non-uniform illumination caused by the position and angle of the light source while acquiring the 
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images. The other non-ideal issues in the noisy iris images are heavy iris-occlusions by the eyelids and 
eyelashes, eyeglasses, low contrast, and eyebrow hair etc. [5]. Moreover, the iris images may have non-
frontal view when user is not looking ahead towards the camera. The iris images captured using near infrared 
(NIR) illuminators are preferred over visible wavelength (VW) images as their irises reveal rich and complex 
features [2],[6]. Therefore, most of the standard iris databases available on the internet are the NIR images 
[4]. Figure 1 shows the sample images from two different NIR databases; where Figure 1(a) is a more close-
up iris image as compared to Figure 1(b). It is easier to localize iris in Figure 1(a) as it has bigger pupil and 
iris regions with a lesser surrounding area, as compared to Figure 1(b).   

 
 

 
(a)                                    (b) 

 
Figure 1. (a) Iris image from CASIA-Iris-Interval, version 3.0; (b) Less constrained iris image from CASIA-

Iris-Thousand, version 4.0 
 
 
The earlier iris recognition systems are typically based on Daugman’s [1] and Wildes’ [2] 

algorithms, which use integro-differential operator (IDO) and circular Hough transform (CHT) respectively 
to localize irises. However, their iris localization algorithms work under very controlled environments and 
they do not perform very accurately while dealing with the noisy images [6]. Some recent methods to localize 
irises in noisy NIR and VW images are described in [5],[7]-[9] and [10]-[12] respectively. Hough transform 
(HT) based iris localization algorithms consider the iris as a circular ring and the CHT is used to detect the 
circles as illustrated in [7],[10],[12].   

The literature review reveals that the existing iris localization algorithms for the NIR images detect 
the pupil using either intensity thresholding [13],[14] or edge detection based segmentation techniques 
[7],[15],[16]. In the CHT based algorithms, first optimal edge maps of the iris image are generated that 
contain minimal false edges, so that the iris circles can be detected accurately and efficiently as demonstrated 
in [7] and [15]. The generating optimal edge maps get more challenging if the images are noisy such as 
CASIA-Iris-Thousand, version 4.0 (CITHV4) database [17] images. The noisy images are first preprocessed 
to remove the noise such as lighting reflections, non-uniform illumination and low contrast as described in 
[6]-[9], which improves the accuracy and time performance of the iris localization. The image inpainting 
techniques are used for removing the lighting reflection spots of the iris images and the histogram 
equalization is used for compensating the non-uniform illumination and low contrast [7]. For the iris 
localization in noisy NIR images from CITHV4 database, Wang et al. [7] proposed an inpainting technique 
based on Navier-Stokes equations to remove the lighting reflection spots and Probable boundary (Pb) edge 
detection operator to counter the non-uniform illumination.  

In this paper, the proposed iris localization algorithm has advantages that it eliminates the image 
preprocessing steps such as inpainting to remove reflections and methods to compensate non-uniform 
illumination, but still reduces the false edges caused by different types of noise very significantly. In the 
proposed algorithm, the edge map for pupil boundary detection is obtained by combining two different edge 
maps using intersection operation on images, whereas the previous iris localization methods in the literature 
are not based on combining two or more edge maps in a single edge map. Having detected the pupil 
boundary using CHT, the proposed adaptive CHT is used to detect the limbic boundary (iris’s outer 
boundary). The proposed adaptive CHT detects arcs in the image as the eyelids and eyelashes occlude the 
limbic boundary, whereas the previous CHT based iris localization methods search for a full circle. The 
proposed algorithm targets frontal view, but noisy NIR images (Figure 1(b)) having non-ideal issues as 
discussed before. To evaluate the performance of the proposed algorithm, the challenging CITHV4 and 
CASIA-Iris-Lamp, ver. 3.0 (CILV3) iris databases [17] were used. The objective of the work presented in 
this paper is to overcome the constraints in achieving highly accurate biometric iris recognition. 

The rest of the paper is organized as follows. Section 2 describes the proposed algorithm and its 
implementation, whereas section 3 discusses the performance evaluation results and the comparison with 
other methods. Section 4 concludes the work in the paper. 



