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 The serious issue in the field of wireless communication is the security and 

how an organization implements the steps against security breach. The major 

attack on any organization is Man in the Middle attack which is difficult to 

manage. This attack leads to number of unauthorized access points, called 

rogue access points which are not detected easily. In this paper, we proposed 

a Hopfield Neural Network approach for an automatic detection of these 

rogue access points in wireless networking. Here, we store the passwords of 

the authentic devices in the weight matrix format and match the patterns at 

the time of login. Simulation experiment shows that this method is more 

secure than the traditional one in WLAN. 
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1. INTRODUCTION 

Development in science increases the usage of technology day by day, especially in the area of 

wireless communication. Widespread use of the internet and the advancement of technology leads to the need 

of better security in wireless communication. They provide flexible workforce, mobility, freedom of access 

and other special characteristics that can achieved with suitable security and proper performance 

requirements [1]. Therefore, taking care of security is much more difficult in wireless networking as 

compared to the wired network. Wireless communication has gained popularity due to its ease of use, speed, 

flexibility, etc. So it is more important in case of wireless networking to provide authentic access control to 

the users and protect sensitive information against possible violations [2]. Security has become one of the 

vital aspect of any organization on which an organization builds, whether it is a security of a particular 

computer system or a security of the whole network. The rapid development in wireless communication is a 

big issue of security. As data is transferred over the waves every time, anybody can use it if he/she is in the 

range of wireless signals. Many of us use the protocols WPA and WEP in systems to provide encryption and 

decryption to the messages and protect unauthorized access of the resources [3]. Although they provide 

encryption and good authentication mechanisms to protect user and data eavesdropping, but not in a solid 

way. Even these protocols could not protect the organization from the unauthorized access by their own staff.  

Wireless Network works in two modes of operation ad hoc and infrastructure mode. In ad hoc 

networking, wireless nodes communicate directly while in the infrastructure type of mode wireless nodes are 

communicating through a central point called a wireless access point (WAP) [4]. Maintaining security to both 

the modes is a very tedious task, as various attacks become possible in wireless networking. The most 

common attack is a Man-in-the-Middle-attack, where an intruder placed himself between sender and receiver 
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are in the network [5]. In wired communication detection of this type of attack is easy while in the case of a 

wireless communication attacker easily access the information by making fake access points. These access 

points can be easily bought as they are inexpensive. These unauthorized access points are called rogue access 

points [6]. Any unsanctioned, unauthorized wireless point that connects to an enterprise‟s authorized network 

is defined as a rogue access point. It is one of the greatest risks to an organization‟s security. These access 

points work as an open network system for the outsiders which are ready to take out information from the 

enterprise‟s traffic.    

We explore the use Hopfield neural network method of Artificial Neural Network for detecting the 

presence of rogue access points in the network. Hopfield network is trained with known patterns and recall 

that pattern at the time of execution. Section II focuses on different types of rogue access point present in any 

organization and their methods of detection. Section III describes the work done by different researchers and 

industry solutions related to this problem. Section IV explains Hopfield Neural Network and then the 

simulation part for detection of rogue access points using the neural network tool. 

 

 

2. THE ROGUE ACCESS POINT 

Rogue access point is a point connected to the network without the permission of the administrator. 

Therefore, it is called an unauthorized point which accesses the information. The unauthorized access point is 

divided into two categories: – 2.1) Rogue access point, 2.2) Fake access point. 

 

2.1. Rogue access point  

Rogue access point is an access point which is installed by not only the outsider, but also by the 

authorized user to take benefit of the network. There are four common types of the rogue access point: 

 

2.1.1. Employee Rogue Access Point 

This type of access point occurred when employee buy an access point and installs it on the 

company‟s LAN for its own benefit without permission. It also opens the way for outside attackers to access 

the network. This type of incident takes place where there is a lack of wireless security policies and lack of 

awareness in employees. 

 

2.1.2. Attacker’s external rogue access point 

This type of access point is setup outside the organization by the attacker and does not connect to the 

network. It aims to allow the target employee to connect to a rogue access point. All user traffic is redirected 

through this rogue access point and attacker analyzes it. This attack is also called Man-in-the Middle Attack. 

 

2.1.3. Attacker’s internal rogue access point 

In contrast, with above access point this access point is set up inside the organization by the attacker 

and does not connect to the network. But an attacker uses this rogue access point at a later time to access the 

internal LAN. Once it is successful, it would be a serious security breach. 

 

2.1.4. Neighborhood rogue access point 

As the name suggests, the access point is set-up by another company in the close vicinity. 

 

2.2. Fake access point  

Fake access point is an access point that is inserted by an outsider or an attacker without the 

permission of the authorized user of the network [7]. He used this access point for stealing information and 

for other false purposes. All these types of rogue access point are prevented by the two processes, first is 

rogue access point detection to identify the rogue access point and the second one has taken security 

measures to disable the rogue access point.    

Most enterprises use WPA2 security for wireless communication. But even WPA2 also cannot 

protect from rogue access point, we can incorporate WPA2 only on managed access point, but the rogue 

access point is an unauthorized access point. So, we cannot enforce security control over it. Although 

detecting rogue access points is a challenging process. There are many existing techniques for detection of 

rogue access point [8],[9]. These techniques divided into following categories like traditional approach, client 

side approach, server side approach and hybrid approaches. 

