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1. INTRODUCTION  

  The cryptographic community has been pertinently more successful in the related field of 

identification and integrity, where the authentic users try to convince each other of their identity and the 

integrity of the secret message exchanged over an electronic channel [1], [2]. In ordinary communications an 

intruder can see all the exchanged messages, can delete, add or alter and redirect messages, can initiate the 

protocol with another party and re-use messages from part of communications [3], [4]. Hence cryptographic 

tools are very crucial in secret communications, as it prevents unauthorized persons from acquiring, stored 

data between computers or messages transferred between two mutually authenticated parties. 

We describe in this paper how the above capabilities are incorporated in the communication system 

developed here using the broad idea proposed in [5]. However the techniques used here are quite different 

from the one used in [5], but is close to the one used in [6]. We make use of [7]-[9] and the Fermat’s two 

squares theorem [10] in creating the keys for encrypting the plaintext and also the Rabin cryptosystem [11], 

without the modulus being made public for encrypting the message digest. In this protocol both the sender 

and receiver of a message can construct each other’s key in addition to their own key as in the case of [6]. 

The rest of the paper is organized as follows. In Section 2 we describe the basic idea of Rabin 

cryptosystems. In Section 3 we give some background about the pseudo inverse of a rectangular matrix [12], 

[5]. In Section 4 we explain the Goldbach conjecture and Fermat’s two squares theorem. Readers familiar 

with Section 1 to 4, may proceed directly to Section 5 of this paper. The working of the algorithm is 

illustrated with an example in Section 6 and the paper concludes with a Section on the security aspects of the 

system. 
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2. RABIN CRYPTOSYSTEM  

The aim of this chapter is to discuss the Rabin cryptosystems whose security is based on 

computational assumptions related to the integer factorization [13]. The Rabin public-key encryption scheme 

[1], [14] was the first example of a provably secure public-key encryption scheme- the problem faced by a 

passive adversary of recovering plaintext from some given ciphertext is computationally equivalent to 

factoring. The security of Rabin is more closely related to factoring than RSA. It deals with the problem that 

if .n p q  where p  and q  are distinct primes then squaring is a four-to-one map, so it is necessary to have 

a rule to choose the correct solution while decrypting the cryptotext. 

1) Choose two random primes p  and q  such that 3 (mod 4)p q   and set .n p q  . 

2) n  is made public and  ,p q  is kept as secret. To encrypt a message m  , compute  2 modC m n  

3) To recover plaintext m  from C , one does the following: 

a. Use the extended Euclidean algorithm to find the integers a  and b  satisfying . . 1a p b q  . Note that 

a  and b  can be computed once and for all during the key generation stage. 

b. Compute  
( 1)

4 mod

p

r C p



  and  
( 1)

4 mod

q

s C q



 . 

c. Find the four square roots of C  modulo n . They are 

1 . . . . (mod )m a p s b q r n   

2 . . . . (mod )m a p s b q r n   

3 1m n m   

4 2m n m   

and decides which of these is m . 

A drawback of Rabin’s public-key scheme is that the receiver is faced with the task of selecting the 

correct plaintext from among the four possibilities. This ambiguity in decryption can easily be overcome in 

practice by adding pre-specified redundancy to the original plaintext prior to encryption. Then, with high 

probability, exactly one of the four square roots 1m , 2m , 3m , 4m   of a legitimate ciphertext C  will possess 

this redundancy, and the receiver will select this as the intended plaintext. If none of the square roots of C  

possesses this redundancy, then the receiver should reject C  as a fraudulent message. This case does not 

arise with the problem in hand. 

 

 

3. MOORE-PENROSE INVERSE (PSEUDO INVERSE) 

3.1. Definition 

Let 
m×nA R  and 

n×mX R , then the following equations are used to define the pseudo inverse of 

a rectangular   matrix A  [12], [14].  

 

 A X A A          (1) 

 

 X A X X          (2) 

 

  TA X A X          (3) 

 

   TX A X A          (4) 

 

Equations (1) through (4) are called the Penrose conditions [15]. 

