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 Simulated Annealing algorithm (SA) is a well-known probabilistic heuristic. 

It mimics the annealing process in metallurgy to approximate the global 

minimum of an optimization problem. The SA has many parameters which 

need to be tuned manually when applied to a specific problem. The tuning 

may be difficult and time-consuming. This paper aims to overcome this 

difficulty by using a self-tuning approach based on a machine learning 

algorithm called Hidden Markov Model (HMM). The main idea is allowing 

the SA to adapt his own cooling law at each iteration, according to the search 

history. An experiment was performed on many benchmark functions to 

show the efficiency of this approach compared to the classical one. 

Keyword: 

Heuristics 

Hidden markov model 

Machine learning 

Prediction 

Simulated annealing Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Mohamed Lalaoui,  

National School of Computer Science and Systems Analysis (ENSIAS), 

Mohammed V University, 

Mohammed Ben Abdallah Regragui Avenue, Madinat Al Irfane, BP 713, Agdal Rabat, Morocco. 

Email: med.lalaoui@yahoo.com 

 

 

1. INTRODUCTION  

Since the first version of simulated annealing algorithm described by [1], researchers focused on 

two strategies in order to improve the performance of SA. The first strategy was the implementation of 

parallel simulated annealing [2-4]. The second one was the optimization of cooling schedule and the 

adaptation of parameters. The cooling schedule is an important set of parameters that governs the 

convergence of SA. The set of annealing schedule as defined by [5], includes the cooling factor, the starting 

and stopping temperature, and the number of moves at each temperature. The cooling factor is the most 

influential feature among the set of annealing schedule. This factor can be defined as the method for which 

the algorithm reduces the temperature to its next value. If the temperature is reduced very quickly, a 

convergence to a local minimum may occur. However, if it is reduced too slowly, the algorithm takes a long 

time to converge. The most frequently used decrement rule is geometric schedule [6-8] in which the 

temperature decrease at each step t is governed by the formula           , where 0.85 ≤ α ≤ 0.96 and α is a 

constant. Another method which outperforms the commonly used geometric cooling, was proposed by Lundy 

[9-13]. Lundy’s cooling law uses the flowing formula :                    where β is a suitably small 

value.  

The use of machine learning to tune heuristic was adopted by many researchers [14- 17]. Especially, 

the Hidden Markov Model (HMM) [18]. HMMs success is due to ability to deal with the variability by 

means of stochastic modeling. It was used to enhance the behavior of metaheuristics by estimating their best 

configuration [19- 25]. 

This paper presents a new approach to enhance SA, which consists of tuning the Lundy’s cooling 

law during the run, using the Hidden Markov Chain. The main idea is to predict the best cooling law 

parameter  based on history of the run. To do that, first we train the HMM model by updating its parameters 
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using Baum-Welch algorithm [18]. Then we proceed to a classification process through the Viterbi algorithm 

[18] which gives the most probable cooling law parameter. The rest of this paper is organized as follows. 

Section 2 is devoted hybridization methodology of HMM, SA, then section 3 presents and discusses the 

experimental results, and finally, we conclude the paper in section 4. 

 

 

2. THE RESEARCH METHOD 

To enhance the performance of SA, an hybridization with the HMM was adopted. During the run, the 

hidden Markov model performs classification based on observable sequence generated from a set of rules. 

This sequence allows the model to guess the hidden state which can be a slow cooling helping the algorithm to 

converge to a global minimum, a medium or rapid cooling to speed up the search when no improvement in 

solution occurs (Figure 1). 

 

 

 

 

 

 

 
 

Figure 1. Markov chain for simulated annealing algorithm 

 

 

The Hidden Markov Model can be defined as 5-tuple              where: 

a. S= {  ,   ,   } is set of hidden states, which is  respectively: slow, medium and rapid cooling. 

b.   : is SA with a slow Lundy decrease law, the cooling factor is        .  

c.   : is the same variant of simulated annealing, where the cooling law is faster than the previous one 

        
d.   : is Lundy simulated annealing variant with where the rapid cooling law         
e.                 is the set of the observation per state. 

f.         is a transition probability matrix, where     is the probability that the state at time     is    , 

is given when the state at time   is    

g.        
    

    
    is the initial probability, where   

  is the probability of being in the state   . 

h.         is the observation probabilities,  where     is the probability of observing    in state   . This 

observations matrix   of hidden markov model is estimated at early stage by Maximum Likelihood 

Estimation (MLE).  

The main purpose of this model is to estimate state sequence S that best explains the observation 

sequence O. To generate the observable sequence of HMM model. We use a progression rate described in 

Equation (1), and a measure of the acceptance rate of the proposed solution described in Equation (2). 

 

                                                    (1) 

 

Where in Equation (1), the number of proposal is the number of solution generated by the neighborhood 

function in each iteration, inner and outer loop are the maximum number of iterations established for SA to 

find the best solution. 

