
International Journal of Electrical and Computer Engineering (IJECE) 
Vol. 6, No. 4, August 2016, pp. 1551~1559 
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i4.9218      1551 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Design of 8-point DFT Based on Rademacher Functions 
 
 

Zulfikar, Hubbul Walidainy 

Department of Electrical Engineering, Syiah Kuala University, Indonesia 
 
 

Article Info  ABSTRACT 

Article history: 

Received Oct 20, 2015 
Revised Apr 26, 2016 
Accepted May 10, 2016 
 

 This paper presents a new circuit design for 8-point DFT algorithm based on 
product of Rademacher functions. The designed circuit is basically 
constructed base on 8-point DFT decimation in time that mainly construct of 
two 4-point and four 2-point DFTs. However, the operation of the design 
circuit is different. It utilized the advantages of Rademacher functions 
simplicity. Therefore, the proposed design is constructed from our previous 
design 4-point DFT which is based on product of Rademacher functions. 
Some analysis upon number types, internal connections and complex 
conjugate of the results to achieve the more efficient circuit have been made. 
Therefore, instead of four, the proposed design requires only three 2-point 
DFTs. Again, two output results of the design DFT have been removed since 
they are equal in terms of magnitude to the other results, but two negative 
circuit are required as a compensation. Moreover, the previous designed 
circuit of 4-point DFT has been replaced with the new circuit design. This 
circuit is special designed for non-standalone used, the circuit must be 
integrated inside the proposed 8-point DFT.  
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1. INTRODUCTION  

No doubt that Fourier transforms is used ubiquitous. The Fourier algorithms is available in terms of 
both continue and discrete models. Discrete model of Fourier which is often called Discrete Fourier 
Transforms (DFT) is more suitable for application since the development of computing machines that limits 
the ability of calculation. Unlike discrete, the continue model is very difficult to be implemented.   

The development of Fourier transforms has been done since about a century ago. However, because 
of the huge number of applications, it is still attracted scientists to develop a more and more efficient and fast 
algorithms for implementing the transforms in the applications. Duhamel and Veterli summarized, analyzed 
and provided some suggestions of those development in 1990 [1]. The most significant improvement of 
Fourier is when Cooley and Tukey introduced a method for factorization of it [2]. After that, thousands 
number of paper appears for implementing Fourier in applications.    

Alternatively, scientists have developed the algorithms of Fourier transforms that combines Walsh 
and Fourier transforms [3]-[5]. The developments is based on the simplicity calculation of Walsh transforms 
that often ignored in the previous researches. Those algorithms such as Walsh transforms is adopted through 
factorization of intermediate transforms T for calculation of DFT coefficients [3]. Monir T et al then 
proposed the efficient combination of DFT and Walsh calculations. This technique is used to perform Fast 
Walsh Hadamard Transforms (FWHT) by utilizing Radix-4 [4]. Later then, the efficient algorithm of 
calculating both Walsh transforms and DFT transforms using the famous Radix-2 was also published [5]. 

Those previous combination algorithms are designed for parallel both input and output. This leads to 
huge number of memory resources which is not suitable for small circuit applications. A method for reducing 
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circuit resources has been proposed in [6]. The circuit is designed by taking input serially and the output is 
gathered in parallel. The proposed method used to design 4-point DFT that adopts behavior of how Walsh 
transforms is performed.   

The previous DFT has been designed only for 4-point, which is very simple and rarely used in the 
application. In the real application, it is required a DFT which able to perform higher than 4 point 
transformation. Therefore, in this paper, we propose a design of 8-point DFT that is constructed by using the 
previous 4-point DFT design. Two 4-point DFT and four 2-point DFT are required in the proposed design.  

This paper is organized as follows: some basic theories of DFT are covered in the next section. Then 
in the section 3, step by step circuit design for area efficiency of 8-point DFT is described in detail. Section 4 
views the analysis of results and a few discussions of the proposed design. Finally, the conclusions and some 
suggestions for future works are presented in section 5. 
 