 

3.2. Definition 

 A pseudo inverse of rectangular matrix 
m×nA R  is also a rectangular matrix 

# n×mX A R   

satisfying Equations (1) through (4). A pseudo inverse is sometimes called the Moore – Penrose inverse after 

the pioneering work done by Moore (1920, 1935) and Penrose (1955). 

 

3.3. Construction of pseudo inverse 

For a given 
m×nA R , the pseudo inverse 

# n×mA R  is unique. 
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a. If m n  and  rank A m  then 
# 1A A  . 

b. If m n  and  rank A m  then 
TA A  is non-singular and  

 

 
1

# T TA A A A


         (5) 

 

c. If m n and  rank A n  then 
TA A  is non-singular and  

 

 
1

# T TA A A A


         (6) 

 

3.4. Conjecture 

a. If A  is a rectangular matrix in 
m×nR  formed by the mn   consecutive decimal places of any irrational 

number, with m n  , then  rank A m and A  is always right invertible. 

b. If A  is a rectangular matrix in 
m×nR  formed by the mn  consecutive decimal places of any irrational 

number, with m n  , then  rank A n  and A  is always left invertible. 

 

 

4. THE GOLDBACH CONJECTURE  

In 1742, C. Goldbach conjectured that, “every odd number greater than nine is expressible as the 

sum of three primes” and “every even number greater than four is expressible as the sum of two odd 

primes”.  The first one is called the odd Goldbach conjecture and the second one is called the even Goldbach 

conjecture [17]. In 1937, I.M. Vinogradov established the odd Goldbach conjecture. But the even Goldbach 

conjecture is still an open question and the best result obtained so far is given by Jin Run Chen in 1966. 

 

4.1. Vinogradov’s theorem 

 It was shown in 1937 by I.M. Vinogradov [9] that, “All sufficiently large odd integers are 

expressible as a sum of three primes”. Vinogradov proved the three - primes theorem by analytical means, 

using major arc/minor arc decomposition. 

 

4.2. Chen’s theorem 

  In 1966 Jin Run Chen [7] made considerable progress in setting the even Goldbach conjecture; in 

[8] Chen proved the following theorem. “A large even integer can be expressed as the sum of a prime and 

the product of atmost two primes”. Chen’s theorem is a giant step towards solving the Goldbach conjecture, 

and is a remarkable result using the Sieve methods. 

 

 

5. THE NEW SCHEME 

The main idea of this paper is, to develop a new cryptosystem using Chen’s theorem, Vinogradov’s 

theorem and the Fermat’s two squares theorem, which provides confidentiality, authenticity and integrity of 

the secret message shared over a public channel. This work is a novel method of developing a 

communication protocol which is secure against all the known possible attacks. The protocol is as follows: 

 We are looking for numbers which satisfy the following decomposition (a) and (b) given below and 

call these numbers as feasible numbers. Not all the odd and even integers are feasible. For example 11 and 14 

are not feasible. A MATLAB programme is developed to check whether a given even or odd number is 

feasible. Using MATLAB the following numbers are found to be feasible: 100, 101, 1002, 999, 150, 151, 

1029, 1578 and their decompositions are given by 100 79 7 3   , 101 89 7 5   , 1002 967 5 7   , 

999 991 3 5   , 150 73 7 11   , 151 139 5 7   , 1029 1021 5 3   , 1578 1543 5 7   . Bob 

and Alice choose only feasible numbers for this protocol. 

a. Suppose N  is a large even integer, then N  satisfies the decomposition 1 1N P r s   , where 1r  and 1s  

are distinct primes and P  is the largest prime satisfying this relation. 

b. If M  is a large odd integer, then M  satisfies the decomposition 2 2M Q r s   , where 2r   and 2s  are 

appropriate distinct primes and Q  is the largest primes satisfying this relation. 
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Chen’s and Vinogradov’s theorems guarantee the existence of two primes P  and Q  from the sufficiently 

large feasible numbers N  and M . 

 

5.1. Initial setup 

 As before, assume two protagonists, Alice and Bob. An authentication protocol is executed by Bob 

to make sure that Alice wants to communicate with him. 