IJECE  ISSN: 2088-8708  
 

Accurate Iris Localization Using Edge Map Generation and Adaptive Circular Hough  .... (Vineet Kumar) 

1639

2. THE PROPOSED IRIS LOCALIZATION ALGORITHM 
The proposed algorithm achieves iris localization for the NIR images in two phases: Phase 1) Pupil 

boundary detection, and Phase 2) Limbic boundary detection. The each phase consists of two process steps, 
which are edge map generation from iris image and circle detection in the edge map. The goal of the edge 
map generation is to prepare appropriate input for CHT so that the iris circles can be detected accurately and 
rapidly. The original iris image of size 640×480 pixels is scaled down to 320×240 pixels using a scaling 
factor of 0.5 to speed up the processing. The proposed algorithm is applied on the scaled iris image and the 
obtained circle’s parameters are multiplied by two for mapping the parameters in the original iris image. 

 
2.1. Phase 1: Pupil boundary detection 

The two steps involved in the pupil boundary detection are the edge map generation and the CHT 
for pupil boundary detection, which are discussed below. 

 
2.1.1. Edge map generation  

The idea of generating an optimal edge map for pupil boundary detection relies on combining two 
edge maps obtained via two paths: Path 1 is applying intensity thresholding on the iris image to segment the 
pupil region followed by the edge detection; and Path 2 is applying the edge detection on the intensity iris 
image. Since both the edge maps obtained via Path 1 and Path 2 have pupil contour in common, they are 
combined in a single edge map using the intersection operation (logical AND), which minimizes the false 
edges due to noise such as eyelids, eyelashes and lighting reflections etc. significantly. The proposed edge 
map generation is illustrated with help of Figure 2 and Figure 3. The edge map in Figure 2(e) obtained via 
Path 1 excludes the effect of reflections, but contains the edges due to dark illumination, whereas the edge 
map in Figure 2(f) obtained using Path 2 excludes the edges due to dark illumination, but contains the edges 
due to reflections. Therefore, the intersection operation on the two edge maps (Figure 2(e) and Figure 2(f)) 
removes the effect of both reflections and dark illumination as shown in Figure 2(g). To get more advantage 
out of the intersection operation in reducing the false edges, the two morphological operations are also used 
in Path 1. 

 
   

 
 

Figure 2. Edge map generation for pupil boundary detection: (a) Iris image (320×240) from CITHV4; (b) 
Gaussian smoothed iris image (σ =1.0, k=5); (c) Binary image after applying intensity thresholding on (b); 
(d) Cleaned binary image obtained from (c) using hole filling followed by image opening (se=‘disk’, k=7); 

(e) Edge image obtained after applying Sobel edge detector without thinning on (d); (f) Edge image obtained 
after applying Sobel edge detector without thinning on (b); (g) Edge map obtained by intersection (logical 
AND) operation on (e) and (f); (h) Iris image with pupil localization (shown by white circle) obtained after 

applying CHT on (g) 
 
 
The two morphological operations are applied on the binary image in Figure 2(c) to get the cleaned 

binary image shown in Figure 2(d); and the objective of these operations is reducing the noise-size so that the 
noise edges can be avoided in the intersection operation, which is illustrated later using Figure 3. First, a hole 
filling operation is applied on the binary image in Figure 2(c) to fill the white dots in the pupil region and 
then the image opening operation for black objects using a structuring element of type disc [18] is applied to 
reduce the size of the noise due to eyelids, eyelashes and eyebrow etc. Figure 2(d) shows the cleaned binary 
image in which the noise due to eyelids and eyelashes has been completely removed, but if the noise doesn’t 
remove completely, its size reduces because the black regions of eyelids along with eyelashes in the binary 
image are not solid boundary compact objects like the pupil and the image opening operation removes the 
pixels at their boundaries.  
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Figure 3. Edge map generation for pupil boundary detection: (a) Ideal edge map (image 7) that contains pupil 
boundary edges only; (b) Edge map (image 7) that contains pupil boundary edges as well as false edges; the 

images in (a) and (b) are: 1. Iris image from CILV3; 2. Smoothed iris image; 3. Binary image after 
thresholding 2; 4. Cleaned binary image obtained from 3; 5. Edge image of 4; 6. Edge image of 2; 7. Edge 

map obtained by intersection operation on 5 and 6; 8. Pupil localized iris image obtained after applying CHT 
on 7. 

 
 

The edge image of the cleaned binary image, shown in Figure 2(e), has the false edges due to dark 
illumination and eyeglass frame, but it could have contained other false edges due to the eyelids and 
eyelashes that can be removed or minimized by the intersection operation as illustrated using Figure 3.  