 

2.3. Traditional Approach 

Traditional approach based on matching concept. It verifies the MAC address and SSID. If all the 

attributes are same then it is an authorized access point. Traditional approach isn't effective for authentication 
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of authorized access points as the number of tools being available in the market that spoof MAC address and 

logical address. So, this approach is not sufficient.      

 

2.4. Server side Approach 

It is the central controller of the wired and wireless network. Software tools are installed on a 

centralized server and they analyze the whole network and detect rogue access point by performing some 

operations and if found something wrong, it checks the status of that particular access point. 

 

2.5. Client Side Approach 

This is a challenging process as there is former information about networks and about the access 

point list [10]. This approach takes services from server sides for detection of rogue access points or they also 

install software on their device of access point whether it is authorized or not. 

 

 

3. LITERATURE SURVEY 

Along with academic solutions there are some industrial solutions also exist which are as follows: 

Air Defense contains sensors deploy throughout the network [11]. Here, network manager handles the 

software tool, which detects attacker and attacks in the network. The only problem with this tool is that its 

response time is slow but it is a commercial product and easily available. 

Air Magnet is also a commercial product and helps in detecting an unauthorized access point and 

denial of service attack by flooding [12]. This also requires a technical manager for detection. Jana et 

al.proposed server side solution using clock skews of the access point [13]. This approach is unable to detect 

MAC spoofing and has a lack of accuracy and speed in the calculation of clock skews. Kindberg et al. 

Proposed a model for security for public Wi-Fi network [14]. It uses encryption and authentication 

techniques to authenticate the access point in the wireless network. 

Shivraj et al. Present server side Hidden Markov Model (HMM) based approach to detect rogue 

access point [15]. This technique achieves more than 80% accuracy and uses a variation in packet inter 

arrival time to detect authorized and unauthorized access points. This approach is also in denial of service 

attack. Kim et al. Proposed client side approach for detecting fake access point using the idea of received 

signal strength (RSS). They collect the signals, normalize it and then apply sequential hypothesis technique. 

They never consider the distance, as it affects the signal strength. 

Kao et al. Proposed client side approach for detecting rogue access point [16]. It uses a passive 

packet analysis approach based on bandwidth estimation. Liran Ma et al. Proposed hybrid approach for 

detecting the rogue access points [17]. It is a cost effective solution and also the proposed model uses a 

traditional approach for detecting fake access points. Here, in this paper, we propose the automatic detection 

of rogue access points by using the Hopfield neural network approach. For accessing any service or resource 

of the network, the device must first communicate with another device, i.e. pair with each other for 

communication. A four way handshake protocol is involved in the set up of WLAN [18-21]. The main 

purpose of this process is to enable an access point to authenticate itself to the client and then use the user‟s 

login and password. In conventional method passwords are easily tracked by the intruders, but in this 

mechanism the tracking/cracking of password is impossible. 

 

 

4. HOPFIELD NEURAL NETWORK 

In the neural networks, when we use feed forward flow of information, i.e. one output vector is 

associated to every input vector is called a Feed Forward Network. But sometimes, it is possible where 

output value can return back to the input repeatedly, then; these types of situations come under feedback 

networks. John Hopfield proposed this type of concept of neural network in his paper which was published in 

1982 [22]. Hopfield works on auto associative non-linear properties of the network. It is a fully connected or 

recurrent type of network in which each neuron is linked with each other but not with it. Neural networks are 

complex and non-linear in nature, so analyzing their behavior is difficult. Hopfield used non-linear dynamical 

system theory on neural networks. In the network architecture, he embedded the physical principle and set up 

an energy function. Hopfield Neural Network basically uses the concept of content addressable memory [23]. 

The network develops a number of stable points in state space and the other points in the state space move 

into the direction of stable points, here known as attractors which are energy minima. Attractors can also be 

applied when we reconstruct the missing information and often called associative memory on the Hopfield 

Neural Network. Operation of auto associative memory is rooted from reconstruction property in the sense 

that the new input states can be linked to the appropriate patterns already stored in the memory. The Hopfield 

Neural Network is a single layer, non-linear and constant addressable memory network and of two types: 
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discrete and continuous. The Hopfield Neural Network model consists of two layers, one is input and other is 

output, where each unit is connected to every other unit in the network other than itself [24], [25]. HPNN 

consists of neurons and each neuron can be in one of two states, i.e. +1 and p bipolar patterns: 

 

X
u  

=    
    

        
 ) 

 

The connection of weight matrix is square and symmetric i.e. all the diagonal elements of Hopfield 

network are zero: 

 

Wij = Wji   and Wii = 0 

 

Hopfield specified the Wij „s by using the Hebbian rule [26] i.e 

 

Wij  = ∑   
  

      
 

    (i≠j) 

 

Hopfield associated with a function known as an energy function or Lyapunov function. This 

function proves that the net will converge to a stable limit point. The energy function is given by: 

 

E =     ∑ ∑             ∑      ∑         

 

So for storing a pattern, the energy function should be minimized. Figure 1 shows a Hopfield model with 

eight nodes, where each node is connected to every other node in the network.    

