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 The elastic behaviour of a system can be determined by an analysis of 
stresses. The stress generated in the element loaded of an accelerometer is of 
interest here. In these devices, the suspension beams are the elements 
subjected to greater stresses, as they support the mass. The stress that they 
can support is limited by the elastic limit of the material. Based on this 
analysis, the operating conditions to prevent permanent deformations are 
determined. The analysis is focused on the acceleration applied to the 
accelerometer because this parameter increases considerably the stresses in 
the device. A relationship between normal stress and gravity applied is 
obtained. This equation is used in order to avoid exceeding the elastic limit, 
during the accelerometer operation. This fact determines the acceleration 
range supported by the device. In the literature, studies about the physics and 
modelling of accelerometers are performed. However, about the specific 
acceleration of operation which they are subjected, information about its 
determination is not provided. In this paper, the analysis is realized 
considering a Conventional Capacitive Accelerometer (CCA) and a 
Capacitive Accelerometer with Extended Beams (CAEB), particularly, on 
the normal stress. When a range of acceleration values are applied, normal 
stress occur which must not exceed the elastic limit of the material, as it was 
mentioned before. The Matlab code used to calculate this relationship is 
given in Appendix A.
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1. INTRODUCTION 

An accelerometer is a sensor device that allows the indirect measurement of acceleration (speed 
variation with time or relation between force and mass) according to one, two, or three directions throughout 
a sensible axis [1]. Accelerometers have exploited their applications in various fields like monitoring 
vibration, inertial navigation, and attitude controlling. The most common accelerometers are conventionally 
based on capacitive, piezoresistive or piezoelectric behavior [2],[3]. To extract the acceleration value, the 
sensor has a movable proof mass connected to a fixed frame through spring structures. When there is an 
external acceleration, the seismic mass is displaced from its rest position. The magnitude of this displacement 
is proportional to the magnitude of the acceleration and inversely proportional to the stiffness of the spring 
structures [4]. 

The accelerometers are constituted by structural supports called suspension beams. It is important to 
realize an analysis of stress into them, in order to obtain the extreme operating conditions. In this paper, the 
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acceleration range in which an accelerometer with extended suspension beams can operate appropriately is 
presented. For this reason, the analysis of normal stress in the suspension beams is realized, using the model 
of a cantilever beam with a uniformly distributed load. Subsequently, the information obtained is validated 
using Ansys.  

 
1.1. Analytic Relation Normal Stress-Acceleration 

In capacitive accelerometers, the structural elements of support are called beams. They allow the 
mass to be suspended and displaced. Their study is fundamental to understand the analysis of normal stress. 

Due to the applied loads, the beams develop a shear force and a bending moment that, in general, 
change from point to point along the axis of the beams [5]. The beams can be classified according to their 
conditions of support, as follows: a) simply supported beams. The reactions happen in their ends, b) 
cantilever. One end of the beam is fixed to prevent rotation, c) cantilevered beams. One or both ends of them 
stands out of the supports, d) constant beams. A statically indeterminate beam that spreads on three or more 
supports. 

The load consists on the applied forces that act on the beam, which can come from the weight of the 
beam, besides other forces that it could support. There are five basic types of loads applied in beams, which 
are: a) without load. The same beam is considered without weight (or at least very small compared with other 
forces that could be applied), b) concentrated load. A load applied on a relatively small area, c) uniformly 
distributed loads. This load is equally distributed on a portion of length of beams, d) variable load. The load 
varies its intensity form of one place to other, e) torsion. This one is generated when a torsion is applied on 
any part of the beam [6]. 

For the accelerometers used here, the type of beams are cantilevers and the considered load is 
uniformly distributed. The bending moment M, where the normal stress remains below the yield strength or 
elastic limit σy, is also studied, because it serves as reference parameter. The stress in cantilevers must be 
remained below the elastic limit so there will not be permanent deformations. The Hooke's law can be 
applied to the stress uniaxial calculation.  

Assuming a homogeneous material, and denoting for E to the modulus of elasticity, on the 
longitudinal direction x, the stress is given by: 

 

xx E                                                                             (1) 

 

where x  is unitary longitudinal deformation, calculated from ,mx c

y   c  is the maximum distance to 

the neutral surface, y is the distance of the neutral axis to any point of beams and m  is the maximum 

absolute value of the unitary deformation. Multiplying both members of (1) by E, the normal stress can be 
obtained: 
 

mx c

y                                                                        (2) 

 
where m  is the maximum absolute value stress. This result shows that, in the elastic range, the normal 

stress changes linearly with the distance to the neutral axis (Figure 1) [7]. 
 