Figure 3 shows that the edge image of the cleaned binary image (image 5) contains the false edges 
due to eyelids and eyelashes, but these false edges are removed completely or partially after the intersection 
operation as shown in image 7. The image opening operation on the binary image (image 3) reduces the size 
of the noise due to the eyelids and eyelashes and hence, the reduced noise-size in the cleaned binary image 
(image 4) is not same as detected by the edge detection on the original iris image (image 6). Therefore, the 
intersection operation on the image 5 and the image 6 avoids the noise-edges completely or partially. Figure 
3(a) shows an ideal situation, where the intersection operation removes the false edges completely (image 7), 
but the edge map in Figure 3(b) has a few false edges also (image 7).  

 
2.1.2. CHT for pupil boundary detection 

There are a number of different approaches that can be taken in the CHT implementation [18]-[20]. 
To meet the requirement of detecting a circle in the edge map of iris image, we propose an implementation 
technique for CHT that detects a single strongest circle in an image. The proposed CHT implementation 
described in Algorithm 1 uses a 2-D accumulator to store votes for one radius at a time, whereas the standard 
CHT requires a 3-D accumulator to store votes for multiple radii that results in large storage requirements 
and long processing times [20]. At all the edge pixels (a,b), which are the white pixels in the edge map, the 
virtual circles are drawn with different radii using Equation (1). A circle with radius r and center (a,b) can be 
described with parametric equations below. 

 

 (1) 
 

When angle θ sweeps by full 360 degrees, the circle-points (x,y) lying on the perimeter of the circle 
are generated. A 2-D accumulator array of size same as the image is initialized to zero. The cells’ values in 
the array are incremented by one every time a circle passes through the cells; the process is known as 
accumulator voting as shown in Algorithm 1. The peak (maximum value) in the 2-D accumulator array is 
determined for every radius. The maximum among all the peaks gives center and radius of the detected 
circle. The 2-D accumulator array after voting is shown in Fig. 4 when the CHT is applied on the edge map 
of Figure 2(g). In Figure 4, the radius (r) is equal to the pupil radius; therefore, the coordinates of the peak in 
the 2-D accumulator array are the coordinates of the pupil center.  
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Algorithm 1. CHT for pupil boundary detection using 2-D 
accumulator array   

Inputs: Edge map of iris image, minimum pupil radius (rminp) and 
maximum pupil radius (rmaxp)  
Outputs: pupil circle radius (rp) and center coordinates (xp,yp) 
 
 1.  for pupil_radius=rminp :1: rmaxp   do     // comments: 
  2.         A=zeros(rows,cols) ;                       // 2-D accumulator of 
                                                                     iris image size 
 3.       for all “white pixels” in edge map of iris image   do 
 4.            for  θ =1 to 360o       do 
 5.              Calculate (x,y) using Equation (1) 
 6.               if (x,y) is in image bounds   do 
 7.                A(x,y) = A(x,y)+1 ;              // Accumulator-voting 
                                                                    step 
 8.               end if 
 9.            end for 
 10.       end for 
 11.       Find maximum value in A:   
 12.           M=A(x’,y’) ;                           //M is maximum value 
                                                                   in A 
 13.         Max_Array(pupil_radius)=M ; 
 14.         X_Array(pupil_radius)=x’ ; 
 15.         Y_Array(pupil_radius)=y’ ; 
 16.  end for 
 17. Find maximum in Max_Array:  
 18. M’=Max_Array(index)                  //M’ is maximum value 
                                                                 in Max_Array               
 19.  rp = index;   xp = X_Array(index);    
        yp = Y_Array(index)  ;                  // End of CHT algorithm    

 

 
 
 

2.2. Phase 2: Limbic boundary detection 
The center of the pupil circle is used as an input in detecting the limbic boundary as shown in Figure 

5. The edge map generation and adaptive CHT for limbic boundary detection are discussed below. 
 

2.2.1. Edge map generation 
The limbic boundary detection may be hurdled by the eyelids, eyelashes, reflections and low 

contrast between the iris and sclera in the iris images [5]. A subimage is extracted from the iris image using a 
rectangle centered at the pupil center as shown in Figure 5(a) and Figure 5(b). The width of the rectangle (or 
subimage) is twice the maximum possible value of the limbic boundary radius and the height is half of the 
width. The height of the rectangle can be increased further if the iris-occlusion by the eyelids and eyelashes is 
not much. The size of the rectangle remains constant for all the images from a database, but the location of 
the rectangle in the image changes as the rectangle is positioned using the pupil center.  