 

 

  
 

Figure1. Hopfield Neural Network 

 

Figure 2. Devices paired with the router 

 

 

5. SIMULATION DESIGN 

Figure 2, depicts the connection of different devices to the router used for simulation 

implementation. In this segment we take eight entities, smart phones, laptops and other wireless devices that 

are connected to the Wi-Fi router. The passwords for accessing the devices are stored in the router and also 

known to the authentic user. Memory of router stores the different trained patterns of the passwords that are 

used by the organization staff and other authentic employees. The passwords are first normalized and then 

convert into bipolar, as Hopfield network take bipolar inputs. We train our network for a particular pattern 

and stored in the memory. By looking at network parameters, an attacker did not find out the design of the 

network. In this section, we are conducting the simulation of real test data [27]. Here we, memorize the input 

pattern sets by minimizing the error between the desired and actual output for 8 sets having 40 bits each. 

                                   

Input data set  
H = [0 0 1 1 0 0 0 1 

0 0 0 0 1 1 1 1 

0 0 0 0 1 1 0 1 

1 0 1 0 1 1 1 1 
0 1 1 1 1 0 1 0 

0 0 0 1 0 1 1 0 
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0 0 1 0 0 1 0 0 

1 1 0 1 0 1 1 0 

0 0 1 0 1 1 1 1 
1 1 0 1 0 0 1 0 

0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 0 

0 0 1 0 0 1 0 0 
1 1 1 0 0 0 1 1 

0 0 1 1 1 0 0 1 

1 0 0 1 1 1 1 0 
0 1 1 0 0 0 0 1 

1 0 0 0 1 0 1 1 

0 0 1 1 0 0 0 0 
0 1 0 0 1 0 1 0 

0 0 0 1 0 1 1 1 

1 1 0 0 1 1 1 1 
0 0 1 0 0 0 1 0 

0 1 0 1 1 1 0 1 

0 1 1 1 0 0 0 1 
0 0 0 0 1 1 1 0 

0 0 0 1 0 0 1 0 

1 1 1 0 1 1 0 1 
0 0 1 1 0 1 0 0 

1 1 0 0 1 1 0 1 
0 0 0 1 0 1 1 0 

1 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 0 
0 0 1 0 0 0 1 1 

0 1 0 0 0 0 0 1 

0 0 1 1 0 1 1 0 
0 0 0 0 1 1 0 1 

1 1 1 0 1 1 1 0] 

 

Output data set 
T = [0 0 1 1 0 0 0 1 

0 0 0 0 1 1 1 1 

0 0 0 0 1 1 0 1 
1 0 1 0 1 1 1 1 

0 1 1 1 1 0 1 0 

0 0 0 1 0 1 1 0 
0 0 1 0 0 1 0 0 

1 1 0 1 0 1 1 0 

0 0 1 0 1 1 1 1 
1 1 0 1 0 0 1 0 

0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 0 

0 0 1 0 0 1 0 0 

1 1 1 0 0 0 1 1 

0 0 1 1 1 0 0 1 

1 0 0 1 1 1 1 0 
0 1 1 0 0 0 0 1 

1 0 0 0 1 0 1 1 

0 0 1 1 0 0 0 0 
0 1 0 0 1 0 1 0 

0 0 0 1 0 1 1 1 

1 1 0 0 1 1 1 1 
0 0 1 0 0 0 1 0 

0 1 0 1 1 1 0 1 

0 1 1 1 0 0 0 1 
0 0 0 0 1 1 1 0 

0 0 0 1 0 0 1 0 

1 1 1 0 1 1 0 1 
0 0 1 1 0 1 0 0 

1 1 0 0 1 1 0 1 

0 0 0 1 0 1 1 0 
1 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 1 1 
0 1 0 0 0 0 0 1 
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0 0 1 1 0 1 1 0 
0 0 0 0 1 1 0 1 

1 1 1 0 1 1 1 0] 

 