 

 
 

Figure 1. Variation of the normal stress [7] 
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To calculate m  under the case of pure bending, where the neutral axis passes for the centroid 

section, the inertia moment I, or the second moment of the cross section with respect to the centroid axis 
perpendicularly to the plane of the par M [6], is also considered: 

 

 
I

cM
m


                                                                             (3) 

 
Replacing m  from (3) in (2), the normal stress x to any distance y of the neutral axis is obtained: 

 

I

yM
x


                                                                            (4) 

 
In addition, I is calculated by means of (5) where b is the thickness and h is the width of the beam. 
 

12

3bh
I                                                                               (5) 

 
If there is not exist a load concentrated in the free end of the cantilever, the unique load that it 

experiences is only the produced by its own weight. Then the load is distributed in a uniform way, as Figure 
2 shows [8]. 

 

 
 

Figure 2. Cantilever with uniformly distributed load [7] 
 
 

To calculate the bending moment of a cantilever with uniformly distributed load, the following 
equation is used: 

 

2

2

1
wLM                                                                            (6) 

 
where L is the length of the cantilever and w is the load distributed by unit of length: 

 

L

gm
w


                                                                              (7) 

 
The type of beam and load considered in this work are showed in Figure 2. Replacing (7) in (6), 

following expression is obtained: 
 

LgmM 
2

1
                                                                     (8) 

 
To obtain the relationship between normal stress and the bending moment that will determine the 

rate of acceleration of the accelerometer, (8) is replaced in (4). Finally, the desired relationship between 
normal stress and gravity, is obtained: 

 

I

yLgm
x 




2
                                                                     (9) 

 
It is noteworthy that in the analyzed literature this relationship is not developed or shown. 
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2. RESEARCH METHOD 
 

2.1. Theoretical analysis and simulation of normal stress in a conventional accelerometer at 1g 
The accelerometers are devices used to measure acceleration and vibration. These devices convert 

the acceleration of the gravity or of the movement into an electrical analogical signal, proportional to the 
force applied to the system [9]. Figure 3 shows the main elements of a CCA. 

 
 

 
 

Figure 3. Main elements of the CCA 
 
 

The calculation of normal stress x  is made from (9). The corresponding values are shown in  

Table 1. 
 
 

Table 1. Calculated parameter values 
Parameter Value 
Load, w 0.014 N/m 

Bending moment, M 2.81x10-8 N·m 
Inertia moment, I 3.25x10-20 m4 

Normal stress,  x  10.8 MPa 

 
 
In order to compare the approximation to calculate the normal stress, given by (9), the simulation 

was implemented. Applying 1g (9.81 m/s2) to CCA. A 2.59 MPa normal stress value was obtained. As it can 
be observed, the theoretical value appears to be larger than the one obtained by simulation. This is because 
the calculation is performed for only one suspension beam. To obtain the normal stress value it is necessary 
to divide the total value between the number of beams. The result is 2.7 MPa for each one of the suspension 
beams. The difference produces an error of 4%. 

Table 2 shows the properties of silicon used in theoretical calculations and by simulation, in the 
development of this work. 

 
 

Table 2. Silicon properties used [10] 
Property Value 

Desnsity (ρ), in kg/m3 2330 
Young´s Modulus (E), in GPa 131 
Poisson´s ratio, dimensionless 0.33 

 
 

Figure 4 shows the considered dimensions for the CCA. 
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Figure 4. Dimensions of the CCA 
 
 

In Figure 5 and 6, the normal stress generated in the suspension beams and a zoom in at one of them 
are shown, respectively. 

 
 

 
 

Figure 5. Normal stress generated in the suspension 
beams of a CCA 

 
Figure 6. Zoom in at one of the folded beam 

 
 

2.2. Theoretical analysis and simulation of normal stress in a CAEB at 1g 
Once the calculations have been made for a CCA subjected at 1g, the case of the CAEB will be 

analysed. Figure 7 shows the dimensions of this accelerometer, generated from a change in the geometry of 
the conventional mass, intended to extend the length of the suspension beams, without excessively reduce the 
value of the mass, as it is required by equation of sensitivity, given by (10): 

 

k

gm
x


                                                                            (10) 

 
where x is the sensitivity displacement and k is the stiffness constant. 

However, the increment on beams length implies greater bending moment (6), which also implies an 
increase of normal stress (9). Then, the normal stress limits the beams extension and the acceleration value. 
The analysis in this case is similar to the one realized in section 2.1. In Table 3, the calculated values are 
presented. 

 
 

Table 3. Calculated parameter values 
Parameter Value 
Load, w 0.005 N/m 

Bending moment, M 5.43x10-8 N·m 
Inertia moment, I 3.25x10-20 m4 

Normal stress,  x  20.8 MPa 
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Figure 7 shows the dimensions of a CAEB. 
 
 

 
 

Figure 7. Dimensions of an accelerometer with extended beams 
 
 

Figure 8 shows the normal stress generated in the suspension beams, and in Figure 9 a zoom in at 
one of the suspension beam is shown. 