 
 

 
 

Figure 5. Limbic boundary detection: (a) Iris image (320×240) after pupil boundary detection; the rectangle 
in white indicates the size of subimage to be processed for limbic boundary detection; (b) The subimage  
(130×65) extracted from the iris image using the rectangle in (a); (c) Filtered subimage after applying a 

median filter of size 9×9 on (b); the two rectangles in white on left and right sides of the pupil are used to 
cover the iris’s vertical contours; (d) Edge map obtained after applying Sobel edge detection without thinning 
in horizontal direction inside the two rectangles in (c); (e) Circle detection after applying the adaptive CHT 

on (d); (f) Iris localized image (320×240) 
 
 

Figure 4. The surface plot of the 2-D 
accumulator array after voting is over 

corresponding to one radius 
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The subimage in Figure 5(b) is filtered using a median filter [21] to suppress the noise such as the 
eyelash hair and uneven pixel intensities without damaging the edge structure. The upper and/or lower 
eyelids occlude the iris in the noisy iris images, but the vertical iris contours are always visible, which are 
used for detecting the limbic boundary. The vertical iris contours are covered using two rectangles that are 
placed as shown in Figure 5(c). The three sides of each rectangle touch the subimage borders and the fourth 
side of each rectangle is at a distance of pupil radius (rp) + 5 from the pupil center. To get the edge pixels, the 
Sobel edge detection without thinning operation is applied in the two rectangles in horizontal (x) direction 
only. Figure 5(d) shows the edge pixels that are used for the limbic boundary detection using the proposed 
adaptive CHT.   

 
2.2.2. Adaptive CHT for limbic boundary detection   

A. Radman et al. [22] had proposed an adaptive IDO for the limbic boundary detection, but here, we 
propose an adaptive CHT for the limbic boundary detection. Instead of using the general CHT algorithm for 
the circle detection [20], an adaptive CHT for the circular arc detection is applied on the edge map shown in 
Figure 5(d). The adaptive CHT detects a structure of two circular arcs defined by -45:45 and 135:225 degree 
as shown in solid in Figure 6. The voting space in the adaptive CHT is limited to a small region around the 
pupil center instead of the whole image. The adaptive CHT for limbic boundary detection is useful for the 
images having iris-occlusions by the eyelids and eyelashes.   

 
 

 
 

Figure 6. A set of two vertical arcs that the adaptive CHT finds in an image 
 
 

The accumulator voting part of the adaptive CHT for limbic boundary detection is described in 
Algorithm 2. At all the white pixels (a,b) in the edge map, the arcs’ structure shown in Figure 6 is drawn 
using the Equation (1) for a radius (r) and corresponding voting is done. The size of the 2-D accumulator is 
same as the subimage, but voting space in the accumulator is limited to a 10×10 rectangle centered at the 
pupil center because the centers of the pupil and limbic boundary circles lie within a small window [6]. The 
peak in the 2-D accumulator is determined corresponding to each radius and the maximum among the peaks 
gives the center and the radius of the limbic boundary circle. The 2-D accumulator after voting is shown in 
Figure 7 when the adaptive CHT is applied on the edge map of Figure 5(d). The Figure 7 shows the surface 
plot of the 2-D accumulator corresponding to a radius equal to the limbic boundary radius and hence, the 
coordinates of the peak in the accumulator are the center coordinates of the limbic boundary circle. The 
adaptive CHT for limbic boundary detection is faster also as it searches for half the circle length instead of a 
full circle, which requires only half the virtual circle length to be drawn at each edge pixel. 
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Algorithm 2. HT accumulator voting in adaptive CHT for limbic
boundary detection 

Compute: Center of subimage (xo,yo); imin=xo-5; imax=xo+5; 
jmin=yo-5; jmax=yo+5 
 
 1.      - - -  
  2.       A = zeros (rows,cols)                         // 2-D accumulator  
                                                                          of subimage size           
 3.        for all “white pixels” in edge map of subimage   do 
 4.              for  θ = -45o to 45o   do 
 5.                 Calculate (x,y) using Equation (1) 
 6.                 if (imin ≤ x ≤ imax) and (jmin ≤ y ≤ jmax)   then 
 7.                 A(x,y) = A(x,y) +1;                // Accumulator-voting  
                                                                         step                             
 8.                 end if 
 9.               end for 
 10.             for  θ =135o to 225o     do 
 11.                repeat steps (lines) 5,6,7,8 
 12.             end for 
 13.        end for   

 
 
 
3. PERFORMANCE EVALUATION 

In this section, the performance of the proposed algorithm is evaluated by conducting experiments 
on CASIA iris databases, the iris localization results are summarized and the results are compared with some 
state-of-the-art iris localization methods in the literature. The datasets used in the experiments to evaluate the 
proposed algorithm are described below. 