After converting inputs into bipolar 
[ -1 -1 1 1 -1 -1 -1 1 

-1 -1 -1 -1 1 1 1 1 

-1 -1 -1 -1 1 1 -1 1 
1 -1 1 -1 1 1 1 1 

-1 1 1 1 1 -1 1 -1 

-1 -1 -1 1 -1 1 1 -1 
-1 -1 1 -1 -1 1 -1 -1 

1 1 -1 1 -1 1 1 -1 

-1 -1 1 -1 1 1 1 1 
1 1 -1 1 -1 -1 1 -1 

-1 -1 -1 -1 1 -1 -1 -1 

1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 1 -1 1 -1 -1 

-1 -1 1 -1 -1 1 -1 -1 

-1 -1 1 -1 -1 1 -1 -1 
1 1 1 -1 -1 -1 1 1 

-1 -1 1 1 1 -1 -1 1 

1 -1 -1 1 1 1 1 -1 
-1 1 1 -1 -1 -1 -1 1 

1 -1 -1 -1 1 -1 1 1 
-1 -1 1 1 -1 -1 -1 -1 

-1 1 -1 -1 1 -1 1 -1 

-1 -1 -1 1 -1 1 1 1 
1 1 -1 -1 1 1 1 1 

-1 -1 1 -1 -1 -1 1 -1 

-1 1 -1 1 1 1 -1 1 
-1 1 1 1 -1 -1 -1 1 

-1 -1 -1 -1 1 1 1 -1 

-1 -1 -1 1 -1 -1 1 -1 
1 1 1 -1 1 1 -1 1 

-1 -1 1 1 -1 1 -1 -1 

1 1 -1 -1 1 1 -1 1 
-1 -1 -1 1 -1 1 1 -1 

1 -1 1 -1 -1 -1 1 -1 

-1 -1 -1 1 -1 -1 -1 -1 
-1 -1 1 -1 -1 -1 1 1 

-1 1 -1 -1 -1 -1 -1 1 

-1 -1 1 1 -1 1 1 -1 
-1 -1 -1 -1 1 1 -1 1 

1 1 1 -1 1 1 1 -1] 

 

5.1. Training Using Neural Networks 

 

Weights of layer1 from input 1 
0.3927 -0.0182 0.0106 0.0119 -0.0335 -0.0151 -0.0122 -0.0869 0.0138 -0.0426 

-0.0182 0.3964 0.1059 0.0663 -0.0220 0.0590 -0.0113 -0.0365 0.1329 -0.0655 
0.0106 0.1059 0.3561 0.0487 -0.0645 0.0009 0.0142 -0.0635 0.0783 -0.1053 

0.0119 0.0663 0.0487 0.3719 -0.0969 -0.0203 0.0353 -0.0664 0.0927 -0.0752 

-0.0335 -0.0220 -0.0645 -0.0969 0.5181 -0.0110 -0.0280 -0.0555 0.0240 0.0185 
-0.0151 0.0590 0.0009 -0.0203 -0.0110 0.3626 0.0152 0.0925 0.0200 0.0382 

-0.0122 -0.0113 0.0142 0.0353 -0.0280 0.0152 0.3685 0.0030 0.0527 -0.0783 

-0.0869 -0.0365 -0.0635 -0.0664 -0.0555 0.0925 0.0030 0.4055 -0.0944 0.1214 
-0.0138 0.1329 0.0783 0.0927 0.0240 0.0200 0.0527 -0.0944 0.3905 -0.1127 

-0.0426 -0.0655 -0.1053 -0.0752 0.0185 0.0382 -0.0783 0.1214 -0.1127 0.3757 

-0.0248 0.0173 0.0389 0.0078 0.1096 -0.0504 -0.0313 -0.0909 0.0276 -0.0493 
-0.0020 -0.0666 -0.0295 0.0560 -0.1209 -0.0403 -0.0175 0.0281 -0.0746 0.0375 

0.0137 -0.0083 0.0280 -0.0379 -0.0535 0.0813 0.0408 0.0655 -0.0347 -0.0016 

-0.0122 -0.0113 0.0142 0.0353 -0.0280 0.0152 0.1454 0.0030 0.0527 -0.0783 
-0.0122 -0.0113 0.0142 0.0353 -0.0280 0.0152 0.1454 0.0030 0.0527 -0.0783 

0.0111 -0.0089 -0.0669 0.0301 -0.0561 -0.0309 -0.0095 0.0254 0.0070 0.0509 

0.1448 -0.0009 0.0495 0.0197 0.0761 -0.0655 -0.0435 -0.1778 0.0415 -0.0919 
-0.0419 0.0097 0.0103 0.0434 -0.0223 0.0487 -0.0335 0.0296 -0.0270 0.0264 

0.0419 -0.0097 -0.0103 -0.0434 0.0223 -0.0487 0.0335 -0.0296 0.0270 -0.0264 

0.0241 0.0776 0.0345 0.1135 -0.0689 -0.0356 -0.1101 -0.0694 0.0400 0.0031 
0.0899 -0.0778 -0.0416 -0.0202 0.0666 -0.0121 0.0236 -0.0534 -0.0185 -0.0177 

-0.1234 0.0557 -0.0230 -0.0767 0.2284 0.0011 -0.0516 -0.0022 0.0425 0.0362 

0.0646 0.1186 0.0531 0.0118 -0.1110 0.1364 -0.0206 0.0590 0.0523 0.0133 
-0.0899 0.0778 0.0416 0.0202 -0.0666 0.0121 -0.0236 0.0534 0.0185 0.0177 
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0.0032 0.0270 -0.0547 0.0440 0.0885 0.0191 0.0385 -0.0310 0.0891 -0.0074 

-0.0013 0.0396 0.0843 -0.1000 0.0324 0.0212 -0.0211 0.0029 -0.0145 -0.0302 

0.0998 -0.0471 -0.0242 -0.0901 0.0429 -0.0217 -0.0070 -0.0250 -0.0259 0.0031 
-0.0978 0.1137 0.0537 0.0342 0.0780 0.0620 0.0245 -0.0030 0.1006 -0.0406 

0.0292 0.0300 -0.0410 -0.0292 0.0631 0.0851 -0.0661 0.0315 0.0017 0.0693 

-0.0291 -0.0300 0.0410 0.0292 -0.0631 -0.0851 0.0661 -0.0315 -0.0017 -0.0693 
0.0457 -0.0487 0.0003 -0.0114 -0.0075 0.0422 0.1049 0.0076 -0.0002 -0.0488 