 
 

 
Figure 8. Normal stress generated in the suspension 

beams of a CAEB 

 
Figure 9. Zoom in at one of the folded beam 

 
 

From Figure 9, the simulation results provide a normal stress value of 5.03 MPa. In a similar fashion 
to the procedure followed in the case of the CCA, it is necessary to divide this total value by the number of 
suspension beams. 5.2 MPa normal stress value was obtained, which is very close to 5.03 MPa obtained from 
the simulation, throwing an error of 3%. As it is shown, the change in geometry of the mass determines a 
more precise analytical calculation. The increment in the arm length implies an increase in the normal stress, 
because an increased bending moment occurs. 
 
 
3. RESULTS AND ANALYSIS 

In this section, the theoretical and simulated results of the accelerometers are presented, performing 
a sweep in the range of the applied acceleration. As it is shown, from simulation results of Sections 2.1 and 
2.2, the analytical approach is useful for stress calculation. Since the normal stress generated in the 
suspension beams does not exceed the elastic limit of silicon (250 MPa) when 1g is applied to the 
accelerometers shown previously (section 2.1 and 2.2), we proceed to realize an analysis with larger values 
of g. Figure 10 shows the normal stress generated in the suspension beams of CCA, when 97 g's are applied. 
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The value of the normal stress generated in the suspension beams is 251 MPa at 97 g's (Figure 10). 
It indicates that the elastic limit has been exceeded, which may indicate that this accelerometer, fabricated in 
silicon, can operate properly until 96 g's approximately, where the normal stress value is of 249.149 MPa. In 
Figure 11, the normal stresses values obtained theoretically and by simulation are shown, from 1g to 96 g's 
for CCA. To ensure the integrity of the device we suggest as operating limit up to 92 g's. 

 
 

 
Figure 10. Normal stress generated in suspension beams 

of the conventional accelerometer, when 97 g's are 
applied 

 
Figure 11. Calculated and simulated normal 

stress generated in suspension beams of a CCA 

 
 

Figure 12 shows the normal stress generated in the suspension beams of the CAEB, shown in 
section 2.2, with 50 g's applied. 

 
 

 
 

Figure 12. Normal stress generated in suspension beams of CAEB, with 50 g's applied 
 
 

Figure 12 shows how the elastic limit of the silicon is exceeded. 251 MPa are obtained at 50 g's. 
Figure 13 shows the normal stress obtained theoretically and by simulation, from 1g up to 50 g's. At 49 g's 
the value of the normal stress is 246.84 MPa. Again, to ensure device integrity operating limit until 47 g's is 
suggested. 
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Figure 13. Calculated and simulated normal stress generated in suspension beams of a CAEB 
 

 
4. CONCLUSION 

The identification of the types of support of the suspension beams and of load are important in the 
theoretical analysis of normal stress. They have been identified as cantilever and uniformly distributed load, 
respectively. The error between simulated and calculated results of normal stress for both cases is small, 4% 
for CCA and 3% for CAEB. This fact is due to the variables used in the calculation of the load. 

The extension of the length of the beams produces considerably greater stresses. At 1g, normal 
stresses of 2.5 MPa and 5.2 MPa is generated for cases of CCA and of CAEB, respectively. While, the upper 
limit values are reached at accelerations of 96 and 47 g´s, producing simulated normal stresses near to the 
yield stress of 249 MPa, for the CCA and CAEB, respectively. 

It can be observed an inverse relationship between the applied normal force and acceleration. That 
means, CCA supports a wider range of acceleration than CAEB. Therefore, CAEB is recommended for 
systems requiring low levels of acceleration. Knowledge of the relationship between normal stress and 
acceleration is fundamental in the calculation of the range of acceleration supported by the accelerometer. 
The parameters that influence this relationship are of physical and geometric nature. The calculation 
procedure is given in this work and summarized in (9). 

 
 

APPENDIX A 
In this appendix, we show the code generated en MATLAB. 

clear all 
close all 
clc 
  
datax=[]; 
dataE=[]; 
  
wb=25*10^-6 
E=131*10^9; 
h=25*10^-6; 
g=9.81; 
pi=3.141592; 
  
lb=input('introduce the beam length  '); 
k1=(wb/lb)^3; % 
k=E*h*k1; 
m=input ('introduce the mass of the system '); 
f=(1/(2*pi))*((4*k)/m)^0.5 %frequency 
I=(wb*h*h*h)/(12); %inertia moment 
c=wb/2;  %maximum distance to the neutral surface 
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for i=1:100 
    p=g*i; 
    x=(m*p)/(4*k); 
    force=m*p; 
    w=force/lb; %load 
    M=(w*lb*lb)/2; %bending moment 
    Normal stress=((M*c)/I)/4; 
    datax=[datax;x]; 
    dataE=[dataE;Esfuerzo]; 
end 
  
save('esfuerzo.txt','datax','-ascii'); 
save('desplazamiento.txt','dataE','-ascii'); 
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