 
3.1. Datasets used 

The datasets are taken from two CASIA iris databases [17]: CITHV4 and CILV3. These databases 
are chosen because they contain the noisy images having the noise such as reflections, non-uniform 
illuminations, low contrast, eyeglasses and intrusions by the eyelids, eyelashes and eyebrow hair. Both 
CITHV4 and CILV3 contain 8-bit gray-level JPEG images with resolution of 640×480 pixels. 
 CITHV4 dataset: The total number of images in this database is 20000 collected from 1000 different 

subjects [17]. Each subject contributes 20 images, which include 10 images from each left and right eye. 
For extensive experimentation with this database, the images from all 1000 subjects are chosen. A total 
5600 images are chosen which include all the images of the first 100 subjects and 3600 images from the 
rest of 900 different subjects (selecting 4 images from each subject). 

 CILV3 dataset: This database contains images from 411 different subjects [17]. The total number of the 
images in the database is 16212. For thorough experimentation with the database, 811 images were 
chosen selecting first left and first right eye image of each subject except 11 subjects. 

The experiments on the datasets were done using a computer with Intel i5 CPU @ 2.40 GHz, 8 GB 
RAM and Windows 7 operating system. The proposed algorithm is implemented and tested with MATLAB 
(version 8.4) tool.  

 
 

 
 

Figure 8. Accurately localized irises in the iris images from two CASIA databases [17]: (a) CITHV4;  
and (b) CILV3 

Figure 7. The surface plot of the 2-D 
accumulator array in the adaptive CHT after 

voting is over corresponding to one radius; note 
that voting space is a 10×10 rectangle centered 

at pupil center 
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*MMUV1: Multimedia University, version 1.0  

3.2. Results and discussion 
The sample images with accurately localized irises by the proposed algorithm are shown in Figure 8. 

The results of the proposed algorithm are summarized in Table 1.  
 
 

Table 1. Experimental results of the proposed iris localization algorithm 
Iris database Number of images taken 

for testing (Nt) 
Number of correct iris localized 

images (Ni) 
Accuracy (%) = 

(Ni/Nt) ×100 
Average time cost per 

image (sec) 

CITHV4* (640×480) 5600 5583 99.7 0.92 
CILV3* (640×480) 811 806 99.38 0.89 

*CITHV4: CASIA-Iris-Thousand (version 4.0); *CILV3: CASIA-Iris-Lamp (version 3.0) 
 
 

The accuracy of the proposed algorithm is 100 percent almost. The accuracy of the circle detection 
in an image by the CHT depends on the amount of false edges the edge map of the image contains. Fewer the 
false edges higher would be the accuracy. The edge map used for the pupil boundary detection in the 
proposed algorithm contains very less false edges due to the intersection operation as discussed in the 
subsection 2.1.1. The use of the adaptive CHT for limbic boundary detection to counter the iris-occlusions by 
the eyelids and eyelashes is another cause for high accuracy.  

Table 1 also shows the time performance results of the proposed method. The average time cost is 
reported in the table, as the time taken by the CHT for circle detection is directly proportional to the number 
of edge pixels in the edge map of the image. Fewer the false edges in the edge map of iris image, lesser will 
be the time cost. The average time cost per image was calculated by randomly choosing 500 images from 
each individual database. The MATLAB’s timer functions ‘tic’ and ‘toc’ were used to know the execution 
time of a code that runs to localize irises in 500 images. The execution time obtained was then divided by 
500 to find the average time cost per image. 

 
3.2.1. Comparison with other methods 

In our work, we also implemented the popular Wildes’ [2] and Daugman’s [1] methods for 
comparison with the proposed algorithm as the published results of these methods for CITHV4 and CILV3 
databases are not available in the literature. Wildes’ method [2] is based on the Canny edge detection plus 
CHT, whereas Daugman’s method [1] uses the IDO as a circular edge detector. We applied both the 
approaches on the Gaussian smoothed iris images. The pupil was localized prior to the limbic boundary in 
both the methods.  

 
 

 
 

 

  

 
 
While using Wildes’ method [2], we found that the limbic boundary’s accuracy was coming very 

low due to the false edges of eyelids, eyelashes and pupil. So, we applied the CHT on the selected edge 
pixels in the Canny edge map; where the edge pixels were selected by placing two rectangles on left and right 
sides of the pupil as discussed in our proposed algorithm (Figure 5(c)). The edge maps used for Wildes’ 
method [2] are shown in Figure 9.  