-0.0612 0.0104 0.0687 0.0027 -0.1091 -0.0461 0.0020 0.0264 -0.0361 -0.0221 

-0.0151 0.0590 0.0009 -0.0203 -0.0110 0.1394 0.0152 0.0925 0.0200 0.0382 
0.0013 -0.0396 -0.0843 0.1000 -0.0324 -0.0212 0.0211 -0.0029 0.0145 0.0302 

0.0579 -0.0374 -0.0139 -0.0467 0.0206 0.0270 -0.0405 0.0046 -0.0530 0.0295 

0.0829 0.0866 -0.0026 0.0761 -0.0115 0.0161 0.0027 -0.0644 0.1214 -0.0323 
0.0099 0.0307 0.0174 -0.0699 -0.0237 -0.0097 -0.0306 0.0283 -0.0074 0.0208 

0.0169 0.0186 -0.0268 0.0061 0.0350 0.1004 0.0793 0.0345 0.0544 -0.0090 

0.0106 0.1059 0.1330 0.0487 -0.0645 0.0009 0.0142 -0.0635 0.0783 -0.1053 
-0.1376 -0.0222 -0.0383 0.0146 0.0795 -0.0240 0.0763 0.0289 0.0206 -0.0046 

   

Weights from Columns 11 through 20 
-0.0248 -0.0020 0.0137 -0.0122 -0.0122 0.0111 0.1448 -0.0419 0.0419 0.0241 
0.0173 -0.0666 -0.0083 -0.0113 -0.0113 -0.0089 -0.0009 0.0097 -0.0097 0.0776 

0.0389 -0.0295 0.0280 0.0142 0.0142 -0.0669 0.0495 0.0103 -0.0103 0.0345 

0.0078 0.0560 -0.0379 0.0353 0.0353 0.0301 0.0197 0.0434 -0.0434 0.1135 
0.1096 -0.1209 -0.0535 -0.0280 -0.0280 -0.0561 0.0761 -0.0223 0.0223 -0.0689 

-0.0504 -0.0403 0.0813 0.0152 0.0152 -0.0309 -0.0655 0.0487 -0.0487 -0.0356 
-0.0313 -0.0175 0.0408 0.1454 0.1454 -0.0095 -0.0435 -0.0335 0.0335 -0.1101 

-0.0909 0.0281 0.0655 0.0030 0.0030 0.0254 -0.1778 0.0296 -0.0296 -0.0694 

0.0276 -0.0746 -0.0347 0.0527 0.0527 0.0070 0.0415 -0.0270 0.0270 0.0400 
-0.0493 0.0375 -0.0016 -0.0783 -0.0783 0.0509 -0.0919 0.0264 -0.0264 0.0031 

0.3518 -0.0198 -0.0287 -0.0313 -0.0313 -0.0999 0.1038 0.0584 -0.0584 0.0391 

-0.0198 0.3537 -0.0032 -0.0175 -0.0175 0.0231 -0.0218 0.0705 -0.0705 0.0735 
-0.0287 -0.0032 0.3407 0.0408 0.0408 -0.0888 -0.0151 0.0493 -0.0493 -0.0787 

-0,0313 -0.0175 0.0408 0.3685 0.1454 -0.0095 -0.0435 -0.0335 0.0335 -0.1101 

-0.0313 -0.0175 0.0408 0.1454 0.3685 -0.0095 -0.0435 -0.0335 0.0355 -0.1101 

-0.0999 0.0231 -0.0888 -0.0095 -0.0095 0.4119 -0.0888 -0.1077 0.1077 0.0396 

0.1038 -0.0218 -0.0151 -0.0435 -0.0435 -0.0888 0.4717 0.0165 -0.0165 0.0632 

0.0584 0.0705 0.0493 -0.0335 -0.0335 -0.1077 0.0165 0.4007 -0.1776 0.0770 
-0.0584 -0.0705 -0.0493 0.0335 0.0335 0.1077 -0.0165 -0.1776 0.4007 -0.0770 

0.0391 0.0735 -0.0787 -0.1101 -0.1101 0.0396 0.0632 0.0770 -0.0770 0.4467 

0.0233 -0.0017 0.0241 0.0236 0.0236 -0.0474 0.1132 0.0094 -0.0094 -0.0438 
0.0863 -0.1192 -0.0776 -0.0516 -0.0516 -0.0087 -0.0371 -0.0318 0.0318 -0.0251 

-0.0985 -0.0405 0.0709 -0.0206 -0.0206 0.0276 -0.0339 -0.0026 0.0026 0.0324 

-0.0233 0.0017 -0.0241 -0.0236 -0.0236 0.0474 -0.1132 -0.0094 0.0094 0.0438 
-0.0113 -0.0451 -0.0626 0.0385 0.0385 0.0739 -0.0081 -0.0373 0.0373 0.0050 