 Alice and Bob choose two large numbers N  and M  respectively and after ascertaining their 

identity, exchange it over a secure channel. Alice then chooses the largest primes 1N  of the form 4 1t  , 
2N  

of the form 4 3t   less than N . Similarly, Bob chooses the largest primes 1M  of the form 4 1t  , 2M  of the 

form 4 3t  , less than M . 

We recall the Fermat’s two squares theorem, 

“If p  is a prime number of the form 4 1n , then 
2 2p a b     for some integers ,a b  ”. 

We exploit this theorem of Fermat’s, to obtain the pair of numbers  1 1,A B   and  2 2,A B  when the primes 

1N  and 1M  of the form 4 1t   are known. 
2 2

1 1 1N A B   and 
2 2

1 2 2M A B  . Now Bob and Alice, both 

possess 1A , 1B , 2A and 2B  once they are aware of N  and M . For example, if 1 104681N  , then 

2 2104681 155 284   and if 1 100957M   then 2 2100957 309 74  . 

Thus both the users Bob and Alice have the numbers N  and M  and both can compute 

 1 2 1 1, , ,N N A B  and  1 2 2 2, , ,M M A B . They keep the pair of four tuples safely with them. Bob and Alice 

agree for an irrational number I  which has a decimal expansion upto more than million places of decimals 

and I  is kept as secret. 

 

5.2. Plaintext encryption protocol 

When Alice wants to send a secret message P  to Bob, then Alice has the key tuples 

 1 2 1 1, , ,N N A B  and  1 2 2 2, , ,M M A B with her, computed from the numbers N  and M  exchanged over a 

secure channel. 

a. If 1B  is a feasible number, then she applies Chen’s theorem to 1B  and computes  1 2, ,p p p  such that 

1 1 2B p p p  , where p  is the largest prime and 1 2p p  , 1p  , 2p  are distinct primes satisfying this 

relation. Similarly if 2A  is feasible, she computes  1 2, ,q q q  from the odd feasible number 2A  using 

Vinogradov’s theorem, such that 2 1 2A q q q   , where q  is the largest prime and 1 2,q q suitable 

distinct primes  1 2q q  . 

b. Now, Alice computes the first encryption key 1 1 2 3K k k k  , a sequence of decimal places from the 

position q  in the expansion of the irrational number I , which is used to begin the encryption. The 

number at 
thq  place, say 1k  is used to substitute the beginning letter of the plaintext P  by shifting the 

alphabet by 1k  units. Afterwards the process is continued with the next integer 2k  and the next alphabet 

in the plaintext and so on, till the entire message is encrypted. This encrypted message say 'C  is obtained 

by using the key q  of Bob. 

c. Next, Alice computes her encryption key matrix AK  using the number p , where AK  is a 1 2p p   

rectangular matrix and the entries of AK  are the 1 2p p  consecutive decimal places picked from the 

position p  in the expansion of I  . 

d. She arranges the cryptotext 'C  in blocks of length 2p  with its numerical equivalents and obtains the 

final ciphertext C  by 'AC K C  . 

 

5.3. Message integrity encryption protocol 

Alice computes the product 2 2n N M . The integrity of the message is obtained by considering the 

letters 1 2 3 4, , ,m m m m m (say) occurring in the 1 2 1 2, , ,p p q q
th

 places of the first sentence in P . The 

compilation of word in the exact order is taken as message digest. She encrypts the word m  as 
2 (mod )w m n . Now the ciphertext C  and the encrypted message digest w  are sent to Bob through an 

open channel, for decryption. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 3, June 2018 :  1814 – 1821 

1818 

5.4. Ciphertext decryption protocol 

 Once Bob receives the ciphertext pair  ,C w , he does the following for decryption. 