While using Daugman’s IDO [1] for the pupil detection, we observed that it is very sensitive to the 
reflection dots inside the pupil and gives wrong results. So, we removed these reflections during the pupil 
localization. The accuracy results of both the methods [1] and [2] are shown in Table 2. We also observed 

Method CITHV4 CILV3 MMUV1*
Wildes [2] 86.9 80.5 93.33 
Daugman [1] 90.6 88.12 96.44 
Wildes [2]+Daugman’s IDO [1] 92.1 91.09 98 
Proposed 99.7 99.38 99.55 

Table 2. Experimental results of iris localization 
methods 

Canny edge detection with T=[0.034,0.085] and σ 
=1.0 

Figure 9. Edge maps of the iris image used in Fig. 
2: (a) Edge map for pupil boundary detection; (b) 

Edge map for limbic boundary detection 
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that localizing the pupil using Wildes’ approach [2] and detecting the limbic boundary using Daugman’s IDO 
[1] gives better results as compared to individual method as shown in Table 2. 

Table 2 shows that both Wildes [2] and Daugman [1] methods give good accuracy for Multimedia 
University, version 1.0 (MMUV1) database [23] as it contains less noisy images, but their accuracy degrades 
for the noisy images of CITHV4 and CILV3. Wildes [2] gives less iris localization accuracy mainly due to 
the reflection spots in CITHV4 and too many false edges from the occlusions by eyelids and eyelashes in 
CILV3. These noises also reduce the accuracy of Daugman’s IDO [1]. The average time cost per image 
obtained in Wildes’ [2] and Daugman’s [1] is 2.17 sec and 2.45 sec repectively, for the CITHV4 and CILV3 
images of size 320×240 pixels. The proposed algorithm is more accurate and faster than Wildes [2] and 
Daugman [1] as it uses the optimal edge maps with very less false edges and the adaptive CHT for iris 
boundary detection also improves it further. 

The comparison of the results of the proposed algorithm with the published results is shown in Table 
3. The published methods included in the comparison are chosen on the basis that they used same databases 
for experimentation that we have taken. Moreover, Jan et al. [8],[9] show the highest accuracy among all the 
iris localization methods available in the literature for CITHV4 and CILV3 databases. The symbol -- in the 
table shows that the corresponding information was not found in the literature. The Table 3 shows that the 
proposed algorithm has the highest accuracy and lowest time cost per image, which has happened due to the 
proposed edge map and the adaptive CHT used for pupil and limbic boundary detection respectively, as 
compared to the other methods in the table. In the proposed method, the original iris image is scaled down to 
half size, which was also done in the Jan et al. methods [8],[9] to speed up the processing. The image resizing 
by a scaling factor, s = 0.5 not only reduces all the edge pixels to half in number, but also the number of radii 
taken in a CHT algorithm becomes half. 

 
 

Table 3. Comparison with published iris localization results    

Method 
Accuracy (%) & Average time cost per image (sec) 

CITHV4 CILV3 
Jan et al. [8] 99.5  &  6.4 98 &  4.93 
Jan et al. [9] 99.23 & 3.4 99.21 &  3.35 
Jan et al. [6] -- 99.05 &  -- 

Ibrahim et al.[24] -- 98.28 &  -- 
Proposed 99.7 & 0.92 99.38 & 0.89 

 
 
4. CONCLUSION 

The proposed iris localization method is tolerant to the non-ideal issues and noises in the iris images 
such as iris-occlusions by the eyelids and eyelashes, lighting reflections, non-uniform illumination, 
eyeglasses, low contrast and eyebrow hair. However, the experimental results show that the proposed method 
also improves iris localization in the images that do not have reflection spots and non-uniform illumination, 
but have mainly the iris-occlusions by the eyelids and eyelashes. The comparison with the famous Wildes’ 
approach [2], which is based on Canny edge detection plus CHT, demonstrates that the introduction of new 
edge map for pupil boundary detection and adaptive CHT for limbic boundary detection make the proposed 
iris localization method more accurate and fast. The performance results of the proposed algorithm are much 
better than both the popular Daugman’s [1] and Wildes’ [2] approaches. The comparison with some recent 
published results for CASIA databases also shows that the proposed method has improved performance. The 
proposed algorithm can be used for the accurate iris segmentation in less constrained iris recognition systems. 
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