 

                                                           (2) 

In Equation (2), the number of accepted solutions at iteration t is the accumulated number of accepted 

solution until the current iteration; and like the Eq. 1, number of proposal is the number of solution generated 

during the search. The acceptance rate   , and the progression rate   are then used to generate a sequence of 

class from a set of rules as follow: 

a.   : little decrease of acceptance rate. 

b.   : no improvement in cost function even if the progression rate is less than 50%.  

c.    : a great decrease of acceptance rate. 

d.    : a little increase of acceptance rate. 

e.    : a huge increase of acceptance rate. 

 

Rapid Cooling Medium Cooling Slow Cooling 
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During the run a set of observation is generated as follow: 

 

Algorithm 1: Generate_Observation 
Input:       ρ, Rule_1(     , Rule_2(     , Rule_3(     , b bRule_4(     , Rule_5(      
Output: O Current Observation   

   If Rule_1(     ==TRUE then O  1  End   
   If Rule_2(     ==TRUE then O  2  End   

   If Rule_3(     ==TRUE then O  3  End 
   If Rule_4(     ==TRUE then O  4  End   
   If Rule_5(     ==TRUE then O  5  End   
Return O 

 

The purpose of this model is to estimate state S that best explains the observation sequence O. Given 

the observation sequence             and a model          . Firstly, we estimate the transition and 

emission probabilities from the first sequence of observation using a supervised training. In which, we count 

frequencies of transmissions and emissions of the model:  

 

Algorithm 2: MLE 
Input:               
Output: A=(    ,B =    ) 

For i = 1 to T-1 do           
        

      End 

For i = 1 to T   do        
      

          End   

For i = 1 to 3   do      = ∑    
 
    and      = ∑    

 
       End 

For     to  3 do      
    For j=1 to 3   do                End 

    For t=1 to   do                 End 

End 

Return   

 

Then we use the Viterbi to select the corresponding state sequence            that best explains 

observations, secondly, the Baum Welch adjusts the model parameters           to maximize 

   |    i.e., the probability of the observation sequence given the model.  

 

2.1. Viterbi Algorithm 
After model parameters definition, the Viterbi algorithm is used to build HMM classification 

process. This algorithm is used to compute the most probable path as well as its probability. 

 

Algorithm 3: Viterbi  
Input: S                             , A = (    , B =     ) ,         

    
    

     

Output:        
    

    
   the most probable sequence of states 

For i =         do                 and           End   {Initialization}    
For t = 2 to  T do   

    For j=1 to 3  do  

                      
                    and                

                
     End 

End 

            
            ;    

           
         

For t     to 1 do   
           

     End 

Return    

 

2.2. Baum Welch Algorithm 
The Baum–Welch algorithm is used to adjust the parameters of HMM. This training step is based on 

Forward-Backward algorithm. 

 

2.2.1. Forward Algorithm  

The first algorithm used by the Baum-Welch algorithm is the Forward algorithm. This algorithm 

returns the forward variable       defined as the probability of the partial observation sequence until time t, 

with state    at time t,   (t)= (             | ), and we define    |   as the probability of the 

observation sequence given the model  . 

 

Algorithm 4: Forward 

Input: S=             O=           ,A = (   )   B =      ,       
    

    
    

Output:              ,    |            
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For     to   do               End 

For     to  T-1  do   

     For     to    do         (∑         
 
   )         End 

End 

    |   ∑      
 
    

Return      |   

 

2.2.2. Backward Algorithm 

The second algorithm used by Baum-Welch Backward. This algorithm calculates the backward 

variable        defined as the probability of the partial observation sequence after time  , given state   : 

                   |          
 

Algorithm 5: Backward 
Input : S=               O=             A=(   )  B=      ,        

    
    

      

Output :           :the probability of the partial observation sequence 
For      to   do           End 
For       to     do   

        For     to    do       ∑                
 
     End 

End  

Return   

 

The Baum-Welch is then used to re-estimate the parameters of the model  , which maximizes the 

probability of the observation sequence. This algorithm is described as follow: 

 

Algorithm 6: Baum-Welch  
Input: S=               O=             A= (   )  B=       

      
    

    
    ,                   ,    |            

Output:    ̅      ̅      ̅      ̅     
Repeat   

         |    Forward           ; β Backward(O, A, B,   )   
  For t=1 to T   do 
      For i=1 to 3   do   

          For j=1 to 3  do         
                 

   |  
  End    

                ∑        
 
     

      End  
  End 

  For  k=1 to T   do 

     For i=1 to 3   do   

        For j=1 to 3  do  ̅          ;  ̅   
∑         

   
   

∑       
   
   

 ;    ̅   
∑      

 
         

∑      
 
   

   End 

     End 

  End 

While (   |   increase)  

Return  ̅  ̅ 

 

2.3. The Hybridization of HMM and SA  

In the following we will implement a variant simulated annealing based on hidden Markov models. 

The interest behind hybridization the simulated annealing with the HMM is to improve the SA’s 

performance. 