0.0311 -0.0855 0.0659 -0.0211 -0.0211 -0.0970 0.0299 -0.0332 0.0332 -0.0789 

-0.0455 -0.0642 0.0011 -0.0070 -0.0070 0.0444 0.0543 -0.1314 0.1314 -0.0831 
0.0653 -0.0664 0.0021 0.0245 0.0245 -0.0674 -0.0325 0.0610 -0.0610 0.0097 

-0.088 -0.0308 0.0141 -0.0661 -0.0661 -0.0054 0.0204 0.0455 -0.0455 0.0369 

0.0088 0.0308 -0.0141 0.0661 0.0661 0.0054 -0.0204 -0.0455 0.0455 -0.0369 
-0.0184 -0.0112 0.0912 0.1049 0.1049 -0.0729 0.0273 0.0126 -0.0126 -0.1163 

-0.0016 0.0388 0.0122 0.0020 0.0020 -0.0106 -0.0628 -0.0088 0.0088 0.0007 

-0.0504 -0.0403 0.0813 0.0152 0.0152 -0.0309 -0.0655 0.0487 -0.0487 -0.0356 

-0.0311 0.0855 -0.0659 0.0211 0.0211 0.0970 -0.0299 0.0332 -0.0332 0.0789 

0.0129 0.0062 0.0505 -0.0405 -0.0405 -0.0633 0.0708 0.0461 -00461 -0.0062 

-0.0594 -0.0453 -0.0731 0.0027 0.0027 0.1324 0.0235 -0.0886 0.0886 0.0734 
-0.0688 -0.0625 -0.0230 -0.0306 -0.0306 0.0917 -0.0589 -0.1409 0.1409 -0.0393 

-0.0400 -0.0483 0.0549 0.0793 0.0793 -0.0149 -0.0231 0.0120 -0.0120 -0.0732 

0.0389 -0.0295 0.0280 0.0142 0.0142 -0.0669 0.0495 0.0103 -0.0103 0.0345 
0.0352 -0.0060 -0.0400 0.0763 0.0763 0.0048 -0.1024 0.0052 -0.0052 -0.0617 

  

Weights from Columns 21 through 30 
0.0899 -0.1234 0.0646 -0.0899 0.0032 -0.0013 0.0998 -0.0978 0.0292 -0.0292 
-0.0778 0.0557 0.1186 0.0778 0.0270 0.0396 -0.0471 0.1137 0.0300 -0.0300 

-0.0416 -0.0230 0.0531 0.0416 -0.0547 0.0843 -0.0242 0.0537 -0.0410 0.0410 

-0.0202 -0.0767 0.0118 0.0202 0.0440 -0.1000 -0.0901 0.0342 -0.0292 0.0292 
0.0666 0.2284 -0.1110 -0.0666 0.0885 0.0324 0.0429 0.0780 0.0631 -0.0631 

-0.0121 0.0011 0.1364 0.0121 0.0191 0.0212 -0.0217 0.0620 0.0851 -0.0851 

0.0236 -0.0516 -0.0206 -0.0236 0.0385 -0.0211 -0.0070 0.0245 -0.0661 0.0661 

-0.0534 -0.0022 0.0590 0.0534 -0.0310 0.0029 -0.0250 -0.0030 0.0315 -0.0315 

-0.0185 0.0425 0.0523 0.0185 0.0891 -0.0145 -0.0259 0.1006 0.0017 -0.0017 

-0.0177 0.0362 0.0133 0.0177 -0.0074 -0.0302 0.0031 -0.0406 0.0693 -0.0693 
0.0233 0.0863 -0.0985 -0.0233 -0.0113 0.0311 -0.0455 0.653 -0.0088 0.0088 

-0.0017 -0.1192 -0.0405 0.0017 -0.0451 -0.0855 -0.0642 -0.0664 -0.0308 0.0308 

0.0241 -0.0776 0.0709 -0.0241 -0.0626 0.0659 0.0011 0.0021 0.0141 -0.0141 
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0.0236 -0.0516 -0.0206 -0.0236 0.0385 -0.0211 -0.0070 0.0245 -0.0661 0.0661 
0.0236 -0.0516 -0.0206 -0.0236 0.0385 -0.0211 -0.0070 0.0245 -0.0661 0.0661 

-0.0474 -0.0087 0.0276 0.0474 0.0739 -0.0970 0.0444 -0.0674 -0.0054 0.0054 

0.1132 -0.0371 -0.0339 -0.1132 -0.0081 0.0299 0.0543 -0.0325 0.0204 -0.0204 
0.0094 -0.0318 -0.0026 -0.0094 -0.0373 -0.0332 -0.1314 0.0610 0.0455 -0.0455 

-0.0094 0.0318 0.0026 0.0094 0.0373 0.0332 0.1314 -0.0610 -0.0455 0.0455 

-0.0438 -0.0251 0.0324 0.0438 0.0055 -0.0789 -0.0831 0.0097 0.0369 -0.0369 
0.3422 -0.0525 -0.0412 -0.1191 0.0231 -0.0213 0.0504 -0.0486 0.0236 -0.0236 

-0.0525 0.5040 -0.0698 0.0525 0.0654 0.0537 -0.0075 0.1266 0.0395 -0.0395 

-0.0412 -0.0698 0.4654 0.0412 -0.0008 0.0413 0.0277 0.0128 0.0907 -0.0907 
-0.1191 0.0525 0.0412 0.3422 -0.0231 0.0213 -0.0504 0.0486 -0.0236 0.0236 