 
2. THEORIES 

 
2.1. 2-Point and 4-Point Discrete Fourier Transforms 

DFT plays a very important role in almost all digital applications. For example, in the fields of 
digital signal processing (DSP), spectrum analysis and filtering process. Many scientists proposed the theory 
and implementation of how DFT efficiently used. The basic calculation of DFT is using equation (1) as 
follow [7]-[9], 

 

 (1) 
 
where, twiddle factor (WN) may be evaluated according to equation (2) as follow: 
 

  (2) 
 
Small point number (N) of DFT is very simple and may be often ignored in discussion. However 

higher N-point DFTs are constructed from smaller ones. For instance, the 8-point DFT based on FFT 
algorithm is constructed using 2-point and 4-point DFTs. The 2-point DFT may be calculated easily 
according to equations (1) and (2). For instance, given x(n) = {2, 5}, let us first compute twiddle factors for 
the DFT.  

 
W2

0 = cos (0) – j sin (0) = 1 
W2

1 = cos (π) – j sin (π) = -1 
 

Therefore, the output results may be now obtained as follow: 
 
 X(0) = x(0)W2

0 + x(1)W2
0 = 2(1) + 5(1) = 2 + 5 = 7 

 X(1) = x(0)W2
0 + x(1)W2

1 = 2(1) + (-1)(5) = 2 – 5 = -3 
 

The circuit for implementing the 2-point DFT is very easy to be designed since it is required only 
the addition and subtraction process. Let us now move to the calculation of higher point (N) DFT (4-point). 
For example, given x(n) = {2,4,3,5}, the twiddle factors can be evaluated as follows: 

 
W4

0 = cos (0) – j sin (0) = 1 
W4

1 = cos (π/2) – j sin (π/2) = -j 
W4

2 = cos (π) – j sin (π) = -1 
W4

3 = cos (3π/2) – j sin (3π/2) = j 
 

Therefore, the transformation results may be calculated as follow: 
 
 X(0) = x(0)W4

0 + x(1)W4
0 + x(2)W4

0 + x(3)W4
0 = 2 + 4 + 3 + 5 = 14 

 X(1) = x(0)W4
0 + x(1)W4

1 + x(2)W4
2 + x(3)W4

3 = 2 - 4j – 3 + 5j = -1 + j 
 X(2) = x(0)W4

0 + x(1)W4
2 + x(2)W4

0 + x(3)W4
2 = 2 - 4 + 3 - 5 = -4 

 X(3) = x(0)W4
0 + x(1)W4

3 + x(2)W4
2 + x(3)W4

1 = 2 + 4j – 3 - 5j = -1 - j 
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It can be seen that the computation process of 4-point DFT that is demonstrated here would not 
require multiplication. This calculation process is similar to the 2-point DFT’s. However, because it does 
contains imaginary part, we should separate the results and store it into different buffers. This process has 
been demonstrated before in 2015 [6].  
 
2.2. Rademacher Functions 

Some researchers preferred performing Walsh transforms based upon product of Rademacher 
functions. This is found to be more appropriate for circuit realization [9]-[13]. The Rademacher functions 
itself are defined as stated in equation (3). 

 

 (3) 
 

where ϕ(0,x)=1 and the signum function Sgn(y) is determined as follows, 
 

 (4) 
 

In practice, the Rademacher functions can be easily generated by simply using a counter circuit. 
 
 
3. DESIGN OF 8-POINT DISCRETE FOURIER TRANSFORMS 

 
3.1. General Circuit Design 

This paper proposes the circuit design of 8-point DFT based on product of Rademacher functions. 
The designed circuit is constructed from the previous work of 4-point DFT [6] combined with the 8-point 
DFT decimation in time design. Figure 1 shows the 8-point DFT based on decimation in time. The structure 
consists of several smaller point of DFTs. The structure also requires some arithmetic process such as real 
multiplication and imaginary multiplication.  

 
 

 
 

Figure 1. Scheme of 8-point DFT [1] 
 
 

Input data x[x0, x1, x2, x3, x4, x5, x6, x7] will be transformed into frequency domain and become 
X[X0, X1, X2, X3, X4, X5, X6, X7]. Even inputs [x0, x2, x4, x6] are passed through the first (#1) 4-point DFT. 
Meanwhile, odd input [x1, x3, x5, x7] are passed through the second (#2) 4-point DFT. The calculation process 
of both 4-point DFTs is performed based on product of Rademacher functions [6]. Let’s assume that U0, U1, 
U2, U3 are results of the first 4-point DFT and L0, L1, L2, L3 are results of the second 4-point DFT.  