He knows, p  is the position of the decimal place to start, in the expansion of the irrational number

I . From this position of p , he collects the 1 2p p  consecutive digits from the decimal expansion of I  and 

obtains the rectangular matrix AK  of order 1 2p p . He then computes the pseudo inverse 
#

AK  of AK  and 

applies this decryption key to the ciphertext C and obtains 'C ,  
#' AC K C , where C  is arranged in blocks 

of 1p -tuples with its  numerical equivalent. Now he knows his key value q  and obtains the decimal places 

from the q
th

 position of the decimal expansion of I  where the first encryption process has begun. Then he 

can easily obtains the plaintext P  by decrypting 'C  using the inverse substitution cipher of Bob. This 

process establish the authenticity of the message received from Alice as the message is locked with the keys 

of Bob and Alice, without formally exchanging the message P  between Bob and Alice. 

 

5.5. Decryption Protocol for Integrity: 

Bob wants to compute  modw n  and he does it by the following method. 

a. He computes 

 

 
2

2

1

4
2mod

N

Nm w N



  and 

 

 
2

2

1

4
2mod

M

Mm w M



  . 

b. By extended Euclidean algorithm, he finds 
2Ny  and 

2My  such that 
2 22 2 1N My N y M    . 

c. Then he computes the four possibilities for m , such that  

 
2 2 2 21 2 2 modN M M Nr y N m y M m n       

2 1r n r 
  

 
2 2 2 23 2 2 modN M M Nr y N m y M m n     

 
4 3r n r 

 . 

If Bob wants to reply to the message of Alice, he obtains the new keys 2K  and BK  using the values 

of 2B  and 1A  and continues the algorithm executed by Alice. He computes BK  with his key value q  and 

computes 2K  with the help of p . If Alice wants to continue the encryption process, Alice selects 3N , 4N , 

3 4 1N t  , 4 4 3N t  , where 3N , 4N  are the first prime numbers occurring just after N  and Bob selects 

3M and 4M , where 3M , 4M   are the first primes of the form 4 1t   and 4 3t   occurring just after M . 

The keys iK , AK , BK  are computed as before and thus these keys are dynamic. 

 

 

6. WORKING OF THE SYSTEM 

Assume that the system uses a 29-letter alphabet 

 

_ . ?

00 01 02 23 24 25 26 27 28

a b c x y z

        

 
 

Consider the case, the irrational number I   and let 28816N   and 47635M  . Then 

 

   1 2 1 1, , , 28813, 28807, 93, 142N N A B   

   1 2 2 2, , , 47629, 47623, 195, 98M M A B 
 

 

such that 
2 2

1 1 1N A B   and 
2 2

1 2 2M A B   . 

 

6.1. Encryption 

 Assume Alice contacts Bob for the first time. She picks the even number 1B  from 1N  and the odd 

number 2A  from 1M . If 1 2,B A  are feasible numbers, then she computes the decomposition 
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1 1 2142 127 5 3B p p p        for the even number 142 and finds the decomposition, 

2 1 2195 181 11 3A q q q        which exist for feasible numbers by definition. Here Bob’s key is 181 

and the key of Alice is 127. 

First Alice finds the decimal places from the position 181q   in the expansion of  . Now,  

1K  =6440229489 549303819644288109756659.... Alice encrypts the confidential message, namely the 

Plaintext P=“meet at the little schoolhouse” using 1K  as, each character in the plaintext is shifted with the 

corresponding numbers in 1K  using (mod 29). Then she computes the initial cryptotext 'C  with its 

numerical equivalent and arranges this in columns of length three, as a matrix. This matrix 'C  is given by, 

 

18 25 28 16 20 22 06 11 19 00

' 08 28 01 09 11 19 19 16 08 25

08 02 27 01 19 15 15 22 14 09

C

 
 


 
    

 

Alice finds the sequence of decimal places from the position 127p   and chooses 1 2 15p p   consecutive 

decimals from this position in the expansion of  . This decimal sequence “609550582231725” is arranged 

in the form of a 1 35 3 p p    rectangular matrix AK . This is given by, 

 

6 0 3

0 5 1

9 8 7

5 2 2

5 2 5

AK

 
 
 
 
 
 
 
   

 

Then 'C  is converted into the final cryptotext  

 

 ' mod 29AC K C   

 

6 0 3

18 25 28 16 20 22 06 11 19 000 5 1

08 28 01 09 11 19 19 16 08 259 8 7

08 02 27 01 19 15 15 22 14 095 2 2

5 2 5

 
 

  
   
  
   

 
 

 

 

16 11 17 12 03 03 25 16 11 27

19 26 03 17 16 23 10 15 25 18

(mod 29)21 28 14 20 24 20 27 04 14 02

06 11 22 13 15 04 03 15 23 10

01 17 16 16 14 20 21 23 07 08

 
 
 
 
 
 
 
 

 

 

Thus the ciphertext C is “qtvgbl_?lrrdowqmrunqdqypodxueuz k.dvqpepxlzoxh.scki”. Note that 30P   and 

50C  . 