 

Algorithm 7: HMM-SA algorithm 
Data: The objective function     

Initialization O:Empty observation sequence,    initial temperature,    final 

temperature,       :starting point, cmp    ,  :progression rate,   :acceptance rate, 

 n  0:temperature stage 
 

Repeat  
    Repeat  

                          u is a Random vector from the uniform distribution over         
       If                      then          

                            else Generate a pseudo-random number        ∈          

                                 If             
             

  
   then           End 

       End 

      Until  equmbrium is approached sufficiently closely at    

      Update( ,   ) 
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        Generate-Observation                                     

      If           then 

                                        ;        MLE     ; state Viterbi         ; cmp  cmp    ; 
                        else 

                                 ;        Baum-Welch(O,A,B) ; state Viterbi(O,A,B)  
               End 

 Cooling_law           

         Cooling_law       
Until             indicating that the system is frozen 

 

3. EXPERIMENT 

The experiment was designed to measure the effects of hybridization of HMM and SA and to show 

how our approach can improve the solution quality, we have chosen five benchmark functions selected from 

the literature (Table 1).  

 

 

Table 1. Benchmark functions 

Name Function Formula 

Six-Hump Camel       (       
  

  
 

 
)  

              
    

  

Levy N° 13                                                              

Quadric        ∑ (∑   

 

   
)

  

   
 

Tablet            
  ∑   

 
 

   
 

Sphere       ∑   
 

 

   
 

 

 

The proposed hybridization of SA algorithm and HMM was coded in Scilab programming language 

and experiments were conducted on a PC with an Intel Core i7-5500U 2.40 GHz (4 CPUs) and 8 GB of 

RAM. The hybridization of SA and HMM have been tested using the benchmark functions presented above. 

Each function was tested over 30 trials. We eliminated the effects of other factors which play an important 

role in the performance of algorithm, by choosing the same starting points for all methods (in each run) and 

their location was chosen to be far from basins of attraction of global minima. Also, we have chosen the same 

initial acceptance probability and an identical length of the inner and outer loops. The initial temperature,   , 

have been calculated from mean energy rises    during the initialization. Before the start of the SA, the mean 

value of cost rises is estimated by a constant number of moves equal to 100. Then, initial temperature    is 

calculated using the following formula    
   

    
 [26], where    is the initial average probability of 

acceptance and is taken equal to 0.95. The length   of observed sequence was chosen equal to 10. 

 

3.1. Numerical Results 

The computational results and statistical analyses are summarized in Table 2. It provides the details 

of the results for the test functions. The overall best solution of the total 30 replications is shown in bold. 

HMM-SA provides the best solution for the test functions   ,     . In general, HMM-SA algorithm 

overcomes the classical variants in all benchmark functions.  

 

 

Table 2. Results comparisons between HMM-SA and the classical SA 

 

Functions HMM-SA CSA

best -1.032E+00 -1.031E+00

mean -1.032E+00 -1.031E+00

best 3.768E-06 1.371E-05

mean 7.864E-02 6.944E-02

best 2.013E-07 6.671E-06

mean 6.181E-06 4.000E-03

best 9.903E-07 7.112E-06

mean 6.643E-05 1.432E-03

best 4.311E-09 8.745E-06

mean 4.662E-06 1.155E-03
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3.2. Comparison of Convergence Performance 
To obtain further insights into the convergence behavior our approach, HMM-SA method was 

compared to the classical SA. Experiments were designed to measure the effects of the hybridization of SA 

and HMM presented in the previous section. It was noticed that the HMM-SA can converge rapidly to global 

minimum. The time gained in early stage can be used to converge to a better solution. This behavior is 

depicted in Figure 2.  

 

 

           
 

     

Figure 2. Comparison of HMM-SA and the classical SA  

 

 

3.3. Statistical Analysis 
We performed a Mann–Whitney–Wilcoxon (MWW) test [27] to determine whether the algorithm 

reach a significant performance. We choose this statistical test because we have two heuristics to compare. 

The Mann–Whitney–Wilcoxon test compares whether there is any difference from two algorithms. The null 

hypothesis    says that the two algorithms have the same means (         ) and the alternative 

hypothesis    says that two algorithms have a different means (        ). According to table 3, for 

functions            , the p-value is less than the significance level of        . We can reject the null 

hypothesis, so we can conclude that our hybridization of HMM and SA outperforms the classical instance of 

SA.  

 

 

Table 3. Statistical analysis for benchmark functions 

 
 

 

4. CONCLUSION 

In this study, we proposed a self-tuning capability of simulated annealing based on Hidden Markov 

Model. To test the performance of this approach, it was applied to a number of benchmark functions selected 

from literature. This approach allows to controls the cooling of SA during the run, based on sequence of state 

1.7E-04 0.24 1.9E-09 2.0E-07 3.7E-09

          

       

𝑓
 
 𝑓

 
 

𝑓  𝑓
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generated from a set of rules. The HMM parameters are calculated and updated at each cooling step.  The 

Viterbi algorithm is then used to classify the observed sequence. The comparisons of the proposed approach 

and the classical simulated annealing demonstrate that the simulated annealing based on HMM classifier is 

able to find better solutions in reasonable time. Our approach is able to manage time by rapidly decreasing 

temperature and thus anticipating exploitation state, this lead to a better convergence. Future research may be 

compared to SA with fuzzy logic controllers and the application of our method to some optimization 

problems should be pursued. 
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