Four blocks of 2-point DFT are used to transform temporary results (U and L) to be the final 8-point 
DFT result X(k). Only inputs of the first block of 2-point DFT are connected directly from temporary results, 
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others have to be multiplied with twiddle factors. These multiplications process will be evaluated later in the 
next sections. The process have to be considered as additional resource that is used beside the main blocks of 
4-point DFTs and 2-point DFTs. Internal circuit of 4-point DFT is shown in Figure 2. 

 
 

 
 

Figure 2. Internal cicuit of 4-point DFT [6] 
 
 

Input data x is connected in parallel to negative circuit, multiplexers and data buffers. The negative 
circuit is used to provide negative value of input data x based on the selection of multiplexers. Since the first 
row of DFT matrix contains only positive value, the connection of data input x to the buffers is made directly 
in order to avoid multiplexers. The selected values will be passed through buffers to either real accumulators 
or imaginary accumulators controlled by the signal generated from control circuit. Finally, all stored values 
in output buffers are passed out and considered as the DFT results. Data buffers are controlled by the signal 
which is generated by control circuit, but the output buffers is not. These buffers are used to store values 
temporary before they passed out. 

 
3.2. Type of Number 

The circuit scheme in Figure 1 shows blocks of 4-point DFTs, 2-point DFTs and twiddle factors in 
general view. In order to integrate blocks and components, it requires specific handling that may involve real 
and imaginary numbers. The connections between blocks or components that involve both real and imaginary 
numbers requires more circuit. Figure 3 shows all possible of real (noted “R”) and imaginary (noted “I”) 
numbers for processing the 8-point DFT. 

 
 

 
 

 Figure 3. Type of numbers for connections 
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It is assumed that inputs of 8-point DFT are all real numbers. Then based on the calculation inside 
4-point DFT, the temporary results (U and L) will be in real, imaginary or might contains both real and 
imaginary numbers. Those type of numbers have been derived from the twiddle factor of both 4-point DFT 
blocks. Let us consider both 4-point DFT blocks, Table 1 shows all possible number types of the result for all 
input real numbers. 

 
 

Table 1. Possible types of numbers based on twiddle factor of 4-point DFT 
k Twiddle Factor Type of Input Type of Output 
0 W4

0 Cos (0) – j Sin (0) 1 x0 : Real U0 : Real 
1 W4

1 Cos (2π/4) – j Sin (2π/4) - j x2 : Real U1 : Real + Imaginary 
2 W4

2 Cos (4π/4) – j Sin (4π/4) - 1 x4 : Real U2 : Real 
3 W4

3 Cos (6π/4) – j Sin (6π/4) j x6 : Real U3 : Real + Imaginary 

 
 
Some results of the second 4-point DFT (L1, L2, L3) are multiplied with twiddle factors (W8

1, W8
2 

and W8
3). These multiplications can be examined as follow, 

 
(R + I) x W8

1 = (R + I) x (Cos (2π/8) – j Sin (2π/8)) = (R + I) x (R + I) = R + I        (5) 
 
(R) x W8

2 = (R) x (Cos (4π/8) – j Sin (4π/8)) = (R) x ( I) = I         (6) 
 
(R + I) x W8

3 = (R + I) x (Cos (6π/8) – j Sin (6π/8)) = (R + I) x (R + I) = R + I   (7) 
    
As the result, after performing all of 2-point DFT processes, the output of 8-point DFT contains real 

and imaginary number except for X0 and X4 which contain only real numbers. This is because both inputs of 
the first (#1) 2-point DFT are contain real numbers only. These analysis play a very important thing in 
determining the amount of buffers required for implementing the circuit, since the real and imaginary 
numbers will be placed or stored in different buffers. This design will be further analyzed for determining the 
amount of required buffer. The connections that involve both real and imaginary requires twice number of 
buffer for storing data temporarily.  