0.0231 0.0654 -0.0008 -0.0213 0.3670 -0.0988 -0.0017 0.0468 0.0427 -0.0427 

-0.0213 0.0537 0.0413 0.0213 -0.0988 0.0474 0.0660 0.0196 -0.0118 0.0118 
0.0504 -0.0075 0.0277 -0.0504 -0.0017 0.0660 0.3838 -0.0965 0.0064 -0.0064 

-0.0486 0.1266 0.0128 0.0486 0.0468 0.0196 -0.0965 0.3860 0.0245 -0.0245 

0.0236 0.0395 0.0907 -0.0236 0.0427 -0.0118 0.0064 0.0245 0.1229 -0.1229 
-0.0236 -0.0395 -0.0907 0.0236 -0.0427 0.0118 -0.0064 -0.0245 -0.3460 0.3460 

0.0834 -0.0909 0.0045 -0.0834 -0.0005 0.0117 0.0233 -0.0110 -0.0142 0.0142 

-0.0829 -0.0262 -0.0244 0.0829 -0.1048 0.0660 -0.0275 -0.0113 -0.0946 0.0946 
-0.0121 0.0011 0.1364 0.0121 0.0191 0.0212 -0.0217 0.0620 0.0851 -0.0851 

0.0213 -0.0537 -0.0413 -0.0213 0.0988 -0.1843 -0.0660 -0.0196 0.0118 -0.0118 

0.0598 -0.0392 0.0251 -0.0598 -0.0390 0.0328 0.0293 -0.0355 0.0519 -0.0519 
-0.0061 -0.0055 0.1050 0.0061 0.1240 -0.0787 0.0477 -0.0024 0.0482 -0.0482 

-0.0687 0.0450 0.0689 0.0687 -0.0248 0.0873 0.1103 -0.0479 -0.0172 0.0172 
0.0472 -0.0122 0.0701 -0.0472 0.0812 -0.0329 -0.0006 0.0489 0.0568 -0.0568 

-0.0416 -0.0230 0.0531 0.0416 -0.0547 0.0843 -0.0242 0.0537 -0.0410 0.0410 

-0.0307 0.1101 -0.1309 0.0307 0.0589 -0.0529 -0.0787 0.0847 -0.0575 0.0575 

      

Weights from Columns 31 through 40 
0.0457 -0.0612 -0.0151 0.0013 0.0579 0.0829 0.0099 0.0169 0.0106 -0.1376 

-0.0487 0.0104 0.0590 -0.0396 -0.0374 0.0866 0.0307 0.0186 0.1059 -0.0222 
0.0003 0.0687 0.0009 -0.0843 -0.0139 -0.0026 0.0174 -0.0268 0.1330 -0.0383 

-0.0114 0.0027 -0.0203 0.1000 -0.0467 0.0761 -0.0699 0.0061 0.0487 0.0146 

-0.0075 -0.1091 -0.0110 -0.0324 0.0206 -0.0115 -0.0237 0.0350 -0.0645 0.0795 
0.0422 -0.0461 0.1394 -0.0212 0.0270 0.0161 -0.0097 0.1004 0.0009 -0.0240 

0.1049 0.0020 0.0152 0.0211 -0.0405 0.0027 -0.0306 0.0793 0.0142 0.0763 

0.0076 0.0264 0.0925 -0.0029 0.0046 -0.0644 0.0283 0.0345 -0.0635 0.0289 
-0.0002 -0.0361 0.0200 0.0145 -0.0530 0.1214 -0.0074 0.0544 0.0783 0.0206 

-0.0488 -0.0221 0.0382 0.0302 0.0295 -0.0323 0.0208 -0.0090 -0.1053 -0.0046 

-0.0184 -0.0016 -0.0504 -0.0311 0.0129 -0.0594 -0.0688 -0.0400 0.0389 0.0352 
-0.0112 0.0388 -0.0403 0.0855 0.0062 -0.0453 -0.0625 -0.0483 -0.0295 -0.0060 

0.0912 0.0122 0.0813 -0.0659 0.0505 -0.0731 -0.0230 0.0549 0.0280 -0.0400 

0.1049 0.0020 0.0152 0.0211 -0.0405 0.0027 -0.0306 0.0793 0.0142 0.0763 
0.1049 0.0020 0.0152 0.0211 -0.0405 0.0027 -0.0306 0.0793 0.0142 0.0763 

-0.0729 -0.0106 -0.0309 0.0970 -0.0633 0.1324 0.0917 -0.0149 -0.0669 0.0048 

0.0273 -0.0628 -0.0655 -0.0299 0.0708 0.0235 -0.0589 -0.0231 0.0495 -0.1024 
0.0126 -0.0088 0.0487 0.0332 0.0461 -0.0886 -0.1409 0.0120 0.0103 0.0052 

-0.0126 0.0008 -0.0487 -0.0332 -0.0461 0.0886 0.1409 -0.0120 -0.0103 -0.0052 

-0.1163 0.0007 -0.0356 0.0789 -0.0062 0.0734 -0.0393 -0.0732 0.0345 -0.0617 
0.0834 -0.0829 -0.0121 0.0213 0.0598 -0.0061 -0.0687 0.0472 -0.0416 -0.0307 