 For message integrity, Alice chooses the 1
thp 2

thp 1
thq and 2

thq  characters in the plaintext namely, 

“_eee”. This message digest with its numerical equivalent : 26040404m  is enciphered as w  by using 

2 2 1371875761n N M   . That is 

 

 2 modw m n   

    
2

26040404 mod 1371875761n    914330048 mod 1371875761n    

 

Now the ciphertext C  and the encrypted message digest w  are sent to Bob through an open channel. 
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6.2. Decryption 

Bob can compute the rectangular matrix AK  by applying the key p  of Alice to the decimal 

expansion of  . Then he obtains the pseudo inverse of AK , 

 

   
1

# mod 29
T T

A A AAK K K K


    

25 25 26 05 17

13 06 15 08 19 mod 29

14 15 13 11 01

 
 


 
  

    

 

He divides the ciphertext C  into clocks of length five and decrypts it by applying 
#

AK  to C , 

 #' mod 29AC K C .  He computes the decimal sequence 1K , starting from the position q  in the decimal 

expansion of  . These decimal places are used to decrypt 'C  by the inverse substitution cipher and Bob 

obtains the original secret message " "P meet at the schoolhouse . 

 For decryption of the message digest, Bob finds 

 

 

   
2

2

1

4
2mod 1124 mod 28807

N

Nm w N



 
 

 

 

   
2

2

1

4
2mod 38246 mod 47623

M

Mm w M



 
 

 

2 2
2083, 1260N My y    such that 

2 22 2 1N My N y M     and it returns the four possible roots, 

 

 
2 2 2 21 2 2 mod 950545703N M M Nr y N m y M m n        

2 1 421330058r n r     

 
2 2 2 23 2 2 mod 26040404N M M Nr y N m y M m n        

4 3 1345835357r n r  
 

 

Among these four, 3r  gives him the original message digest. Bob can confirm it by considering the letters in 

the 1 2 1 2, , , thp p q q  place of the plaintext P . Bob can reply to Alice by using the  ,odd even  pair key 

 1 2,A B  as before. This process is then continued by Alice using the new prime pairs  3 4,N N and 

 3 4,M M  and it can be repeated any number of times as long as the initial numbers ,N M  are kept secret. 

 

 

7. CONCLUSION 

  The cryptosystem proposed here is quite secure as it is difficult to obtain the keys iK , AK  and BK  

without knowledge of N  and M . As the prime pairs  1 2,N N  and  1 2,M M  changes for each encryption, 

the keys iK , AK  and BK are dynamic and hence the system is secure against chosen plaintext attack. It also 

ensures the authenticity of the messages transferred between the sender and the receiver as t is locked with 

the keys of Bob and Alice. The Rabin’s cryptosystem without the modulus being made public, is used in 

encrypting the message digest and it ensures the integrity of the message transferred. 

  The use of the integers appearing in the decimal expansion of   (not made public) in 

encryption/decryption, enables it to be safe against the usual methods of cryptographic attacks. As long as N  

and M  are not known it is impossible for an intruder to break this system. If an intruder pretends as Alice 

and sends Bob a message, Bob can send a standard text for encryption. The ciphertext of this standard 

message from the intruder, enables Bob to assert the authenticity of the intruder. 

 The proposed data encryption scheme given above has advantages of large key space, high level 

security and is mathematically and computationally simple like [5], [18]. The system is secure against brute 

force attack since the keys are dynamic and the length of the plaintext and the ciphertext are not equal. Thus 

the system is secure against all possible known attacks. 
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