 
3.3. Interconnect Configuration 

The designed 8-point DFT mainly requires two 4-point DFTs and four 2-point DFTs. These amount 
of DFTs will requires huge numbers of circuit. However, in terms of circuit perspective, there is a space to 
reduce the circuit. A depth analysis is required for determining which part of the whole circuit can be 
optimized. In the previous section, the type of numbers used for connecting blocks has been determined. 
Here, we provide deep analysis of those numbers. 

The results of 8-point DFT shows the unique phenomena, because some of them complex conjugate 
to the other result [7],[8]. For example given x={1,2,3,4,5,6,7,8}, the DFT results are X={36, -4+9.66i, -4+4i, 
-4+1.66i, -4, -4-1.66i, -4-4i, -4-9.66i}. Where, X1 is complex conjugate with X7, X2 is complex conjugate 
with X6 and X3 is complex conjugate with X5. In general, this is according to equation (8).  

 

  (8) 

 
where N=4,8,16, ….. This behavior also similar to the 4-point DFT results, where U1=U3* and L1=L3*. 
Figure 4 shows the mapping of all possible complex conjugate results of the designed 8-point DFT. 
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Figure 4. Complex conjugate results  
 
 

By determining complex conjugate of some DFT results, the circuit can be optimized. 
 

 
4. CIRCUIT COMPLEXITY 

In the previous section, analysis of number’s type and complex conjugate of the results has been 
made. Therefore, the designed circuit may now be optimized by reducing unneeded components or blocks. 
However, there is a cost for this improvement.   

From the Figure 4, it can be seen that the results of 2nd and 4th 2-point DFTs are complex conjugate 
to each other. Therefore, one of these blocks can be removed. As a consequence of removing the block, it is 
required a negative circuit. Another advantage of removing the DFT block, either component of twiddle 
factor W8

1 or W8
3 is not required anymore. Let us remove the last block of 2-point DFT, as a result, twiddle 

factor W8
2 can be also removed. This leave connections from U3 and L3 disconnected.  

The multiplication process in the W8
2 also can be removed because the magnitude of W8

2 is -1. 
Based on previous analysis of twiddle factors multiplication indicated in equation (6). The result 4-point DFT 
L2 may now be connected directly to the input of the third 2-point DFT block and assumed it as an imaginary 
number. Two negative circuits are required for compensation of removing one block of 2-point DFT. These 
circuits are shown in the part of Figure 5. The first circuit is used to make a negative value of XI1 and 
considered as XI7 and the second one is used to make a negative value of XI5 and considered as XI3.  

Another efficiency can be applied in the both blocks of 4-point DFT due to the unconnected of 
result U3 and L3. Figure 5 shows the efficient circuit design of 8-point DFT.  
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Figure 5. Propose efficient 8-point DFT 
 
 

Figure 6 shows the circuit of 2-point DFT. The circuit has been developed based on the simplicity of 
twiddle factors W2

0 = 1 and W2
1 = -1 analyzed in section two. Therefore, for determining the results of 2-

point DFT, just simply add and subtract both given inputs. The subtraction is performed through second 
complement method by just simply invert x1 and then add to x0. Figure 7 shows the modified 4-point DFT of 
the previous proposed one [6]. 

 
 

 
 

Figure 6. Circuit of 2-point DFT 
 
 

 
 

Figure 7. Propose modified 4-point DFT 
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The modified circuit of 4-point DFT is more efficient, it utilized less accumulator and buffer. It can 
be seen that there are four accumulators and four output buffers. The previous design required eight 
accumulators and eight output buffers [6]. However this circuit cannot used as a single standalone 
application, it must be integrated together to form the proposed 8-point DFT.  

 
 

5. CONCLUSIONS 
The designed circuit of 8-point DFT based on product of Rademacher functions has been done 

successfuly. Initially, the circuit consists of smaller DFT blocks which are two 4-point DFTs and four 2-point 
DFTs. The analysis of type number used, internal connections and complex conjugate has been 
accomplished. Based on these, the efficient 8-point DFT has been achieved. The efficient circuit involved 
two modified 4-point DFTs and three 2-point DFTs. Moreover, the design of the modified 4-point DFT and 
the simple 2-point DFT also has been constructed. Several output results of the designed DFT have been 
removed since they are equal in terms of magnitude, two negative circuit are required as a compensation.   
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