-0.0909 -0.0262 0.0011 -0.0537 -0.0392 -0.0055 0.0450 -0.0122 -0.0230 0.1101 

0.0045 -0.0244 0.1364 -0.0413 0.0251 0.1050 0.0689 0.0701 0.0531 -0.1309 
-0.0834 0.0829 0.0121 -0.0213 -0.0598 0.0061 0.0687 -0.0472 0.0416 0.0307 

-0.0005 -0.1048 0.0191 0.0988 -0.0390 0.1240 -0.0248 0.0812 -0.0547 0.0589 

0.0117 0.0660 0.0212 -0.1843 0.0328 -0.0787 0.0873 -0.0329 0.0843 -0.0529 
0.0223 -0.0275 -0.0217 -0.0660 0.0293 0.0477 0.1103 -0.0006 -0.0242 -0.0787 

-0.0110 -0.0113 0.0620 -0.0196 -0.0355 -0.0024 -0.0479 0.0489 0.0537 0.0847 

-0.0142 -0.0946 0.0851 0.0118 0.0519 0.0482 -0.0172 0.0568 -0.0410 -0.0575 
0.0142 0.0946 -0.0851 -0.0118 -0.0519 -0.0482 0.0172 -0.0568 0.0410 0.0575 

0.3629 -0.0344 0.0422 -0.0117 0.0349 -0.0382 -0.0611 0.0907 0.0003 0.0028 

-0.0344 0.3643 -0.0461 -0.0660 -0.0363 -0.0831 0.0554 -0.0926 0.0687 0.0146 
0.0422 -0.0461 0.3626 -0.0212 0.0270 0.0161 -0.0097 0.1004 0.0009 -0.0240 

-0.0117 -0.0660 -0.0212 0.4074 -0.0328 0.0787 -0.0873 0.0329 -0.0843 0.0529 

0.0349 -0.0363 0.0270 -0.0328 0.2985 -0.0409 -0.0306 0.0114 -0.0139 -0.0735 
-0.0382 -0.0831 0.0161 0.0787 -0.0409 0.4361 0.0537 0.0509 -0.0026 -0.0480 

-0.0611 0.0554 -0.0097 -0.0873 -0.0306 0.0537 0.4022 -0.0478 0.0174 -0.0480 

0.0907 -0.0926 0.1004 0.0329 0.0144 0.0509 -0.0478 0.3593 -0.0268 0.0189 
0.0003 0.0687 0.0009 -0.0843 -0.0139 -0.0026 0.0174 -0.0268 0.3561 -0.0383 

0.0028 0.0146 -0.0240 0.0529 -0.0735 -0.0480 -0.0480 0.0189 -0.0383 0.4036 
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Figure 3 shows the performance of network done by Hopfield Neural Network and Table 1 explains 

network parameters used by network for training. Figure 4 shows the performance of the network when input 

data is not similar to the previously stored data. 

 

 

  
 

Figure 3. Training graph for Network Performance by 

Hopfield Neural Network 

 

Figure 4. Graph showing variation in the input and 

output 

 

 

Table 1. The parameters used for The Training of Hopfield Neural Network 
Parameter Value 

Neurons in Input Layer 40 

Neurons in Output Layer 40 
Total Number of Patterns 8 

Minimum Error Exist in the Network 12 

Training Time 0.000003 sec 
Initial Weight and biased term values Values between 0 and 1 

 

 

6. RESULT AND DISCUSSION 

The simulation is carried out on MATLAB tool. The straight line of the graph in Figure 3 shows that 

the memory stores the passwords on the different devices in the form that no one can find out which training 

algorithm has been used for training the network. These network parameters are stored in the memory and 

when user access the network with the stored password, then system proves it as an authentic person who is 

in the premises of the organization. In contrast, if there are intruders who attack on the system security, i.e. 

perform man-in-the-middle-attack and want to hack the sensitive data from the organization, then the patterns 

that are stored in the network will give the network performance that is shown in Figure 4 by dotted line 

which shows some variation in the graph. Network parameters are also changes if some unauthentic users are 

interfering in the organization.     

 

 

7. CONCLUSION 

In this paper, we proposed an automatic detection of rogue access point which is based on a 

Hopfield Neural Network algorithm. Above simulations conclude that this neural network algorithm takes 

very less time for execution and stores number of patterns very accurately. The connections of different 

devices were stored in the form of network parameters which is hard to crack and the variation in the input, 

output data show the presence of unauthorized points i.e. rogue access points. The researchers generated a 

secret key for encryption and decryption of the messages using HPNN. Some of the researchers train the 

HPNN model that could recall the legal users and reject the illegal users correctly and covered registration 

and authorization phases. Different researchers implemented various approaches and methods, but none of 
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them use Hopfield Neural Network Mechanism for detecting the rogue access points in wireless 

communication.This proposed neural network approach is a safe and easy operated method than the 

conventional method of encryption. The proposed model is designed for utilizing the existing WLAN 

infrastructure and there is no need of extra equipment for performing this detection. 
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